Pull removal of in-kernel calls to syscalls from Dominik Brodowski:
"System calls are interaction points between userspace and the kernel.
Therefore, system call functions such as sys_xyzzy() or
compat_sys_xyzzy() should only be called from userspace via the
syscall table, but not from elsewhere in the kernel.
At least on 64-bit x86, it will likely be a hard requirement from
v4.17 onwards to not call system call functions in the kernel: It is
better to use use a different calling convention for system calls
there, where struct pt_regs is decoded on-the-fly in a syscall wrapper
which then hands processing over to the actual syscall function. This
means that only those parameters which are actually needed for a
specific syscall are passed on during syscall entry, instead of
filling in six CPU registers with random user space content all the
time (which may cause serious trouble down the call chain). Those
x86-specific patches will be pushed through the x86 tree in the near
future.
Moreover, rules on how data may be accessed may differ between kernel
data and user data. This is another reason why calling sys_xyzzy() is
generally a bad idea, and -- at most -- acceptable in arch-specific
code.
This patchset removes all in-kernel calls to syscall functions in the
kernel with the exception of arch/. On top of this, it cleans up the
three places where many syscalls are referenced or prototyped, namely
kernel/sys_ni.c, include/linux/syscalls.h and include/linux/compat.h"
* 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux: (109 commits)
bpf: whitelist all syscalls for error injection
kernel/sys_ni: remove {sys_,sys_compat} from cond_syscall definitions
kernel/sys_ni: sort cond_syscall() entries
syscalls/x86: auto-create compat_sys_*() prototypes
syscalls: sort syscall prototypes in include/linux/compat.h
net: remove compat_sys_*() prototypes from net/compat.h
syscalls: sort syscall prototypes in include/linux/syscalls.h
kexec: move sys_kexec_load() prototype to syscalls.h
x86/sigreturn: use SYSCALL_DEFINE0
x86: fix sys_sigreturn() return type to be long, not unsigned long
x86/ioport: add ksys_ioperm() helper; remove in-kernel calls to sys_ioperm()
mm: add ksys_readahead() helper; remove in-kernel calls to sys_readahead()
mm: add ksys_mmap_pgoff() helper; remove in-kernel calls to sys_mmap_pgoff()
mm: add ksys_fadvise64_64() helper; remove in-kernel call to sys_fadvise64_64()
fs: add ksys_fallocate() wrapper; remove in-kernel calls to sys_fallocate()
fs: add ksys_p{read,write}64() helpers; remove in-kernel calls to syscalls
fs: add ksys_truncate() wrapper; remove in-kernel calls to sys_truncate()
fs: add ksys_sync_file_range helper(); remove in-kernel calls to syscall
kernel: add ksys_setsid() helper; remove in-kernel call to sys_setsid()
kernel: add ksys_unshare() helper; remove in-kernel calls to sys_unshare()
...
This removes the entire architecture code for blackfin, cris, frv, m32r,
metag, mn10300, score, and tile, including the associated device drivers.
I have been working with the (former) maintainers for each one to ensure
that my interpretation was right and the code is definitely unused in
mainline kernels. Many had fond memories of working on the respective
ports to start with and getting them included in upstream, but also saw
no point in keeping the port alive without any users.
In the end, it seems that while the eight architectures are extremely
different, they all suffered the same fate: There was one company
in charge of an SoC line, a CPU microarchitecture and a software
ecosystem, which was more costly than licensing newer off-the-shelf
CPU cores from a third party (typically ARM, MIPS, or RISC-V). It seems
that all the SoC product lines are still around, but have not used the
custom CPU architectures for several years at this point. In contrast,
CPU instruction sets that remain popular and have actively maintained
kernel ports tend to all be used across multiple licensees.
The removal came out of a discussion that is now documented at
https://lwn.net/Articles/748074/. Unlike the original plans, I'm not
marking any ports as deprecated but remove them all at once after I made
sure that they are all unused. Some architectures (notably tile, mn10300,
and blackfin) are still being shipped in products with old kernels,
but those products will never be updated to newer kernel releases.
After this series, we still have a few architectures without mainline
gcc support:
- unicore32 and hexagon both have very outdated gcc releases, but the
maintainers promised to work on providing something newer. At least
in case of hexagon, this will only be llvm, not gcc.
- openrisc, risc-v and nds32 are still in the process of finishing their
support or getting it added to mainline gcc in the first place.
They all have patched gcc-7.3 ports that work to some degree, but
complete upstream support won't happen before gcc-8.1. Csky posted
their first kernel patch set last week, their situation will be similar.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJawdL2AAoJEGCrR//JCVInuH0P/RJAZh1nTD+TR34ZhJq2TBoo
PgygwDU7Z2+tQVU+EZ453Gywz9/NMRFk1RWAZqrLix4ZtyIMvC6A1qfT2yH1Y7Fb
Qh6tccQeLe4ezq5u4S/46R/fQXu3Txr92yVwzJJUuPyU0arF9rv5MmI8e6p7L1en
yb74kSEaCe+/eMlsEj1Cc1dgthDNXGKIURHkRsILoweysCpesjiTg4qDcL+yTibV
FP2wjVbniKESMKS6qL71tiT5sexvLsLwMNcGiHPj94qCIQuI7DLhLdBVsL5Su6gI
sbtgv0dsq4auRYAbQdMaH1hFvu6WptsuttIbOMnz2Yegi2z28H8uVXkbk2WVLbqG
ZESUwutGh8MzOL2RJ4jyyQq5sfo++CRGlfKjr6ImZRv03dv0pe/W85062cK5cKNs
cgDDJjGRorOXW7dyU6jG2gRqODOQBObIv3w5efdq5OgzOWlbI4EC+Y5u1Z0JF/76
pSwtGXA6YhwC+9LLAlnVTHG+yOwuLmAICgoKcTbzTVDKA2YQZG/cYuQfI5S1wD8e
X6urPx3Md2GCwLXQ9mzKBzKZUpu/Tuhx0NvwF4qVxy6x1PELjn68zuP7abDHr46r
57/09ooVN+iXXnEGMtQVS/OPvYHSa2NgTSZz6Y86lCRbZmUOOlK31RDNlMvYNA+s
3iIVHovno/JuJnTOE8LY
=fQ8z
-----END PGP SIGNATURE-----
Merge tag 'arch-removal' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pul removal of obsolete architecture ports from Arnd Bergmann:
"This removes the entire architecture code for blackfin, cris, frv,
m32r, metag, mn10300, score, and tile, including the associated device
drivers.
I have been working with the (former) maintainers for each one to
ensure that my interpretation was right and the code is definitely
unused in mainline kernels. Many had fond memories of working on the
respective ports to start with and getting them included in upstream,
but also saw no point in keeping the port alive without any users.
In the end, it seems that while the eight architectures are extremely
different, they all suffered the same fate: There was one company in
charge of an SoC line, a CPU microarchitecture and a software
ecosystem, which was more costly than licensing newer off-the-shelf
CPU cores from a third party (typically ARM, MIPS, or RISC-V). It
seems that all the SoC product lines are still around, but have not
used the custom CPU architectures for several years at this point. In
contrast, CPU instruction sets that remain popular and have actively
maintained kernel ports tend to all be used across multiple licensees.
[ See the new nds32 port merged in the previous commit for the next
generation of "one company in charge of an SoC line, a CPU
microarchitecture and a software ecosystem" - Linus ]
The removal came out of a discussion that is now documented at
https://lwn.net/Articles/748074/. Unlike the original plans, I'm not
marking any ports as deprecated but remove them all at once after I
made sure that they are all unused. Some architectures (notably tile,
mn10300, and blackfin) are still being shipped in products with old
kernels, but those products will never be updated to newer kernel
releases.
After this series, we still have a few architectures without mainline
gcc support:
- unicore32 and hexagon both have very outdated gcc releases, but the
maintainers promised to work on providing something newer. At least
in case of hexagon, this will only be llvm, not gcc.
- openrisc, risc-v and nds32 are still in the process of finishing
their support or getting it added to mainline gcc in the first
place. They all have patched gcc-7.3 ports that work to some
degree, but complete upstream support won't happen before gcc-8.1.
Csky posted their first kernel patch set last week, their situation
will be similar
[ Palmer Dabbelt points out that RISC-V support is in mainline gcc
since gcc-7, although gcc-7.3.0 is the recommended minimum - Linus ]"
This really says it all:
2498 files changed, 95 insertions(+), 467668 deletions(-)
* tag 'arch-removal' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: (74 commits)
MAINTAINERS: UNICORE32: Change email account
staging: iio: remove iio-trig-bfin-timer driver
tty: hvc: remove tile driver
tty: remove bfin_jtag_comm and hvc_bfin_jtag drivers
serial: remove tile uart driver
serial: remove m32r_sio driver
serial: remove blackfin drivers
serial: remove cris/etrax uart drivers
usb: Remove Blackfin references in USB support
usb: isp1362: remove blackfin arch glue
usb: musb: remove blackfin port
usb: host: remove tilegx platform glue
pwm: remove pwm-bfin driver
i2c: remove bfin-twi driver
spi: remove blackfin related host drivers
watchdog: remove bfin_wdt driver
can: remove bfin_can driver
mmc: remove bfin_sdh driver
input: misc: remove blackfin rotary driver
input: keyboard: remove bf54x driver
...
Using this helper allows us to avoid the in-kernel call to the
sys_setsid() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_setsid().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the
sys_unshare() syscall. The ksys_ prefix denotes that this function is meant
as a drop-in replacement for the syscall. In particular, it uses the same
calling convention as sys_unshare().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the
sys_read() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_read().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the
sys_lseek() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_lseek().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the
sys_ioctl() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_ioctl().
After careful review, at least some of these calls could be converted
to do_vfs_ioctl() in future.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the
sys_getdents64() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_getdents64().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this wrapper allows us to avoid the in-kernel calls to the
sys_open() syscall. The ksys_ prefix denotes that this function is meant
as a drop-in replacement for the syscall. In particular, it uses the
same calling convention as sys_open().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the ksys_close() wrapper allows us to get rid of in-kernel calls
to the sys_close() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_close(), with one subtle
difference:
The few places which checked the return value did not care about the return
value re-writing in sys_close(), so simply use a wrapper around
__close_fd().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the ksys_ftruncate() wrapper allows us to get rid of in-kernel
calls to the sys_ftruncate() syscall. The ksys_ prefix denotes that this
function is meant as a drop-in replacement for the syscall. In
particular, it uses the same calling convention as sys_ftruncate().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the fs-interal do_fchownat() wrapper allows us to get rid of
fs-internal calls to the sys_fchownat() syscall.
Introducing the ksys_fchown() helper and the ksys_{,}chown() wrappers
allows us to avoid the in-kernel calls to the sys_{,l,f}chown() syscalls.
The ksys_ prefix denotes that these functions are meant as a drop-in
replacement for the syscalls. In particular, they use the same calling
convention as sys_{,l,f}chown().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the fs-internal do_faccessat() helper allows us to get rid of
fs-internal calls to the sys_faccessat() syscall.
Introducing the ksys_access() wrapper allows us to avoid the in-kernel
calls to the sys_access() syscall. The ksys_ prefix denotes that this
function is meant as a drop-in replacement for the syscall. In
particular, it uses the same calling convention as sys_access().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the fs-internal do_fchmodat() helper allows us to get rid of
fs-internal calls to the sys_fchmodat() syscall.
Introducing the ksys_fchmod() helper and the ksys_chmod() wrapper allows
us to avoid the in-kernel calls to the sys_fchmod() and sys_chmod()
syscalls. The ksys_ prefix denotes that these functions are meant as a
drop-in replacement for the syscalls. In particular, they use the same
calling convention as sys_fchmod() and sys_chmod().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the fs-internal do_linkat() helper allows us to get rid of
fs-internal calls to the sys_linkat() syscall.
Introducing the ksys_link() wrapper allows us to avoid the in-kernel
calls to sys_link() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it uses
the same calling convention as sys_link().
In the near future, the only fs-external user of ksys_link() should be
converted to use vfs_link() instead.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the fs-internal do_mknodat() helper allows us to get rid of
fs-internal calls to the sys_mknodat() syscall.
Introducing the ksys_mknod() wrapper allows us to avoid the in-kernel
calls to sys_mknod() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it uses
the same calling convention as sys_mknod().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the fs-internal do_symlinkat() helper allows us to get rid of
fs-internal calls to the sys_symlinkat() syscall.
Introducing the ksys_symlink() wrapper allows us to avoid the in-kernel
calls to the sys_symlink() syscall. The ksys_ prefix denotes that this
function is meant as a drop-in replacement for the syscall. In particular,
it uses the same calling convention as sys_symlink().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the fs-internal do_mkdirat() helper allows us to get rid of
fs-internal calls to the sys_mkdirat() syscall.
Introducing the ksys_mkdir() wrapper allows us to avoid the in-kernel calls
to the sys_mkdir() syscall. The ksys_ prefix denotes that this function is
meant as a drop-in replacement for the syscall. In particular, it uses the
same calling convention as sys_mkdir().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this wrapper allows us to avoid the in-kernel calls to the
sys_rmdir() syscall. The ksys_ prefix denotes that this function is meant
as a drop-in replacement for the syscall. In particular, it uses the same
calling convention as sys_rmdir().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this wrapper allows us to avoid the in-kernel calls to the
sys_unlink() syscall. The ksys_ prefix denotes that this function is meant
s a drop-in replacement for the syscall. In particular, it uses the same
calling convention as sys_unlink().
In the near future, all callers of ksys_unlink() should be converted to
call do_unlinkat() directly or, at least, to operate on regular kernel
pointers.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the sys_chdir()
syscall. The ksys_ prefix denotes that this function is meant as a drop-in
replacement for the syscall. In particular, it uses the same calling
convention as sys_chdir().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the sys_write()
syscall. The ksys_ prefix denotes that this function is meant as a drop-in
replacement for the syscall. In particular, it uses the same calling
convention as sys_write().
In the near future, the do_mounts / initramfs callers of ksys_write()
should be converted to use filp_open() and vfs_write() instead.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-s390@vger.kernel.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the
sys_chroot() syscall. The ksys_ prefix denotes that this function is
meant as a drop-in replacement for the syscall. In particular, it uses the
same calling convention as sys_chroot().
In the near future, the fs-external callers of ksys_chroot() should be
converted to use kern_path()/set_fs_root() directly. Then ksys_chroot()
can be moved within sys_chroot() again.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using ksys_dup() and ksys_dup3() as helper functions allows us to
avoid the in-kernel calls to the sys_dup() and sys_dup3() syscalls.
The ksys_ prefix denotes that these functions are meant as a drop-in
replacement for the syscalls. In particular, they use the same
calling convention as sys_dup{,3}().
In the near future, the fs-external callers of ksys_dup{,3}() should be
converted to call do_dup2() directly. Then, ksys_dup{,3}() can be moved
within sys_dup{,3}() again.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel call to the sys_umount()
syscall. The ksys_ prefix denotes that this function is meant as a drop-in
replacement for the syscall. In particular, it uses the same calling
convention as ksys_umount().
In the near future, the only fs-external caller of ksys_umount() should be
converted to call do_umount() directly. Then, ksys_umount() can be moved
within sys_umount() again.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the sys_mount()
syscall. The ksys_ prefix denotes that this function is meant as a drop-in
replacement for the syscall. In particular, it uses the same calling
convention as sys_mount().
In the near future, all callers of ksys_mount() should be converted to call
do_mount() directly.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
A lot of Kconfig symbols have architecture specific dependencies.
In those cases that depend on architectures we have already removed,
they can be omitted.
Acked-by: Kalle Valo <kvalo@codeaurora.org>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
With the following commit:
333522447063 ("jump_label: Explicitly disable jump labels in __init code")
... we explicitly disabled jump labels in __init code, so they could be
detected and not warned about in the following commit:
dc1dd184c2f0 ("jump_label: Warn on failed jump_label patching attempt")
In-kernel __exit code has the same issue. It's never used, so it's
freed along with the rest of initmem. But jump label entries in __exit
code aren't explicitly disabled, so we get the following warning when
enabling pr_debug() in __exit code:
can't patch jump_label at dmi_sysfs_exit+0x0/0x2d
WARNING: CPU: 0 PID: 22572 at kernel/jump_label.c:376 __jump_label_update+0x9d/0xb0
Fix the warning by disabling all jump labels in initmem (which includes
both __init and __exit code).
Reported-and-tested-by: Li Wang <liwang@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: dc1dd184c2f0 ("jump_label: Warn on failed jump_label patching attempt")
Link: http://lkml.kernel.org/r/7121e6e595374f06616c505b6e690e275c0054d1.1521483452.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After initmem has been freed, any jump labels in __init code are
prevented from being written to by the kernel_text_address() check in
__jump_label_update(). However, this check is quite broad. If
kernel_text_address() were to return false for any other reason, the
jump label write would fail silently with no warning.
For jump labels in module init code, entry->code is set to zero to
indicate that the entry is disabled. Do the same thing for core kernel
init code. This makes the behavior more consistent, and will also make
it more straightforward to detect non-init jump label write failures in
the next patch.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/c52825c73f3a174e8398b6898284ec20d4deb126.1519051220.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Provide core serializing membarrier command to support memory reclaim
by JIT.
Each architecture needs to explicitly opt into that support by
documenting in their architecture code how they provide the core
serializing instructions required when returning from the membarrier
IPI, and after the scheduler has updated the curr->mm pointer (before
going back to user-space). They should then select
ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on
their architecture.
Architectures selecting this feature need to either document that
they issue core serializing instructions when returning to user-space,
or implement their architecture-specific sync_core_before_usermode().
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Hunter <ahh@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Avi Kivity <avi@scylladb.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: David Sehr <sehr@google.com>
Cc: Greg Hackmann <ghackmann@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maged Michael <maged.michael@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce an architecture function that ensures the current CPU
issues a core serializing instruction before returning to usermode.
This is needed for the membarrier "sync_core" command.
Architectures defining the sync_core_before_usermode() static inline
need to select ARCH_HAS_SYNC_CORE_BEFORE_USERMODE.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Hunter <ahh@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Avi Kivity <avi@scylladb.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: David Sehr <sehr@google.com>
Cc: Greg Hackmann <ghackmann@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maged Michael <maged.michael@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/20180129202020.8515-7-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Allow PowerPC to skip the full memory barrier in switch_mm(), and
only issue the barrier when scheduling into a task belonging to a
process that has registered to use expedited private.
Threads targeting the same VM but which belong to different thread
groups is a tricky case. It has a few consequences:
It turns out that we cannot rely on get_nr_threads(p) to count the
number of threads using a VM. We can use
(atomic_read(&mm->mm_users) == 1 && get_nr_threads(p) == 1)
instead to skip the synchronize_sched() for cases where the VM only has
a single user, and that user only has a single thread.
It also turns out that we cannot use for_each_thread() to set
thread flags in all threads using a VM, as it only iterates on the
thread group.
Therefore, test the membarrier state variable directly rather than
relying on thread flags. This means
membarrier_register_private_expedited() needs to set the
MEMBARRIER_STATE_PRIVATE_EXPEDITED flag, issue synchronize_sched(), and
only then set MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY which allows
private expedited membarrier commands to succeed.
membarrier_arch_switch_mm() now tests for the
MEMBARRIER_STATE_PRIVATE_EXPEDITED flag.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Hunter <ahh@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Avi Kivity <avi@scylladb.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: David Sehr <sehr@google.com>
Cc: Greg Hackmann <ghackmann@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maged Michael <maged.michael@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/20180129202020.8515-3-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIVAwUAWl80tvSw1s6N8H32AQJq8A//ViRN5fExrd678Eh2Bz1ytrJYMUfYY3Hv
QTH5TH9zFyLFyWLB1Iwe13sdLVTTM88O0qcDb54Lx9fWUqeMZyYvBhLtWPc00lTU
0m3EyYR87MFWaEV+VxaVWgWaWkMDkd39KubDitcS+YIBDszTuMpYodhPUsgLt7lr
pePX7eurXKdQPTh4NUOjGA2NaZot3tga76J6D8NKruGYUstQCGxpP1ryiFfACnwf
NLWNO8ZBMtlDwX1mHYOOMFMaBzFzXorPm7jY4HJDf3mUM84xI3ach6CuH9RTSzfq
A+qB1U3QILPVFo2HtqOHui4bFjRwqOf6uIrI/KcnioJ37w1O+KFcMJeDnX2I211q
f2lXehJLQA7kPmxQw8T3//HDRaLXc0Qxt7IPZRFinrlkcN4oh3DD5euMfCFBSoZG
PTbjxlgMfzJPoZtqAcy0rV5L54a/F4h915OQPJCKLwujIsXD2nT993vNmGDyq4zh
BzNMxSXJC8p+jYvQpNhWyyxwDBBT/YsVQo/ACwg4eJnD3blVTAioRT9ZZcAcsY0F
0z1eWW5RiknzIaXQWvjfK0gYKpO+aMSu9+gipHfMbU3yXG+sPj/H6zAHYzqX3uQZ
jb5Iujjnu49W/YD+RiMenuu59lNXUnLSeRnlV7dw0qxGK1FzGo24+ZzKFhJhKvzG
tdfUsev1Mc8=
=jhWg
-----END PGP SIGNATURE-----
Merge tag 'init_task-20180117' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull init_task initializer cleanups from David Howells:
"It doesn't seem useful to have the init_task in a header file rather
than in a normal source file. We could consolidate init_task handling
instead and expand out various macros.
Here's a series of patches that consolidate init_task handling:
(1) Make THREAD_SIZE available to vmlinux.lds for cris, hexagon and
openrisc.
(2) Alter the INIT_TASK_DATA linker script macro to set
init_thread_union and init_stack rather than defining these in C.
Insert init_task and init_thread_into into the init_stack area in
the linker script as appropriate to the configuration, with
different section markers so that they end up correctly ordered.
We can then get merge ia64's init_task.c into the main one.
We then have a bunch of single-use INIT_*() macros that seem only
to be macros because they used to be used per-arch. We can then
expand these in place of the user and get rid of a few lines and
a lot of backslashes.
(3) Expand INIT_TASK() in place.
(4) Expand in place various small INIT_*() macros that are defined
conditionally. Expand them and surround them by #if[n]def/#endif
in the .c file as it takes fewer lines.
(5) Expand INIT_SIGNALS() and INIT_SIGHAND() in place.
(6) Expand INIT_STRUCT_PID in place.
These macros can then be discarded"
* tag 'init_task-20180117' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
Expand INIT_STRUCT_PID and remove
Expand the INIT_SIGNALS and INIT_SIGHAND macros and remove
Expand various INIT_* macros and remove
Expand INIT_TASK() in init/init_task.c and remove
Construct init thread stack in the linker script rather than by union
openrisc: Make THREAD_SIZE available to vmlinux.lds
hexagon: Make THREAD_SIZE available to vmlinux.lds
cris: Make THREAD_SIZE available to vmlinux.lds
There doesn't seem to be any need to have the INIT_SIGNALS and INIT_SIGHAND
macros, so expand them in their single places of use and remove them.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Will Deacon <will.deacon@arm.com> (arm64)
Tested-by: Palmer Dabbelt <palmer@sifive.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Expand various INIT_* macros into the single places they're used in
init/init_task.c and remove them.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Will Deacon <will.deacon@arm.com> (arm64)
Tested-by: Palmer Dabbelt <palmer@sifive.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
It's no longer necessary to have an INIT_TASK() macro, and this can be
expanded into the one place it is now used and removed.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Will Deacon <will.deacon@arm.com> (arm64)
Tested-by: Palmer Dabbelt <palmer@sifive.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Pull scheduler fixes from Ingo Molnar:
"A Kconfig fix, a build fix and a membarrier bug fix"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
membarrier: Disable preemption when calling smp_call_function_many()
sched/isolation: Make CONFIG_CPU_ISOLATION=y depend on SMP or COMPILE_TEST
ia64, sched/cputime: Fix build error if CONFIG_VIRT_CPU_ACCOUNTING_NATIVE=y
Daniel Borkmann says:
====================
pull-request: bpf 2018-01-09
The following pull-request contains BPF updates for your *net* tree.
The main changes are:
1) Prevent out-of-bounds speculation in BPF maps by masking the
index after bounds checks in order to fix spectre v1, and
add an option BPF_JIT_ALWAYS_ON into Kconfig that allows for
removing the BPF interpreter from the kernel in favor of
JIT-only mode to make spectre v2 harder, from Alexei.
2) Remove false sharing of map refcount with max_entries which
was used in spectre v1, from Daniel.
3) Add a missing NULL psock check in sockmap in order to fix
a race, from John.
4) Fix test_align BPF selftest case since a recent change in
verifier rejects the bit-wise arithmetic on pointers
earlier but test_align update was missing, from Alexei.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Construct the init thread stack in the linker script rather than doing it
by means of a union so that ia64's init_task.c can be got rid of.
The following symbols are then made available from INIT_TASK_DATA() linker
script macro:
init_thread_union
init_stack
INIT_TASK_DATA() also expands the region to THREAD_SIZE to accommodate the
size of the init stack. init_thread_union is given its own section so that
it can be placed into the stack space in the right order. I'm assuming
that the ia64 ordering is correct and that the task_struct is first and the
thread_info second.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Will Deacon <will.deacon@arm.com> (arm64)
Tested-by: Palmer Dabbelt <palmer@sifive.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
The BPF interpreter has been used as part of the spectre 2 attack CVE-2017-5715.
A quote from goolge project zero blog:
"At this point, it would normally be necessary to locate gadgets in
the host kernel code that can be used to actually leak data by reading
from an attacker-controlled location, shifting and masking the result
appropriately and then using the result of that as offset to an
attacker-controlled address for a load. But piecing gadgets together
and figuring out which ones work in a speculation context seems annoying.
So instead, we decided to use the eBPF interpreter, which is built into
the host kernel - while there is no legitimate way to invoke it from inside
a VM, the presence of the code in the host kernel's text section is sufficient
to make it usable for the attack, just like with ordinary ROP gadgets."
To make attacker job harder introduce BPF_JIT_ALWAYS_ON config
option that removes interpreter from the kernel in favor of JIT-only mode.
So far eBPF JIT is supported by:
x64, arm64, arm32, sparc64, s390, powerpc64, mips64
The start of JITed program is randomized and code page is marked as read-only.
In addition "constant blinding" can be turned on with net.core.bpf_jit_harden
v2->v3:
- move __bpf_prog_ret0 under ifdef (Daniel)
v1->v2:
- fix init order, test_bpf and cBPF (Daniel's feedback)
- fix offloaded bpf (Jakub's feedback)
- add 'return 0' dummy in case something can invoke prog->bpf_func
- retarget bpf tree. For bpf-next the patch would need one extra hunk.
It will be sent when the trees are merged back to net-next
Considered doing:
int bpf_jit_enable __read_mostly = BPF_EBPF_JIT_DEFAULT;
but it seems better to land the patch as-is and in bpf-next remove
bpf_jit_enable global variable from all JITs, consolidate in one place
and remove this jit_init() function.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
On uniprocessor systems, critical and non-critical tasks cannot be
isolated, as there is only a single CPU core. Hence enabling CPU
isolation by default on such systems does not make much sense.
Instead of changing the default for !SMP, fix this by making the feature
depend on SMP, with an override for compile-testing. Note that its sole
selector (NO_HZ_FULL) already depends on SMP.
This decreases kernel size for a default uniprocessor kernel by ca. 1 KiB.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 2c43838c99d9d23f ("sched/isolation: Enable CONFIG_CPU_ISOLATION=y by default")
Link: http://lkml.kernel.org/r/1514891590-20782-1-git-send-email-geert@linux-m68k.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Thomas Gleixner:
"Three patches addressing the fallout of the CPU_ISOLATION changes
especially with NO_HZ_FULL plus documentation of boot parameter
dependency"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/isolation: Document boot parameters dependency on CONFIG_CPU_ISOLATION=y
sched/isolation: Enable CONFIG_CPU_ISOLATION=y by default
sched/isolation: Make CONFIG_NO_HZ_FULL select CONFIG_CPU_ISOLATION
Pull x86 page table isolation updates from Thomas Gleixner:
"This is the final set of enabling page table isolation on x86:
- Infrastructure patches for handling the extra page tables.
- Patches which map the various bits and pieces which are required to
get in and out of user space into the user space visible page
tables.
- The required changes to have CR3 switching in the entry/exit code.
- Optimizations for the CR3 switching along with documentation how
the ASID/PCID mechanism works.
- Updates to dump pagetables to cover the user space page tables for
W+X scans and extra debugfs files to analyze both the kernel and
the user space visible page tables
The whole functionality is compile time controlled via a config switch
and can be turned on/off on the command line as well"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
x86/ldt: Make the LDT mapping RO
x86/mm/dump_pagetables: Allow dumping current pagetables
x86/mm/dump_pagetables: Check user space page table for WX pages
x86/mm/dump_pagetables: Add page table directory to the debugfs VFS hierarchy
x86/mm/pti: Add Kconfig
x86/dumpstack: Indicate in Oops whether PTI is configured and enabled
x86/mm: Clarify the whole ASID/kernel PCID/user PCID naming
x86/mm: Use INVPCID for __native_flush_tlb_single()
x86/mm: Optimize RESTORE_CR3
x86/mm: Use/Fix PCID to optimize user/kernel switches
x86/mm: Abstract switching CR3
x86/mm: Allow flushing for future ASID switches
x86/pti: Map the vsyscall page if needed
x86/pti: Put the LDT in its own PGD if PTI is on
x86/mm/64: Make a full PGD-entry size hole in the memory map
x86/events/intel/ds: Map debug buffers in cpu_entry_area
x86/cpu_entry_area: Add debugstore entries to cpu_entry_area
x86/mm/pti: Map ESPFIX into user space
x86/mm/pti: Share entry text PMD
x86/entry: Align entry text section to PMD boundary
...
Pull x86 PTI preparatory patches from Thomas Gleixner:
"Todays Advent calendar window contains twentyfour easy to digest
patches. The original plan was to have twenty three matching the date,
but a late fixup made that moot.
- Move the cpu_entry_area mapping out of the fixmap into a separate
address space. That's necessary because the fixmap becomes too big
with NRCPUS=8192 and this caused already subtle and hard to
diagnose failures.
The top most patch is fresh from today and cures a brain slip of
that tall grumpy german greybeard, who ignored the intricacies of
32bit wraparounds.
- Limit the number of CPUs on 32bit to 64. That's insane big already,
but at least it's small enough to prevent address space issues with
the cpu_entry_area map, which have been observed and debugged with
the fixmap code
- A few TLB flush fixes in various places plus documentation which of
the TLB functions should be used for what.
- Rename the SYSENTER stack to CPU_ENTRY_AREA stack as it is used for
more than sysenter now and keeping the name makes backtraces
confusing.
- Prevent LDT inheritance on exec() by moving it to arch_dup_mmap(),
which is only invoked on fork().
- Make vysycall more robust.
- A few fixes and cleanups of the debug_pagetables code. Check
PAGE_PRESENT instead of checking the PTE for 0 and a cleanup of the
C89 initialization of the address hint array which already was out
of sync with the index enums.
- Move the ESPFIX init to a different place to prepare for PTI.
- Several code moves with no functional change to make PTI
integration simpler and header files less convoluted.
- Documentation fixes and clarifications"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/cpu_entry_area: Prevent wraparound in setup_cpu_entry_area_ptes() on 32bit
init: Invoke init_espfix_bsp() from mm_init()
x86/cpu_entry_area: Move it out of the fixmap
x86/cpu_entry_area: Move it to a separate unit
x86/mm: Create asm/invpcid.h
x86/mm: Put MMU to hardware ASID translation in one place
x86/mm: Remove hard-coded ASID limit checks
x86/mm: Move the CR3 construction functions to tlbflush.h
x86/mm: Add comments to clarify which TLB-flush functions are supposed to flush what
x86/mm: Remove superfluous barriers
x86/mm: Use __flush_tlb_one() for kernel memory
x86/microcode: Dont abuse the TLB-flush interface
x86/uv: Use the right TLB-flush API
x86/entry: Rename SYSENTER_stack to CPU_ENTRY_AREA_entry_stack
x86/doc: Remove obvious weirdnesses from the x86 MM layout documentation
x86/mm/64: Improve the memory map documentation
x86/ldt: Prevent LDT inheritance on exec
x86/ldt: Rework locking
arch, mm: Allow arch_dup_mmap() to fail
x86/vsyscall/64: Warn and fail vsyscall emulation in NATIVE mode
...
init_espfix_bsp() needs to be invoked before the page table isolation
initialization. Move it into mm_init() which is the place where pti_init()
will be added.
While at it get rid of the #ifdeffery and provide proper stub functions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "isolcpus=" boot parameter support was always built-in before we
moved the related code under CONFIG_CPU_ISOLATION. Having it disabled by
default is very confusing for people accustomed to use this parameter.
So enable it by dafault to keep the previous behaviour but keep it
optable for those who want to tinify their kernels.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: kernel test robot <xiaolong.ye@intel.com>
Link: http://lkml.kernel.org/r/1513275507-29200-3-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is needed in order to allow the unbound workqueue to take
housekeeping cpus into accounty
Signed-off-by: Tal Shorer <tal.shorer@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Clean up the EXPERT menu (yet again).
Move FHANDLE and CHECKPOINT_RESTORE into the primary EXPERT menu since
they already depend on EXPERT.
Move BPF_SYSCALL and USERFAULTFD out of the EXPERT Kconfig symbols menu
list since they do not depend on EXPERT and were breaking the continuity
of that menu list.
Move all of the KALLSYMS Kconfig symbols to the end of the EXPERT menu.
This separates the kernel services from the build options.
This patch depends on [PATCH] pci: move PCI_QUIRKS to the PCI bus menu
(https://lkml.org/lkml/2017/11/2/907).
Link: http://lkml.kernel.org/r/72e4465a-a5ff-cb3c-1a90-11aa4861b161@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net> [BPF]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>