This commit informs RCU of an outgoing CPU just before that CPU invokes
arch_cpu_idle_dead() during its last pass through the idle loop (via a
new CPU_DYING_IDLE notifier value). This change means that RCU need not
deal with outgoing CPUs passing through the scheduler after informing
RCU that they are no longer online. Note that removing the CPU from
the rcu_node ->qsmaskinit bit masks is done at CPU_DYING_IDLE time,
and orphaning callbacks is still done at CPU_DEAD time, the reason being
that at CPU_DEAD time we have another CPU that can adopt them.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Because that RCU grace-period initialization need no longer exclude
CPU-hotplug operations, this commit eliminates the ->onoff_mutex and
its uses.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_report_unblock_qs_rnp() function is invoked when the
last task blocking the current grace period exits its outermost
RCU read-side critical section. Previously, this was called only
from rcu_read_unlock_special(), and was therefore defined only when
CONFIG_RCU_PREEMPT=y. However, this function will be invoked even when
CONFIG_RCU_PREEMPT=n once CPU-hotplug operations are processed only at
the beginnings of RCU grace periods. The reason for this change is that
the last task on a given leaf rcu_node structure's ->blkd_tasks list
might well exit its RCU read-side critical section between the time that
recent CPU-hotplug operations were applied and when the new grace period
was initialized. This situation could result in RCU waiting forever on
that leaf rcu_node structure, because if all that structure's CPUs were
already offline, there would be no quiescent-state events to drive that
structure's part of the grace period.
This commit therefore moves rcu_report_unblock_qs_rnp() to common code
that is built unconditionally so that the quiescent-state-forcing code
can clean up after this situation, avoiding the grace-period stall.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, the rcu_node tree ->expmask bitmasks are initially set to
reflect the online CPUs. This is pointless, because only the CPUs
preempted within RCU read-side critical sections by the preceding
synchronize_sched_expedited() need to be tracked. This commit therefore
instead sets up these bitmasks based on the state of the ->blkd_tasks
lists.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Offline CPUs cannot safely invoke trace events, but such CPUs do execute
within rcu_cpu_notify(). Therefore, this commit removes the trace events
from rcu_cpu_notify(). These trace events are for utilization, against
which rcu_cpu_notify() execution time should be negligible.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Grace-period initialization normally proceeds quite quickly, so
that it is very difficult to reproduce races against grace-period
initialization. This commit therefore allows grace-period
initialization to be artificially slowed down, increasing
race-reproduction probability. A pair of new Kconfig parameters are
provided, CONFIG_RCU_TORTURE_TEST_SLOW_INIT to enable the slowdowns, and
CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY to specify the number of jiffies
of slowdown to apply. A boot-time parameter named rcutree.gp_init_delay
allows boot-time delay to be specified. By default, no delay will be
applied even if CONFIG_RCU_TORTURE_TEST_SLOW_INIT is set.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
If all CPUs have passed through quiescent states, then stalls might be
due to starvation of the grace-period kthread or to failure to propagate
the quiescent states up the rcu_node combining tree. The current stall
warning messages do not differentiate, so this commit adds a printout
of the root rcu_node structure's ->qsmask field.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, both rcu_cleanup_dead_cpu() and rcu_send_cbs_to_orphanage()
initialize the outgoing CPU's callback list. However, only
rcu_cleanup_dead_cpu() invokes rcu_send_cbs_to_orphanage(), and
it does so unconditionally, which means that only one of these
initializations is required. This commit therefore consolidates the
callback-list initialization with the rest of the callback handling in
rcu_send_cbs_to_orphanage().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Pull rcu fix and x86 irq fix from Ingo Molnar:
- Fix a bug that caused an RCU warning splat.
- Two x86 irq related fixes: a hotplug crash fix and an ACPI IRQ
registry fix.
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
rcu: Clear need_qs flag to prevent splat
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/irq: Check for valid irq descriptor in check_irq_vectors_for_cpu_disable()
x86/irq: Fix regression caused by commit b568b8601f
printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the scheduling-clock interrupt sets the current tasks need_qs flag,
but if the current CPU passes through a quiescent state in the meantime,
then rcu_preempt_qs() will fail to clear the need_qs flag, which can fool
RCU into thinking that additional rcu_read_unlock_special() processing
is needed. This commit therefore clears the need_qs flag before checking
for additional processing.
For this problem to occur, we need rcu_preempt_data.passed_quiesce equal
to true and current->rcu_read_unlock_special.b.need_qs also equal to true.
This condition can occur as follows:
1. CPU 0 is aware of the current preemptible RCU grace period,
but has not yet passed through a quiescent state. Among other
things, this means that rcu_preempt_data.passed_quiesce is false.
2. Task A running on CPU 0 enters a preemptible RCU read-side
critical section.
3. CPU 0 takes a scheduling-clock interrupt, which notices the
RCU read-side critical section and the need for a quiescent state,
and thus sets current->rcu_read_unlock_special.b.need_qs to true.
4. Task A is preempted, enters the scheduler, eventually invoking
rcu_preempt_note_context_switch() which in turn invokes
rcu_preempt_qs().
Because rcu_preempt_data.passed_quiesce is false,
control enters the body of the "if" statement, which sets
rcu_preempt_data.passed_quiesce to true.
5. At this point, CPU 0 takes an interrupt. The interrupt
handler contains an RCU read-side critical section, and
the rcu_read_unlock() notes that current->rcu_read_unlock_special
is nonzero, and thus invokes rcu_read_unlock_special().
6. Once in rcu_read_unlock_special(), the fact that
current->rcu_read_unlock_special.b.need_qs is true becomes
apparent, so rcu_read_unlock_special() invokes rcu_preempt_qs().
Recursively, given that we interrupted out of that same
function in the preceding step.
7. Because rcu_preempt_data.passed_quiesce is now true,
rcu_preempt_qs() does nothing, and simply returns.
8. Upon return to rcu_read_unlock_special(), it is noted that
current->rcu_read_unlock_special is still nonzero (because
the interrupted rcu_preempt_qs() had not yet gotten around
to clearing current->rcu_read_unlock_special.b.need_qs).
9. Execution proceeds to the WARN_ON_ONCE(), which notes that
we are in an interrupt handler and thus duly splats.
The solution, as noted above, is to make rcu_read_unlock_special()
clear out current->rcu_read_unlock_special.b.need_qs after calling
rcu_preempt_qs(). The interrupted rcu_preempt_qs() will clear it again,
but this is harmless. The worst that happens is that we clobber another
attempt to set this field, but this is not a problem because we just
got done reporting a quiescent state.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Fix embarrassing build bug noted by Sasha Levin. ]
Tested-by: Sasha Levin <sasha.levin@oracle.com>
The current tiny RCU stall-warning code assumes that the jiffies counter
starts at zero, however, it is sometimes initialized to other values,
for example, -30,000. This commit therefore changes rcu_init() to
invoke reset_cpu_stall_ticks() for both flavors of RCU to initialize
the stall-warning times properly at boot.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The tiny RCU CPU stall detection depends on *rcp->curtail not being
NULL. It is however a tail pointer and thus NULL by definition. Instead we
should check rcp->rcucblist for the presence of pending callbacks which
need to be processed. With this fix INFO about the stall is printed and
jiffies_stall (jiffies at next stall) correctly updated.
Note that the check for pending callback is necessary to avoid spurious
warnings if there are no pendings callbacks.
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
[ paulmck: Fused identical "if" statements, ported to -rcu. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds a message that is printed if the relevant grace-period
kthread has not been able to run for the two seconds preceding the
stall warning. (The two seconds is double the maximum interval between
successive bouts of quiescent-state forcing.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although cond_resched_rcu_qs() only applies to TASKS_RCU, it is used
in places where it would be useful for it to apply to the normal RCU
flavors, rcu_preempt, rcu_sched, and rcu_bh. This is especially the
case for workloads that aggressively overload the system, particularly
those that generate large numbers of RCU updates on systems running
NO_HZ_FULL CPUs. This commit therefore communicates quiescent states
from cond_resched_rcu_qs() to the normal RCU flavors.
Note that it is unfortunately necessary to leave the old ->passed_quiesce
mechanism in place to allow quiescent states that apply to only one
flavor to be recorded. (Yes, we could decrement ->rcu_qs_ctr_snap in
that case, but that is not so good for debugging of RCU internals.)
In addition, if one of the RCU flavor's grace period has stalled, this
will invoke rcu_momentary_dyntick_idle(), resulting in a heavy-weight
quiescent state visible from other CPUs.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Merge commit from Sasha Levin fixing a bug where __this_cpu()
was used in preemptible code. ]
Recent testing has shown that under heavy load, running RCU's grace-period
kthreads at real-time priority can improve performance (according to 0day
test robot) and reduce the incidence of RCU CPU stall warnings. However,
most systems do just fine with the default non-realtime priorities for
these kthreads, and it does not make sense to expose the entire user
base to any risk stemming from this change, given that this change is
of use only to a few users running extremely heavy workloads.
Therefore, this commit allows users to specify realtime priorities
for the grace-period kthreads, but leaves them running SCHED_OTHER
by default. The realtime priority may be specified at build time
via the RCU_KTHREAD_PRIO Kconfig parameter, or at boot time via the
rcutree.kthread_prio parameter. Either way, 0 says to continue the
default SCHED_OTHER behavior and values from 1-99 specify that priority
of SCHED_FIFO behavior. Note that a value of 0 is not permitted when
the RCU_BOOST Kconfig parameter is specified.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, rcutorture's Reader Batch checks measure from the end of
the previous grace period to the end of the current one. This commit
tightens up these checks by measuring from the start and end of the same
grace period. This involves adding rcu_batches_started() and friends
corresponding to the existing rcu_batches_completed() and friends.
We leave SRCU alone for the moment, as it does not yet have a way of
tracking both ends of its grace periods.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that the return type of rcu_batches_completed() and friends matches
that of the rcu_torture_ops structure's ->completed field, the wrapper
functions can be deleted. This commit carries out that deletion, while
also wiring "sched"'s ->completed field to rcu_batches_completed_sched().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The counter returned by the various ->completed functions is subject to
overflow, which means that subtracting two such counters might result
in overflow, which invokes undefined behavior in the C standard. This
commit therefore changes these functions and variables to unsigned to
avoid this undefined behavior.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Long ago, the various ->completed fields were of type long, but now are
unsigned long due to signed-integer-overflow concerns. However, the
various _batches_completed() functions remained of type long, even though
their only purpose in life is to return the corresponding ->completed
field. This patch cleans this up by changing these functions' return
types to unsigned long.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Subtle race conditions can result if a CPU stays in dyntick-idle mode
long enough for the ->gpnum and ->completed fields to wrap. For
example, consider the following sequence of events:
o CPU 1 encounters a quiescent state while waiting for grace period
5 to complete, but then enters dyntick-idle mode.
o While CPU 1 is in dyntick-idle mode, the grace-period counters
wrap around so that the grace period number is now 4.
o Just as CPU 1 exits dyntick-idle mode, grace period 4 completes
and grace period 5 begins.
o The quiescent state that CPU 1 passed through during the old
grace period 5 looks like it applies to the new grace period
5. Therefore, the new grace period 5 completes without CPU 1
having passed through a quiescent state.
This could clearly be a fatal surprise to any long-running RCU read-side
critical section that happened to be running on CPU 1 at the time. At one
time, this was not a problem, given that it takes significant time for
the grace-period counters to overflow even on 32-bit systems. However,
with the advent of NO_HZ_FULL and SMP embedded systems, arbitrarily long
idle periods are now becoming quite feasible. It is therefore time to
close this race.
This commit therefore avoids this race condition by having the
quiescent-state forcing code detect when a CPU is falling too far
behind, and setting a new rcu_data field ->gpwrap when this happens.
Whenever this new ->gpwrap field is set, the CPU's ->gpnum and ->completed
fields are known to be untrustworthy, and can be ignored, along with
any associated quiescent states.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current RCU CPU stall warning code will print "Stall ended before
state dump start" any time that the stall-warning code is triggered on
a CPU that has already reported a quiescent state for the current grace
period and if all quiescent states have been reported for the current
grace period. However, a true stall can result in these symptoms, for
example, by preventing RCU's grace-period kthreads from ever running
This commit therefore checks for this condition, reporting the end of
the stall only if one of the grace-period counters has actually advanced.
Otherwise, it reports the last time that the grace-period kthread made
meaningful progress. (In normal situations, the grace-period kthread
should make meaningful progress at least every jiffies_till_next_fqs
jiffies.)
Reported-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Miroslav Benes <mbenes@suse.cz>
One way that an RCU CPU stall warning can happen is if the grace-period
kthread is not allowed to execute. One proxy for this kthread's
forward progress is the number of force-quiescent-state (fqs) scans.
This commit therefore adds the number of fqs scans to the RCU CPU stall
warning printouts when CONFIG_RCU_CPU_STALL_INFO=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
SRCU is not necessary to be compiled by default in all cases. For tinification
efforts not compiling SRCU unless necessary is desirable.
The current patch tries to make compiling SRCU optional by introducing a new
Kconfig option CONFIG_SRCU which is selected when any of the components making
use of SRCU are selected.
If we do not select CONFIG_SRCU, srcu.o will not be compiled at all.
text data bss dec hex filename
2007 0 0 2007 7d7 kernel/rcu/srcu.o
Size of arch/powerpc/boot/zImage changes from
text data bss dec hex filename
831552 64180 23944 919676 e087c arch/powerpc/boot/zImage : before
829504 64180 23952 917636 e0084 arch/powerpc/boot/zImage : after
so the savings are about ~2000 bytes.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
CC: Josh Triplett <josh@joshtriplett.org>
CC: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: resolve conflict due to removal of arch/ia64/kvm/Kconfig. ]
When rcutorture used only the low-order 32 bits of the grace-period
number, it was not a problem for SRCU to use a 32-bit completed field.
However, rcutorture now uses the full 64 bits on 64-bit systems, so
this commit converts SRCU's ->completed field to unsigned long so as to
provide 64 bits on 64-bit systems.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The RCU callback lists are initialized in both rcu_boot_init_percpu_data()
and rcu_init_percpu_data(). The former is intended for initializing
immutable data, so this commit removes the initialization from
rcu_boot_init_percpu_data() and leaves it in rcu_init_percpu_data().
This change prepares for permitting callbacks to be queued very early
in boot.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that blocked tasks are no longer migrated to the root rcu_node
structure, there is no need to scan the root rcu_node structure for
blocked tasks stalling the current grace period. This commit therefore
removes this scan.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The patch dfeb9765ce ("Allow post-unlock reference for rt_mutex")
ensured rcu-boost safe even the rt_mutex has post-unlock reference.
But rt_mutex allowing post-unlock reference is definitely a bug and it was
fixed by the commit 27e35715df ("rtmutex: Plug slow unlock race").
This fix made the previous patch (dfeb9765ce) useless.
And even worse, the priority-inversion introduced by the the previous
patch still exists.
rcu_read_unlock_special() {
rt_mutex_unlock(&rnp->boost_mtx);
/* Priority-Inversion:
* the current task had been deboosted and preempted as a low
* priority task immediately, it could wait long before reschedule in,
* and the rcu-booster also waits on this low priority task and sleeps.
* This priority-inversion makes rcu-booster can't work
* as expected.
*/
complete(&rnp->boost_completion);
}
Just revert the patch to avoid it.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_cleanup_dead_cpu() function (called after a CPU has gone
completely offline) has not reported a quiescent state because there
was probably at least one synchronize_rcu() between the time the CPU
went offline and the CPU_DEAD notifier, and this would have detected
the CPU's offline state via quiescent-state forcing. However, the plan
is for CPUs to take themselves offline, at which point it makes sense
for them to report their own quiescent state. This commit makes this
change in preparation for the new CPU-hotplug setup.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When rcu_boost_kthread_setaffinity() sees that all CPUs for a given
rcu_node structure are now offline, it affinities the corresponding
RCU-boost ("rcub") kthread away from those CPUs. This is pointless
because the kthread cannot run on those offline CPUs in any case.
This commit therefore removes this unneeded code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Because there is no longer any preempted tasks on the root rcu_node, and
because there is no longer ever an rcub kthread for the root rcu_node,
this commit drops the code in force_qs_rnp() that attempts to awaken
the non-existent root rcub kthread. This is strictly a performance
enhancement, removing a root rcu_node ->lock acquisition and release
along with some tests in rcu_initiate_boost(), ending with the test that
notes that there is no rcub kthread.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that offlining CPUs no longer moves leaf rcu_node structures'
->blkd_tasks lists to the root, there is no way for the root rcu_node
structure's ->blkd_task list to be nonempty, unless the root node is also
the sole leaf node. This commit therefore refrains from creating an rcub
kthread for the root rcu_node structure unless it is also the sole leaf.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Given that there is now arcu_preempt_has_tasks() function that checks
to see if the ->blkd_tasks list is non-empty, this commit makes use of it.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that we are not migrating callbacks, there is no need to hold the
->orphan_lock across the the ->qsmaskinit bit-clearing process.
This commit therefore releases ->orphan_lock immediately after adopting
the orphaned RCU callbacks.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When the last CPU associated with a given leaf rcu_node structure
goes offline, something must be done about the tasks queued on that
rcu_node structure. Each of these tasks has been preempted on one of
the leaf rcu_node structure's CPUs while in an RCU read-side critical
section that it have not yet exited. Handling these tasks is the job of
rcu_preempt_offline_tasks(), which migrates them from the leaf rcu_node
structure to the root rcu_node structure.
Unfortunately, this migration has to be done one task at a time because
each tasks allegiance must be shifted from the original leaf rcu_node to
the root, so that future attempts to deal with these tasks will acquire
the root rcu_node structure's ->lock rather than that of the leaf.
Worse yet, this migration must be done with interrupts disabled, which
is not so good for realtime response, especially given that there is
no bound on the number of tasks on a given rcu_node structure's list.
(OK, OK, there is a bound, it is just that it is unreasonably large,
especially on 64-bit systems.) This was not considered a problem back
when rcu_preempt_offline_tasks() was first written because realtime
systems were assumed not to do CPU-hotplug operations while real-time
applications were running. This assumption has proved of dubious validity
given that people are starting to run multiple realtime applications
on a single SMP system and that it is common practice to offline then
online a CPU before starting its real-time application in order to clear
extraneous processing off of that CPU. So we now need CPU hotplug
operations to avoid undue latencies.
This commit therefore avoids migrating these tasks, instead letting
them be dequeued one by one from the original leaf rcu_node structure
by rcu_read_unlock_special(). This means that the clearing of bits
from the upper-level rcu_node structures must be deferred until the
last such task has been dequeued, because otherwise subsequent grace
periods won't wait on them. This commit has the beneficial side effect
of simplifying the CPU-hotplug code for TREE_PREEMPT_RCU, especially in
CONFIG_RCU_BOOST builds.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit causes rcu_read_unlock_special() to propagate ->qsmaskinit
bit clearing up the rcu_node tree once a given rcu_node structure's
blkd_tasks list becomes empty. This is the final commit in preparation
for the rework of RCU priority boosting: It enables preempted tasks to
remain queued on their rcu_node structure even after all of that rcu_node
structure's CPUs have gone offline.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit abstracts rcu_cleanup_dead_rnp() from rcu_cleanup_dead_cpu()
in preparation for the rework of RCU priority boosting. This new function
will be invoked from rcu_read_unlock_special() in the reworked scheme,
which is why rcu_cleanup_dead_rnp() assumes that the leaf rcu_node
structure's ->qsmaskinit field has already been updated.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit undertakes a simple variable renaming to make way for
some rework of RCU priority boosting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit prevents random compiler optimizations by applying
ACCESS_ONCE() to lockless accesses.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The 48a7639ce8 ("rcu: Make callers awaken grace-period kthread")
removed the irq_work_queue(), so the TREE_RCU doesn't need
irq work any more. This commit therefore updates RCU's Kconfig and
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_barrier() no-callbacks check for no-CBs CPUs has race conditions.
It checks a given CPU's lists of callbacks, and if all three no-CBs lists
are empty, ignores that CPU. However, these three lists could potentially
be empty even when callbacks are present if the check executed just as
the callbacks were being moved from one list to another. It turns out
that recent versions of rcutorture can spot this race.
This commit plugs this hole by consolidating the per-list counts of
no-CBs callbacks into a single count, which is incremented before
the corresponding callback is posted and after it is invoked. Then
rcu_barrier() checks this single count to reliably determine whether
the corresponding CPU has no-CBs callbacks.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
For RCU in UP, context-switch = QS = GP, thus we can force a
context-switch when any call_rcu_[bh|sched]() is happened on idle_task.
After doing so, rcu_idle/irq_enter/exit() are useless, so we can simply
make these functions empty.
More important, this change does not change the functionality logically.
Note: raise_softirq(RCU_SOFTIRQ)/rcu_sched_qs() in rcu_idle_enter() and
outmost rcu_irq_exit() will have to wake up the ksoftirqd
(due to in_interrupt() == 0).
Before this patch After this patch:
call_rcu_sched() in idle; call_rcu_sched() in idle
set resched
do other stuffs; do other stuffs
outmost rcu_irq_exit() outmost rcu_irq_exit() (empty function)
(or rcu_idle_enter()) (or rcu_idle_enter(), also empty function)
start to resched. (see above)
rcu_sched_qs() rcu_sched_qs()
QS,and GP and advance cb QS,and GP and advance cb
wake up the ksoftirqd wake up the ksoftirqd
set resched
resched to ksoftirqd (or other) resched to ksoftirqd (or other)
These two code patches are almost the same.
Size changed after patched:
size kernel/rcu/tiny-old.o kernel/rcu/tiny-patched.o
text data bss dec hex filename
3449 206 8 3663 e4f kernel/rcu/tiny-old.o
2406 144 8 2558 9fe kernel/rcu/tiny-patched.o
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Despite what the comment says, it is only softirqs that are disabled,
not interrupts. This commit therefore fixes the comment.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>