Was incorrectly AE_WAKE_ONLY_GPE.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
ACPICA uses acpi_hw_write_gpe_enable_reg() to re-enable a GPE after
an event signaled by it has been handled. However, this function
writes the entire GPE enable mask to the GPE's enable register which
may not be correct. Namely, if one of the other GPEs in the same
register was previously enabled by acpi_enable_gpe() and subsequently
disabled using acpi_set_gpe(), acpi_hw_write_gpe_enable_reg() will
re-enable it along with the target GPE.
To fix this issue rework acpi_hw_write_gpe_enable_reg() so that it
calls acpi_hw_low_set_gpe() with a special action value,
ACPI_GPE_COND_ENABLE, that will make it only enable the GPE if the
corresponding bit in its register's enable_for_run mask is set.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
ACPICA uses acpi_ev_enable_gpe() for enabling GPEs at the low level,
which is incorrect, because this function only enables the GPE if the
corresponding bit in its enable register's enable_for_run mask is set.
This causes acpi_set_gpe() to work incorrectly if used for enabling
GPEs that were not previously enabled with acpi_enable_gpe(). As a
result, among other things, wakeup-only GPEs are never enabled by
acpi_enable_wakeup_device(), so the devices that use them are unable
to wake up the system.
To fix this issue remove acpi_ev_enable_gpe() and its counterpart
acpi_ev_disable_gpe() and replace acpi_hw_low_disable_gpe() with
acpi_hw_low_set_gpe() that will be used instead to manipulate GPE
enable bits at the low level. Make the users of acpi_ev_enable_gpe()
and acpi_ev_disable_gpe() call acpi_hw_low_set_gpe() instead and
make sure that GPE enable masks are only updated by acpi_enable_gpe()
and acpi_disable_gpe() when GPE reference counters change from 0
to 1 and from 1 to 0, respectively.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
These were used before cpuidle by the native ACPI idle driver,
which tracked promotion and demotion between states.
The code was referenced by CONFIG_ACPI_PROCFS
for /proc/acpi/processor/*/power,
but as we no longer do promotion/demotion, that
reference has been a NOP since the transition.
Signed-off-by: Len Brown <len.brown@intel.com>
ERST is a way provided by APEI to save and retrieve hardware error
record to and from some simple persistent storage (such as flash).
The Linux kernel support implementation is quite simple and workable
in NMI context. So it can be used to save hardware error record into
flash in hardware error exception or NMI handler, where other more
complex persistent storage such as disk is not usable. After saving
hardware error records via ERST in hardware error exception or NMI
handler, the error records can be retrieved and logged into disk or
network after a clean reboot.
For more information about ERST, please refer to ACPI Specification
version 4.0, section 17.4.
This patch incorporate fixes from Jin Dongming.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
CC: Jin Dongming <jin.dongming@np.css.fujitsu.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Hardware Error Device (PNP0C33) is used to report some hardware errors
notified via SCI, mainly the corrected errors. Some APEI Generic
Hardware Error Source (GHES) may use SCI on hardware error device to
notify hardware error to kernel.
After receiving notification from ACPI core, it is forwarded to all
listeners via a notifier chain. The listener such as APEI GHES should
check corresponding error source for new events when notified.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Now, a dedicated HEST tabling parsing code is used for PCIE AER
firmware_first setup. It is rebased on general HEST tabling parsing
code of APEI. The firmware_first setup code is moved from PCI core to
AER driver too, because it is only AER related.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Len Brown <len.brown@intel.com>
HEST describes error sources in detail; communicating operational
parameters (i.e. severity levels, masking bits, and threshold values)
to OS as necessary. It also allows the platform to report error
sources for which OS would typically not implement support (for
example, chipset-specific error registers).
HEST information may be needed by other subsystems. For example, HEST
PCIE AER error source information describes whether a PCIE root port
works in "firmware first" mode, this is needed by general PCIE AER
error subsystem. So a public HEST tabling parsing interface is
provided.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Some ACPI IO accessing need to be done in atomic context. For example,
APEI ERST operations may be used for permanent storage in hardware
error handler. That is, it may be called in atomic contexts such as
IRQ or NMI, etc. And, ERST/EINJ implement their operations via IO
memory/port accessing. But the IO memory accessing method provided by
ACPI (acpi_read/acpi_write) maps the IO memory during it is accessed,
so it can not be used in atomic context. To solve the issue, the IO
memory should be pre-mapped during EINJ/ERST initializing. A linked
list is used to record which memory area has been mapped, when memory
is accessed in hardware error handler, search the linked list for the
mapped virtual address from the given physical address.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Version 20100428.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Simple rename of some parameters to standardize them.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
We have ported Rafael's major GPE changes
(ACPI: Use GPE reference counting to support shared GPEs) into ACPICA code base.
But the port and Rafael's original patch have some differences, so we made
below patch to make linux GPE code consistent with ACPICA code base.
Most changes are about comments and coding styles.
Other noticeable changes are based on:
Rafael: Reduce code duplication related to GPE lookup
https://patchwork.kernel.org/patch/86237/
Rafael: Always use the same lock for GPE locking
https://patchwork.kernel.org/patch/90471/
A new field gpe_count in struct acpi_gpe_block_info to record the number
of individual GPEs in block.
Rename acpi_ev_save_method_info to acpi_ev_match_gpe_method.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Robert Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Version 20100331.
Signed-off-by: Robert Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Optionally copy the entire DSDT to local memory (instead of
simply mapping it.) There are some BIOSs that corrupt or replace
the original DSDT, creating the need for this option. Default is
FALSE, do not copy the DSDT.
https://bugzilla.kernel.org/show_bug.cgi?id=14679
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Version 20100304.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Disassembler and header file support for MCHI - Managment
Controller Host Interface table.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
This change will enable debug object output via a global variable,
acpi_gbl_enable_aml_debug_object. This will help with remote machine
debugging. Also, moved all debug object support code to a new
file, exdebug.c. Entire debug object module can now be
configured out of the ACPICA build if desired.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The ACPI spec includes a provision for hardware to provide EDID via the
ACPI video extension. In the KMS world it's necessary for a way to obtain
this from within the kernel. Add a function that either returns the EDID
for the provided ACPI display ID or the first display of the provided type.
Also add support for ensuring that devices with legacy IDs are supported.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Acked-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The acpi_pci_root structure contains all the individual items (acpi_device,
domain, bus number) we pass to pci_acpi_scan_root(), so just pass the
single acpi_pci_root pointer directly.
This will make it easier to add _CBA support later. For _CBA, we need the
entire downstream bus range, not just the base bus number. We have that in
the acpi_pci_root structure, so passing the pointer makes it available to
the arch-specific code.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Previously, we only saved the root bus number, i.e., the beginning of the
downstream bus range. We now support IORESOURCE_BUS resources, so this
patch uses that to keep track of both the beginning and the end of the
downstream bus range.
It's important to know both the beginning and the end for supporting _CBA
(see PCI Firmware spec, rev 3.0, sec 4.1.3) and so we know the limits for
any possible PCI bus renumbering (we can't renumber downstream buses to be
outside the bus number range claimed by the host bridge).
It's clear from the spec that the bus range is supposed to be in _CRS, but
if we don't find it there, we'll assume [_BBN - 0xFF] or [0 - 0xFF].
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Len Brown <len.brown@intel.com>
On some old IBM workstations and desktop computers, the BIOS presents in the
DSDT an SMBus object that is missing the HID identifier that the i2c-scmi
driver looks for. Modify the ACPI device scan code to insert the missing HID
if it finds an IBM system with such an object.
Affected machines: IntelliStation Z20/Z30. Note that the i2c-i801 driver no
longer works on these machines because of ACPI resource conflicts.
Signed-off-by: Darrick J. Wong <djwong@us.ibm.com>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Rename static get_cpu_id() to acpi_get_cpuid() and export it.
This change also gives us an opportunity to remove the
#ifndef CONFIG_SMP from processor_driver.c and into a header file
where it properly belongs.
Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
We've renamed the old processor_core.c to processor_driver.c, to
convey the idea that it can be built modular and has driver-like
bits.
Now let's re-create a processor_core.c for the bits needed
statically by the rest of the kernel. The contents of processor_pdc.c
are a good starting spot, so let's just rename that file and
complete our three card monte.
Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
* 'acpica' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6:
ACPI: replace acpi_integer by u64
ACPICA: Update version to 20100121.
ACPICA: Remove unused uint32_struct type
ACPICA: Disassembler: Remove obsolete "Integer64" field in parse object
ACPICA: Remove obsolete ACPI_INTEGER (acpi_integer) type
ACPICA: Predefined name repair: fix NULL package elements
ACPICA: AcpiGetDevices: Eliminate unnecessary _STA calls
ACPICA: Update all ACPICA copyrights and signons to 2010
ACPICA: Update for new gcc-4 warning options
The main benefit of using ACPI host bridge window information is that
we can do better resource allocation in systems with multiple host bridges,
e.g., http://bugzilla.kernel.org/show_bug.cgi?id=14183
Sometimes we need _CRS information even if we only have one host bridge,
e.g., https://bugs.launchpad.net/ubuntu/+source/linux/+bug/341681
Most of these systems are relatively new, so this patch turns on
"pci=use_crs" only on machines with a BIOS date of 2008 or newer.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Although the majority of PCI devices can generate PMEs that in
principle may be used to wake up devices suspended at run time,
platform support is generally necessary to convert PMEs into wake-up
events that can be delivered to the kernel. If ACPI is used for this
purpose, PME signals generated by a PCI device will trigger the ACPI
GPE associated with the device to generate an ACPI wake-up event that
we can set up a handler for, provided that everything is configured
correctly.
Unfortunately, the subset of PCI devices that have GPEs associated
with them is quite limited. The devices without dedicated GPEs have
to rely on the GPEs associated with other devices (in the majority of
cases their upstream bridges and, possibly, the root bridge) to
generate ACPI wake-up events in response to PME signals from them.
Add ACPI platform support for PCI PME wake-up:
o Add a framework making is possible to use ACPI system notify
handlers for run-time PM.
o Add new PCI platform callback ->run_wake() to struct
pci_platform_pm_ops allowing us to enable/disable the platform to
generate wake-up events for given device. Implemet this callback
for the ACPI platform.
o Define ACPI wake-up handlers for PCI devices and PCI root buses and
make the PCI-ACPI binding code register wake-up notifiers for all
PCI devices present in the ACPI tables.
o Add function pci_dev_run_wake() which can be used by PCI drivers to
check if given device is capable of generating wake-up events at
run time.
Developed in cooperation with Matthew Garrett <mjg@redhat.com>.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Use the run_wake flag to mark all devices for which run-time wake-up
events may be generated by the platform. Introduce a new wake-up
flag, always_enabled, for marking devices that should be permanently
enabled to generate run-time events. Also, introduce a reference
counter for run-wake devices and a function that will initialize all
of the run-time wake-up fields for given device.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Len Brown <len.brown@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
ACPI GPEs may map to multiple devices. The current GPE interface
only provides a mechanism for enabling and disabling GPEs, making
it difficult to change the state of GPEs at runtime without extensive
cooperation between devices.
Add an API to allow devices to indicate whether or not they want
their device's GPE to be enabled for both runtime and wakeup events.
Remove the old GPE type handling entirely, which gets rid of various
quirks, like the implicit disabling with GPE type setting. This
requires a small amount of rework in order to ensure that non-wake
GPEs are enabled by default to preserve existing behaviour.
Based on patches from Matthew Garrett <mjg@redhat.com>.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Add __percpu sparse annotations to places which didn't make it in one
of the previous patches. All converions are trivial.
These annotations are to make sparse consider percpu variables to be
in a different address space and warn if accessed without going
through percpu accessors. This patch doesn't affect normal builds.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Neil Brown <neilb@suse.de>
acpi_integer is now obsolete and removed from the ACPICA code base,
replaced by u64.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Version 20100121.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
This type is not used in ACPICA and thus removed.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
This type was introduced as the code was migrated from ACPI 1.0
(with 32-bit AML integers) to ACPI 2.0 (with 64-bit integers). It
is now obsolete and this change removes it from the ACPICA code
base, replaced by u64. The original typedef has been retained
for now for compatibility with existing device driver code.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Add 2010 copyright to all module headers and signons, including
the Linux header. This affects virtually every file in the ACPICA
core subsystem, iASL compiler, and all utilities.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Added several new options for the gcc-4 generation, and updated
the source accordingly. This includes some code restructuring to
eliminate unreachable code, elimination of some gotos, elimination
of unused return values, and some additional casting.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
commit 8bd108d adds preemption point after each opcode parse, then
a sleeping function called from invalid context bug was founded
during suspend/resume stage. this was fixed in commit abe1dfa by
don't cond_resched when irq_disabled. But recent commit 138d156 changes
the behaviour to don't cond_resched when in_atomic. This makes the
sleeping function called from invalid context bug happen again, which
is reported in http://lkml.org/lkml/2009/12/1/371.
This patch also fixes http://bugzilla.kernel.org/show_bug.cgi?id=14483
Reported-and-bisected-by: Larry Finger <Larry.Finger@lwfinger.net>
Reported-and-bisected-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: Xiaotian Feng <dfeng@redhat.com>
Acked-by: Alexey Starikovskiy <astarikovskiy@suse.de>
Signed-off-by: Len Brown <len.brown@intel.com>
When we call _PDC, we get a handle to the processor, allocate the
object list buffer as needed, and free it immediately after calling
_PDC.
There's no need to drag around this object list with us everywhere
else, so let's just get rid of it.
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
When calling _PDC, we really only need the handle to the processor
to call the method; we don't look at any other parts of the
struct acpi_processor * given to us.
In the early path, when we walk the namespace, we are given the
handle directly, so just pass it through to acpi_processor_set_pdc()
without stuffing it into a wasteful struct acpi_processor allocated
on the stack each time
This saves 2834 bytes of stack.
Update the interface accordingly.
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The x86 and ia64 implementations of the function in $subject are
exactly the same.
Also, since the arch-specific implementations of setting _PDC have
been completely hollowed out, remove the empty shells.
Cc: Tony Luck <tony.luck@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The only thing arch-specific about calling _PDC is what bits get
set in the input obj_list buffer.
There's no need for several levels of indirection to twiddle those
bits. Additionally, since we're just messing around with a buffer,
we can simplify the interface; no need to pass around the entire
struct acpi_processor * just to get at the buffer.
Cc: Tony Luck <tony.luck@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
We discovered that at least one machine (HP Envy), methods in the DSDT
attempt to call external methods defined in a dynamically loaded SSDT.
Unfortunately, the DSDT methods we are trying to call are part of the
EC initialization, which happens very early, and the the dynamic SSDT
is only loaded when a processor _PDC method runs much later.
This results in namespace lookup errors for the (as of yet) undefined
methods.
Since Windows doesn't have any issues with this machine, we take it
as a hint that they must be evaluating _PDC much earlier than we are.
Thus, the proper thing for Linux to do should be to match the Windows
implementation more closely.
Provide a mechanism to call _PDC before we enable the EC. Doing so loads
the dynamic tables, and allows the EC to be enabled correctly.
The ACPI processor driver will still evaluate _PDC in its .add() method
to cover the hotplug case.
Resolves: http://bugzilla.kernel.org/show_bug.cgi?id=14824
Cc: ming.m.lin@intel.com
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>