CONFIG_HOTPLUG is going away as an option so __devexit is no
longer needed.
Signed-off-by: Bill Pemberton <wfp5p@virginia.edu>
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
CONFIG_HOTPLUG is going away as an option so __devinit is no longer
needed.
Signed-off-by: Bill Pemberton <wfp5p@virginia.edu>
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Javier Martinez Canillas <javier@dowhile0.org>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
CONFIG_HOTPLUG is going away as an option so __devexit_p is no longer
needed.
Signed-off-by: Bill Pemberton <wfp5p@virginia.edu>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Saves a small amount of code and reduces the potential for leaks.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
The modern idiom is to use irq_domain to allocate interrupts. This is
useful partly to allow further infrastructure to be based on the domains
and partly because it makes it much easier to allocate virtual interrupts
to devices as we don't need to allocate a contiguous range of interrupt
numbers.
Convert the wm831x driver over to this infrastructure, using a legacy
IRQ mapping if an irq_base is specified in platform data and otherwise
using a linear mapping, always registering the interrupts even if they
won't ever be used. Only boards which need to use the GPIOs as
interrupts should need to use an irq_base.
This means that we can't use the MFD irq_base management since the
unless we're using an explicit irq_base from platform data we can't rely
on a linear mapping of interrupts. Instead we need to map things via
the irq_domain - provide a conveniencem function wm831x_irq() to save a
small amount of typing when doing so. Looking at this I couldn't clearly
see anything the MFD core could do to make this nicer.
Since we're not supporting device tree yet there's no meaningful
advantage if we don't do this conversion in one, the fact that the
interrupt resources are used for repeated IP blocks makes accessor
functions for the irq_domain more trouble to do than they're worth.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Commit 940ab88962 introduced a new macro to
save some platform_driver boilerplate code. Use it.
Signed-off-by: JJ Ding <dgdunix@gmail.com>
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Now that the WM831x core has been converted to use genirq for the
interrupt controller there is no need for the client drivers to
use a WM831x-specific API rather than just calling genirq directly.
Also fixes a leak of the IRQ during init failure - the error path
free_irq() was using NULL rather than the driver data as the data
pointer so free_irq() wouldn't have matched.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
The WM831x series of PMICs support control of initial power on
through the ON pin on the device with soft control of the pin
at other times. Represent this to userspace as KEY_POWER.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Dmitry Torokhov <dtor@mail.ru>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>