78 Commits

Author SHA1 Message Date
Peter Zijlstra
58d6c2d72f sched: rt-group: optimize dequeue_rt_stack
Now that the group hierarchy can have an arbitrary depth the O(n^2) nature
of RT task dequeues will really hurt. Optimize this by providing space to
store the tree path, so we can walk it the other way.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:45:00 +02:00
Peter Zijlstra
18d95a2832 sched: fair-group: SMP-nice for group scheduling
Implement SMP nice support for the full group hierarchy.

On each load-balance action, compile a sched_domain wide view of the full
task_group tree. We compute the domain wide view when walking down the
hierarchy, and readjust the weights when walking back up.

After collecting and readjusting the domain wide view, we try to balance the
tasks within the task_groups. The current approach is a naively balance each
task group until we've moved the targeted amount of load.

Inspired by Srivatsa Vaddsgiri's previous code and Abhishek Chandra's H-SMP
paper.

XXX: there will be some numerical issues due to the limited nature of
     SCHED_LOAD_SCALE wrt to representing a task_groups influence on the
     total weight. When the tree is deep enough, or the task weight small
     enough, we'll run out of bits.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Abhishek Chandra <chandra@cs.umn.edu>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:45:00 +02:00
Dhaval Giani
354d60c2ff sched: mix tasks and groups
This patch allows tasks and groups to exist in the same cfs_rq. With this
change the CFS group scheduling follows a 1/(M+N) model from a 1/(1+N)
fairness model where M tasks and N groups exist at the cfs_rq level.

[a.p.zijlstra@chello.nl: rt bits and assorted fixes]
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:44:59 +02:00
Mike Travis
cd8ba7cd9b sched: add new set_cpus_allowed_ptr function
Add a new function that accepts a pointer to the "newly allowed cpus"
cpumask argument.

int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)

The current set_cpus_allowed() function is modified to use the above
but this does not result in an ABI change.  And with some compiler
optimization help, it may not introduce any additional overhead.

Additionally, to enforce the read only nature of the new_mask arg, the
"const" property is migrated to sub-functions called by set_cpus_allowed.
This silences compiler warnings.

Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:44:59 +02:00
Peter Zijlstra
ac086bc229 sched: rt-group: smp balancing
Currently the rt group scheduling does a per cpu runtime limit, however
the rt load balancer makes no guarantees about an equal spread of real-
time tasks, just that at any one time, the highest priority tasks run.

Solve this by making the runtime limit a global property by borrowing
excessive runtime from the other cpus once the local limit runs out.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:44:58 +02:00
Peter Zijlstra
d0b27fa778 sched: rt-group: synchonised bandwidth period
Various SMP balancing algorithms require that the bandwidth period
run in sync.

Possible improvements are moving the rt_bandwidth thing into root_domain
and keeping a span per rt_bandwidth which marks throttled cpus.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:44:57 +02:00
Steven Rostedt
6fa46fa526 sched: balance RT task resched only on runqueue
Sripathi Kodi reported a crash in the -rt kernel:

  https://bugzilla.redhat.com/show_bug.cgi?id=435674

this is due to a place that can reschedule a task without holding
the tasks runqueue lock.  This was caused by the RT balancing code
that pulls RT tasks to the current run queue and will reschedule the
current task.

There's a slight chance that the pulling of the RT tasks will release
the current runqueue's lock and retake it (in the double_lock_balance).
During this time that the runqueue is released, the current task can
migrate to another runqueue.

In the prio_changed_rt code, after the pull, if the current task is of
lesser priority than one of the RT tasks pulled, resched_task is called
on the current task. If the current task had migrated in that small
window, resched_task will be called without holding the runqueue lock
for the runqueue that the task is on.

This race condition also exists in the mainline kernel and this patch
adds a check to make sure the task hasn't migrated before calling
resched_task.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Tested-by: Sripathi Kodi <sripathik@in.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-07 16:43:00 +01:00
Peter Zijlstra
62fb185130 sched: revert load_balance_monitor() changes
The following commits cause a number of regressions:

  commit 58e2d4ca581167c2a079f4ee02be2f0bc52e8729
  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  Date:   Fri Jan 25 21:08:00 2008 +0100
  sched: group scheduling, change how cpu load is calculated

  commit 6b2d7700266b9402e12824e11e0099ae6a4a6a79
  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  Date:   Fri Jan 25 21:08:00 2008 +0100
  sched: group scheduler, fix fairness of cpu bandwidth allocation for task groups

Namely:
 - very frequent wakeups on SMP, reported by PowerTop users.
 - cacheline trashing on (large) SMP
 - some latencies larger than 500ms

While there is a mergeable patch to fix the latter, the former issues
are not fixable in a manner suitable for .25 (we're at -rc3 now).

Hence we revert them and try again in v2.6.26.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Tested-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-04 17:54:06 +01:00
Peter Zijlstra
052f1dc7eb sched: rt-group: make rt groups scheduling configurable
Make the rt group scheduler compile time configurable.
Keep it experimental for now.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-13 15:45:40 +01:00
Peter Zijlstra
9f0c1e560c sched: rt-group: interface
Change the rt_ratio interface to rt_runtime_us, to match rt_period_us.
This avoids picking a granularity for the ratio.

Extend the /sys/kernel/uids/<uid>/ interface to allow setting
the group's rt_runtime.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-13 15:45:39 +01:00
Peter Zijlstra
23b0fdfc92 sched: rt-group: deal with PI
Steven mentioned the fun case where a lock holding task will be throttled.

Simple fix: allow groups that have boosted tasks to run anyway.

If a runnable task in a throttled group gets boosted the dequeue/enqueue
done by rt_mutex_setprio() is enough to unthrottle the group.

This is ofcourse not quite correct. Two possible ways forward are:
  - second prio array for boosted tasks
  - boost to a prio ceiling (this would also work for deadline scheduling)

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-13 15:45:39 +01:00
Dmitry Adamushko
326587b840 sched: fix goto retry in pick_next_task_rt()
looking at it one more time:

(1) it looks to me that there is no need to call
sched_rt_ratio_exceeded() from pick_next_rt_entity()

- [ for CONFIG_FAIR_GROUP_SCHED ] queues with rt_rq->rt_throttled are
not within this 'tree-like hierarchy' (or whatever we should call it
:-)

- there is also no need to re-check 'rt_rq->rt_time > ratio' at this
point as 'rt_rq->rt_time' couldn't have been increased since the last
call to update_curr_rt() (which obviously calls
sched_rt_ratio_esceeded())
well, it might be that 'ratio' for this rt_rq has been re-configured
(and the period over which this rt_rq was active has not yet been
finished)... but I don't think we should really take this into
account.

(2) now pick_next_rt_entity() must never return NULL, so let's change
pick_next_task_rt() accordingly.

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:34 +01:00
Peter Zijlstra
5a52dd5009 sched: rt-watchdog: fix .rlim_max = RLIM_INFINITY
Remove the curious logic to set it_sched_expires in the future. It useless
because rt.timeout wouldn't be incremented anyway.

Explicity check for RLIM_INFINITY as a test programm that had a 1s soft limit
and a inf hard limit would SIGKILL at 1s. This is because RLIM_INFINITY+d-1
is d-2.

Signed-off-by: Peter Zijlsta <a.p.zijlstra@chello.nl>
CC: Michal Schmidt <mschmidt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:32 +01:00
Peter Zijlstra
1020387f5f sched: rt-group: reduce rescheduling
Only reschedule if the new group has a higher prio task.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:32 +01:00
Peter Zijlstra
48d5e25821 sched: rt throttling vs no_hz
We need to teach no_hz about the rt throttling because its tick driven.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:31 +01:00
Mike Galbraith
614ee1f61f sched: pull_rt_task() cleanup
"goto out" is an odd way to spell "skip".

Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:30 +01:00
Peter Zijlstra
6f505b1642 sched: rt group scheduling
Extend group scheduling to also cover the realtime classes. It uses the time
limiting introduced by the previous patch to allow multiple realtime groups.

The hard time limit is required to keep behaviour deterministic.

The algorithms used make the realtime scheduler O(tg), linear scaling wrt the
number of task groups. This is the worst case behaviour I can't seem to get out
of, the avg. case of the algorithms can be improved, I focused on correctness
and worst case.

[ akpm@linux-foundation.org: move side-effects out of BUG_ON(). ]

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:30 +01:00
Peter Zijlstra
fa85ae2418 sched: rt time limit
Very simple time limit on the realtime scheduling classes.
Allow the rq's realtime class to consume sched_rt_ratio of every
sched_rt_period slice. If the class exceeds this quota the fair class
will preempt the realtime class.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:29 +01:00
Peter Zijlstra
8f4d37ec07 sched: high-res preemption tick
Use HR-timers (when available) to deliver an accurate preemption tick.

The regular scheduler tick that runs at 1/HZ can be too coarse when nice
level are used. The fairness system will still keep the cpu utilisation 'fair'
by then delaying the task that got an excessive amount of CPU time but try to
minimize this by delivering preemption points spot-on.

The average frequency of this extra interrupt is sched_latency / nr_latency.
Which need not be higher than 1/HZ, its just that the distribution within the
sched_latency period is important.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:29 +01:00
Peter Zijlstra
78f2c7db60 sched: SCHED_FIFO/SCHED_RR watchdog timer
Introduce a new rlimit that allows the user to set a runtime timeout on
real-time tasks their slice. Once this limit is exceeded the task will receive
SIGXCPU.

So it measures runtime since the last sleep.

Input and ideas by Thomas Gleixner and Lennart Poettering.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Lennart Poettering <mzxreary@0pointer.de>
CC: Michael Kerrisk <mtk.manpages@googlemail.com>
CC: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:27 +01:00
Peter Zijlstra
fa717060f1 sched: sched_rt_entity
Move the task_struct members specific to rt scheduling together.
A future optimization could be to put sched_entity and sched_rt_entity
into a union.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:27 +01:00
Gregory Haskins
c49443c538 sched: remove some old cpuset logic
We had support for overlapping cpuset based rto logic in early
prototypes that is no longer used, so remove it.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:23 +01:00
Gregory Haskins
cdc8eb984c sched: RT-balance, only adjust overload state when changing
The overload set/clears were originally idempotent when this logic was first
implemented.  But that is no longer true due to the addition of the atomic
counter and this logic was never updated to work properly with that change.
So only adjust the overload state if it is actually changing to avoid
getting out of sync.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:23 +01:00
Steven Rostedt
cb46984504 sched: RT-balance, add new methods to sched_class
Dmitry Adamushko found that the current implementation of the RT
balancing code left out changes to the sched_setscheduler and
rt_mutex_setprio.

This patch addresses this issue by adding methods to the schedule classes
to handle being switched out of (switched_from) and being switched into
(switched_to) a sched_class. Also a method for changing of priorities
is also added (prio_changed).

This patch also removes some duplicate logic between rt_mutex_setprio and
sched_setscheduler.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:22 +01:00
Steven Rostedt
9a897c5a67 sched: RT-balance, replace hooks with pre/post schedule and wakeup methods
To make the main sched.c code more agnostic to the schedule classes.
Instead of having specific hooks in the schedule code for the RT class
balancing. They are replaced with a pre_schedule, post_schedule
and task_wake_up methods. These methods may be used by any of the classes
but currently, only the sched_rt class implements them.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:22 +01:00
Ingo Molnar
bdd7c81b49 sched: fix sched_rt.c:join/leave_domain
fix build bug in sched_rt.c:join/leave_domain and make them only
be included on SMP builds.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:18 +01:00
Gregory Haskins
637f50851b sched: only balance our RT tasks within our domain
We move the rt-overload data as the first global to per-domain
reclassification.  This limits the scope of overload related cache-line
bouncing to stay with a specified partition instead of affecting all
cpus in the system.

Finally, we limit the scope of find_lowest_cpu searches to the domain
instead of the entire system.  Note that we would always respect domain
boundaries even without this patch, but we first would scan potentially
all cpus before whittling the list down.  Now we can avoid looking at
RQs that are out of scope, again reducing cache-line hits.

Note: In some cases, task->cpus_allowed will effectively reduce our search
to within our domain.  However, I believe there are cases where the
cpus_allowed mask may be all ones and therefore we err on the side of
caution.  If it can be optimized later, so be it.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
CC: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:18 +01:00
Ingo Molnar
7f51f29820 sched: clean up schedule_balance_rt()
clean up schedule_balance_rt().

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:17 +01:00
Ingo Molnar
80bf3171dc sched: clean up pull_rt_task()
clean up pull_rt_task().

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:17 +01:00
Ingo Molnar
00597c3ed7 sched: remove leftover debugging
remove leftover debugging.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:16 +01:00
Ingo Molnar
6e1938d3ad sched: remove rt_overload()
remove rt_overload() - it's an unnecessary indirection.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:16 +01:00
Ingo Molnar
84de427489 sched: clean up kernel/sched_rt.c
clean up whitespace damage and missing comments in kernel/sched_rt.c.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:15 +01:00
Ingo Molnar
deeeccd41b sched: clean up overlong line in kernel/sched_debug.c
clean up overlong line in kernel/sched_debug.c.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:15 +01:00
Ingo Molnar
4df64c0bfb sched: clean up find_lock_lowest_rq()
clean up find_lock_lowest_rq().

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:15 +01:00
Ingo Molnar
79064fbf75 sched: clean up pick_next_highest_task_rt()
clean up pick_next_highest_task_rt().

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:14 +01:00
Steven Rostedt
610bf05645 sched: RT-balance, optimize cpu search
This patch removes several cpumask operations by keeping track
of the first of the CPUS that is of the lowest priority. When
the search for the lowest priority runqueue is completed, all
the bits up to the first CPU with the lowest priority runqueue
is cleared.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:13 +01:00
Gregory Haskins
06f90dbd76 sched: RT-balance, optimize
We can cheaply track the number of bits set in the cpumask for the lowest
priority CPUs.  Therefore, compute the mask's weight and use it to skip
the optimal domain search logic when there is only one CPU available.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:13 +01:00
Gregory Haskins
17b3279b48 sched: break out early if RT task cannot be migrated
We don't need to bother searching if the task cannot be migrated

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:13 +01:00
Steven Rostedt
e1f47d891c sched: RT-balance, avoid overloading
This patch changes the searching for a run queue by a waking RT task
to try to pick another runqueue if the currently running task
is an RT task.

The reason is that RT tasks behave different than normal
tasks. Preempting a normal task to run a RT task to keep
its cache hot is fine, because the preempted non-RT task
may wait on that same runqueue to run again unless the
migration thread comes along and pulls it off.

RT tasks behave differently. If one is preempted, it makes
an active effort to continue to run. So by having a high
priority task preempt a lower priority RT task, that lower
RT task will then quickly try to run on another runqueue.
This will cause that lower RT task to replace its nice
hot cache (and TLB) with a completely cold one. This is
for the hope that the new high priority RT task will keep
 its cache hot.

Remeber that this high priority RT task was just woken up.
So it may likely have been sleeping for several milliseconds,
and will end up with a cold cache anyway. RT tasks run till
they voluntarily stop, or are preempted by a higher priority
task. This means that it is unlikely that the woken RT task
will have a hot cache to wake up to. So pushing off a lower
RT task is just killing its cache for no good reason.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:12 +01:00
Gregory Haskins
a22d7fc187 sched: wake-balance fixes
We have logic to detect whether the system has migratable tasks, but we are
not using it when deciding whether to push tasks away.  So we add support
for considering this new information.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:12 +01:00
Gregory Haskins
6e1254d2c4 sched: optimize RT affinity
The current code base assumes a relatively flat CPU/core topology and will
route RT tasks to any CPU fairly equally.  In the real world, there are
various toplogies and affinities that govern where a task is best suited to
run with the smallest amount of overhead.  NUMA and multi-core CPUs are
prime examples of topologies that can impact cache performance.

Fortunately, linux is already structured to represent these topologies via
the sched_domains interface.  So we change our RT router to consult a
combination of topology and affinity policy to best place tasks during
migration.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:11 +01:00
Gregory Haskins
318e0893ce sched: pre-route RT tasks on wakeup
In the original patch series that Steven Rostedt and I worked on together,
we both took different approaches to low-priority wakeup path.  I utilized
"pre-routing" (push the task away to a less important RQ before activating)
approach, while Steve utilized a "post-routing" approach.  The advantage of
my approach is that you avoid the overhead of a wasted activate/deactivate
cycle and peripherally related burdens.  The advantage of Steve's method is
that it neatly solves an issue preventing a "pull" optimization from being
deployed.

In the end, we ended up deploying Steve's idea.  But it later dawned on me
that we could get the best of both worlds by deploying both ideas together,
albeit slightly modified.

The idea is simple:  Use a "light-weight" lookup for pre-routing, since we
only need to approximate a good home for the task.  And we also retain the
post-routing push logic to clean up any inaccuracies caused by a condition
of "priority mistargeting" caused by the lightweight lookup.  Most of the
time, the pre-routing should work and yield lower overhead.  In the cases
where it doesnt, the post-router will bat cleanup.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:10 +01:00
Gregory Haskins
2de0b4639f sched: RT balancing: include current CPU
It doesn't hurt if we allow the current CPU to be included in the
search.  We will just simply skip it later if the current CPU turns out
to be the lowest.

We will use this later in the series

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:10 +01:00
Gregory Haskins
07b4032c9e sched: break out search for RT tasks
Isolate the search logic into a function so that it can be used later
in places other than find_locked_lowest_rq().

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:10 +01:00
Gregory Haskins
e7693a362e sched: de-SCHED_OTHER-ize the RT path
The current wake-up code path tries to determine if it can optimize the
wake-up to "this_cpu" by computing load calculations.  The problem is that
these calculations are only relevant to SCHED_OTHER tasks where load is king.
For RT tasks, priority is king.  So the load calculation is completely wasted
bandwidth.

Therefore, we create a new sched_class interface to help with
pre-wakeup routing decisions and move the load calculation as a function
of CFS task's class.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:09 +01:00
Gregory Haskins
697f0a487f sched: clean up this_rq use in kernel/sched_rt.c
"this_rq" is normally used to denote the RQ on the current cpu
(i.e. "cpu_rq(this_cpu)").  So clean up the usage of this_rq to be
more consistent with the rest of the code.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:09 +01:00
Gregory Haskins
73fe6aae84 sched: add RT-balance cpu-weight
Some RT tasks (particularly kthreads) are bound to one specific CPU.
It is fairly common for two or more bound tasks to get queued up at the
same time.  Consider, for instance, softirq_timer and softirq_sched.  A
timer goes off in an ISR which schedules softirq_thread to run at RT50.
Then the timer handler determines that it's time to smp-rebalance the
system so it schedules softirq_sched to run.  So we are in a situation
where we have two RT50 tasks queued, and the system will go into
rt-overload condition to request other CPUs for help.

This causes two problems in the current code:

1) If a high-priority bound task and a low-priority unbounded task queue
   up behind the running task, we will fail to ever relocate the unbounded
   task because we terminate the search on the first unmovable task.

2) We spend precious futile cycles in the fast-path trying to pull
   overloaded tasks over.  It is therefore optimial to strive to avoid the
   overhead all together if we can cheaply detect the condition before
   overload even occurs.

This patch tries to achieve this optimization by utilizing the hamming
weight of the task->cpus_allowed mask.  A weight of 1 indicates that
the task cannot be migrated.  We will then utilize this information to
skip non-migratable tasks and to eliminate uncessary rebalance attempts.

We introduce a per-rq variable to count the number of migratable tasks
that are currently running.  We only go into overload if we have more
than one rt task, AND at least one of them is migratable.

In addition, we introduce a per-task variable to cache the cpus_allowed
weight, since the hamming calculation is probably relatively expensive.
We only update the cached value when the mask is updated which should be
relatively infrequent, especially compared to scheduling frequency
in the fast path.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:07 +01:00
Steven Rostedt
c7a1e46aa9 sched: disable standard balancer for RT tasks
Since we now take an active approach to load balancing, we don't need to
balance RT tasks via the normal task balancer. In fact, this code was
found to pull RT tasks away from CPUS that the active movement performed,
resulting in large latencies.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:07 +01:00
Steven Rostedt
4642dafdf9 sched: push RT tasks from overloaded CPUs
This patch adds pushing of overloaded RT tasks from a runqueue that is
having tasks (most likely RT tasks) added to the run queue.

TODO: We don't cover the case of waking of new RT tasks (yet).

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:07 +01:00
Steven Rostedt
f65eda4f78 sched: pull RT tasks from overloaded runqueues
This patch adds the algorithm to pull tasks from RT overloaded runqueues.

When a pull RT is initiated, all overloaded runqueues are examined for
a RT task that is higher in prio than the highest prio task queued on the
target runqueue. If another runqueue holds a RT task that is of higher
prio than the highest prio task on the target runqueue is found it is pulled
to the target runqueue.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:07 +01:00