This reverts commit 8b8f53af1ed9df88a4c0fbfdf3db58f62060edf3.
splice_dentry() is used by three places. For two places, req->r_dentry
is passed to splice_dentry(). In the case of error, req->r_dentry does
not get updated. So splice_dentry() should not drop reference.
Cc: stable@vger.kernel.org # 4.18+
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
ceph_setattr() finally calls vfs function inode_newsize_ok()
to do offset validation and that is based on sb->s_maxbytes.
Because we set sb->s_maxbytes to MAX_LFS_FILESIZE to through
VFS check and do proper offset validation in cephfs level,
we need adding proper offset validation before calling
inode_newsize_ok().
Signed-off-by: Chengguang Xu <cgxu519@gmx.com>
Reviewed-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
The ceph_mds_request stamp still uses the deprecated timespec structure,
this converts it over as well.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Since the vfs structures are all using timespec64, we can now
change the internal representation, using ceph_encode_timespec64 and
ceph_decode_timespec64.
In case of ceph_aux_inode however, we need to avoid doing a memcmp()
on uninitialized padding data, so the members of the i_mtime field get
copied individually into 64-bit integers.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
In any case, d_splice_alias() does not drop reference of original
dentry.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
This is a late set of changes from Deepa Dinamani doing an automated
treewide conversion of the inode and iattr structures from 'timespec'
to 'timespec64', to push the conversion from the VFS layer into the
individual file systems.
There were no conflicts between this and the contents of linux-next
until just before the merge window, when we saw multiple problems:
- A minor conflict with my own y2038 fixes, which I could address
by adding another patch on top here.
- One semantic conflict with late changes to the NFS tree. I addressed
this by merging Deepa's original branch on top of the changes that
now got merged into mainline and making sure the merge commit includes
the necessary changes as produced by coccinelle.
- A trivial conflict against the removal of staging/lustre.
- Multiple conflicts against the VFS changes in the overlayfs tree.
These are still part of linux-next, but apparently this is no longer
intended for 4.18 [1], so I am ignoring that part.
As Deepa writes:
The series aims to switch vfs timestamps to use struct timespec64.
Currently vfs uses struct timespec, which is not y2038 safe.
The series involves the following:
1. Add vfs helper functions for supporting struct timepec64 timestamps.
2. Cast prints of vfs timestamps to avoid warnings after the switch.
3. Simplify code using vfs timestamps so that the actual
replacement becomes easy.
4. Convert vfs timestamps to use struct timespec64 using a script.
This is a flag day patch.
Next steps:
1. Convert APIs that can handle timespec64, instead of converting
timestamps at the boundaries.
2. Update internal data structures to avoid timestamp conversions.
Thomas Gleixner adds:
I think there is no point to drag that out for the next merge window.
The whole thing needs to be done in one go for the core changes which
means that you're going to play that catchup game forever. Let's get
over with it towards the end of the merge window.
[1] https://www.spinics.net/lists/linux-fsdevel/msg128294.html
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJbInZAAAoJEGCrR//JCVInReoQAIlVIIMt5ZX6wmaKbrjy9Itf
MfgbFihQ/djLnuSPVQ3nztcxF0d66BKHZ9puVjz6+mIHqfDvJTRwZs9nU+sOF/T1
g78fRkM1cxq6ZCkGYAbzyjyo5aC4PnSMP/NQLmwqvi0MXqqrbDoq5ZdP9DHJw39h
L9lD8FM/P7T29Fgp9tq/pT5l9X8VU8+s5KQG1uhB5hii4VL6pD6JyLElDita7rg+
Z7/V7jkxIGEUWF7vGaiR1QTFzEtpUA/exDf9cnsf51OGtK/LJfQ0oiZPPuq3oA/E
LSbt8YQQObc+dvfnGxwgxEg1k5WP5ekj/Wdibv/+rQKgGyLOTz6Q4xK6r8F2ahxs
nyZQBdXqHhJYyKr1H1reUH3mrSgQbE5U5R1i3My0xV2dSn+vtK5vgF21v2Ku3A1G
wJratdtF/kVBzSEQUhsYTw14Un+xhBLRWzcq0cELonqxaKvRQK9r92KHLIWNE7/v
c0TmhFbkZA+zR8HdsaL3iYf1+0W/eYy8PcvepyldKNeW2pVk3CyvdTfY2Z87G2XK
tIkK+BUWbG3drEGG3hxZ3757Ln3a9qWyC5ruD3mBVkuug/wekbI8PykYJS7Mx4s/
WNXl0dAL0Eeu1M8uEJejRAe1Q3eXoMWZbvCYZc+wAm92pATfHVcKwPOh8P7NHlfy
A3HkjIBrKW5AgQDxfgvm
=CZX2
-----END PGP SIGNATURE-----
Merge tag 'vfs-timespec64' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground
Pull inode timestamps conversion to timespec64 from Arnd Bergmann:
"This is a late set of changes from Deepa Dinamani doing an automated
treewide conversion of the inode and iattr structures from 'timespec'
to 'timespec64', to push the conversion from the VFS layer into the
individual file systems.
As Deepa writes:
'The series aims to switch vfs timestamps to use struct timespec64.
Currently vfs uses struct timespec, which is not y2038 safe.
The series involves the following:
1. Add vfs helper functions for supporting struct timepec64
timestamps.
2. Cast prints of vfs timestamps to avoid warnings after the switch.
3. Simplify code using vfs timestamps so that the actual replacement
becomes easy.
4. Convert vfs timestamps to use struct timespec64 using a script.
This is a flag day patch.
Next steps:
1. Convert APIs that can handle timespec64, instead of converting
timestamps at the boundaries.
2. Update internal data structures to avoid timestamp conversions'
Thomas Gleixner adds:
'I think there is no point to drag that out for the next merge
window. The whole thing needs to be done in one go for the core
changes which means that you're going to play that catchup game
forever. Let's get over with it towards the end of the merge window'"
* tag 'vfs-timespec64' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground:
pstore: Remove bogus format string definition
vfs: change inode times to use struct timespec64
pstore: Convert internal records to timespec64
udf: Simplify calls to udf_disk_stamp_to_time
fs: nfs: get rid of memcpys for inode times
ceph: make inode time prints to be long long
lustre: Use long long type to print inode time
fs: add timespec64_truncate()
Currently, calling stat on a cephfs directory returns 1 for st_nlink.
This behaviour has recently changed in the fuse client, as some
applications seem to expect this value to be either 0 (if it's
unlinked) or 2 + number of subdirectories. This behaviour was changed
in the fuse client with commit 67c7e4619188 ("client: use common
interp of st_nlink for dirs").
This patch modifies the kernel client to have a similar behaviour.
Link: https://tracker.ceph.com/issues/23873
Signed-off-by: Luis Henriques <lhenriques@suse.com>
Reviewed-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
In MDS, file/subdir counts of a directory inode are protected by
filelock. In request reply without Fs cap, nfiles/nsubdirs can be
stale.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
rstat is not tracked by capability. client can't know if rstat from
non-auth mds is uptodate or not.
Link: http://tracker.ceph.com/issues/23538
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Subsequent patches in the series convert inode timestamps
to use struct timespec64 instead of struct timespec as
part of solving the y2038 problem.
Convert these print formats to use long long types to
avoid warnings and errors on conversion.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: zyan@redhat.com
Cc: ceph-devel@vger.kernel.org
By keeping a counter with the number of snaprealms that have quota set
allows to optimize the functions that need to walk throught the realms
hierarchy looking for quotas. Thus, if this counter is zero it's safe to
assume that there are no realms with quota.
Signed-off-by: Luis Henriques <lhenriques@suse.com>
Reviewed-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Keep a pointer to the inode in struct ceph_snap_realm. This allows to
optimize functions that walk the realms hierarchy (e.g. in quotas).
Signed-off-by: Luis Henriques <lhenriques@suse.com>
Reviewed-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
This patch adds the infrastructure required to support cephfs quotas as it
is currently implemented in the ceph fuse client. Cephfs quotas can be
set on any directory, and can restrict the number of bytes or the number
of files stored beneath that point in the directory hierarchy.
Quotas are set using the extended attributes 'ceph.quota.max_files' and
'ceph.quota.max_bytes', and can be removed by setting these attributes to
'0'.
Link: http://tracker.ceph.com/issues/22372
Signed-off-by: Luis Henriques <lhenriques@suse.com>
Reviewed-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Dirty pages can be associated with different capsnap. Different capsnap
may have different EOF value. So invalidating dirty pages according to
the largest EOF value is wrong. Dirty pages beyond EOF, but associated
with other capsnap, do not get invalidated.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Readdir cache keeps array of dentry pointers in page cache. If any
dentry in readdir cache gets pruned, ceph_d_prune() disables readdir
cache for later readdir syscall. The problem is that ceph_d_prune()
ignores unhashed dentry. Ideally MDS should have already revoked
CEPH_CAP_FILE_SHARED (which also disables readdir cache) when dentry
gets unhashed. But if it is somehow MDS does not properly revoke
CEPH_CAP_FILE_SHARED and the unhashed dentry gets pruned later,
ceph_d_prune() will not disable readdir cache, later readdir may
reference invalid dentry pointer.
The fix is make ceph_d_prune() do extra check for unhashed dentry.
Disable readdir cache if the unhashed dentry is still referenced
by readdir cache.
Another fix in this patch is handle d_splice_alias(). If a dentry
gets spliced into new parent dentry, treat it as if it was pruned
(call ceph_d_prune() for it).
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
It allows accessing i_shared_gen without holding i_ceph_lock. It is
preparation for later patch.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
For CEPH_SETATTR_ATIME, MDS needs to xlock filelock, Fsxrw caps
are not allowed for xlocked filelock.
For CEPH_SETATTR_SIZE request that truncates file to smaller size,
MDS needs to xlock filelock, Fsxrw caps are not allowed for xlocked
filelock.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Eventually, we'll want to wire cephfs up to use the change attribute
that the cluster tracks instead, but for now this is unneeded.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Ideally CEPH_CAP_FILE_SHARED should have been revoked before
postive dentry get dropped. But if something goes wrong, later
cached readdir may dereference the dropped dentry.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
file locks are tracked by inode's auth mds. dropping auth caps
is equivalent to releasing all file locks.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It's possible that we create a cap snap while there is pending
vmtruncate (truncate hasn't been processed by worker thread).
We should truncate dirty pages beyond capsnap->size in that case.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
The script “checkpatch.pl” pointed information out like the following.
Comparison to NULL could be written ...
Thus fix the affected source code places.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Reviewed-by: Yan, Zheng <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
The script "checkpatch.pl" pointed information out like the following.
WARNING: void function return statements are not generally useful
Thus remove such a statement in the affected function.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Reviewed-by: Yan, Zheng <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Omit an extra message for a memory allocation failure in this function.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Reviewed-by: Yan, Zheng <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
In LSSNAP case, req->r_dentry is already set to snapdir dentry.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Current code does not update ceph_dentry_info::lease_session once
it is set. If auth mds of corresponding dentry changes, dentry lease
keeps in an invalid state.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
The old 'approaching max_size' code expects MDS set max_size to
'2 * reported_size'. This is no longer true. The new code reports
file size when half of previous max_size increment has been used.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Current __ceph_setattr() can set inode's i_ctime to current_time(),
req->r_stamp or attr->ia_ctime. These time stamps may have minor
differences. It may cause potential problem.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Current cephfs client uses string to indicate start position of
readdir. The string is last entry of previous readdir reply.
This approach does not work for seeky readdir because we can
not easily convert the new postion to a string. For seeky readdir,
mds needs to return dentries from the beginning. Client keeps
retrying if the reply does not contain the dentry it wants.
In current version of ceph, mds sorts CDentry in its cache in
hash order. Client also uses dentry hash to compose dir postion.
For seeky readdir, if client passes the hash part of dir postion
to mds. mds can avoid replying useless dentries.
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
ceph_set_acl() calls __ceph_setattr() if the setacl operation needs
to modify inode's i_mode. __ceph_setattr() updates inode's i_mode,
then calls posix_acl_chmod().
The problem is that __ceph_setattr() calls posix_acl_chmod() before
sending the setattr request. The get_acl() call in posix_acl_chmod()
can trigger a getxattr request. The reply of the getxattr request
can restore inode's i_mode to its old value. The set_acl() call in
posix_acl_chmod() sees old value of inode's i_mode, so it calls
__ceph_setattr() again.
Cc: stable@vger.kernel.org # needs backporting for < 4.9
Link: http://tracker.ceph.com/issues/19688
Reported-by: Jerry Lee <leisurelysw24@gmail.com>
Signed-off-by: "Yan, Zheng" <zyan@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Tested-by: Luis Henriques <lhenriques@suse.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.
The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode. This change is propagated to the vfs_getattr*()
function.
Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.
========
OVERVIEW
========
The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.
A number of requests were gathered for features to be included. The
following have been included:
(1) Make the fields a consistent size on all arches and make them large.
(2) Spare space, request flags and information flags are provided for
future expansion.
(3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
__s64).
(4) Creation time: The SMB protocol carries the creation time, which could
be exported by Samba, which will in turn help CIFS make use of
FS-Cache as that can be used for coherency data (stx_btime).
This is also specified in NFSv4 as a recommended attribute and could
be exported by NFSD [Steve French].
(5) Lightweight stat: Ask for just those details of interest, and allow a
netfs (such as NFS) to approximate anything not of interest, possibly
without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
Dilger] (AT_STATX_DONT_SYNC).
(6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
its cached attributes are up to date [Trond Myklebust]
(AT_STATX_FORCE_SYNC).
And the following have been left out for future extension:
(7) Data version number: Could be used by userspace NFS servers [Aneesh
Kumar].
Can also be used to modify fill_post_wcc() in NFSD which retrieves
i_version directly, but has just called vfs_getattr(). It could get
it from the kstat struct if it used vfs_xgetattr() instead.
(There's disagreement on the exact semantics of a single field, since
not all filesystems do this the same way).
(8) BSD stat compatibility: Including more fields from the BSD stat such
as creation time (st_btime) and inode generation number (st_gen)
[Jeremy Allison, Bernd Schubert].
(9) Inode generation number: Useful for FUSE and userspace NFS servers
[Bernd Schubert].
(This was asked for but later deemed unnecessary with the
open-by-handle capability available and caused disagreement as to
whether it's a security hole or not).
(10) Extra coherency data may be useful in making backups [Andreas Dilger].
(No particular data were offered, but things like last backup
timestamp, the data version number and the DOS archive bit would come
into this category).
(11) Allow the filesystem to indicate what it can/cannot provide: A
filesystem can now say it doesn't support a standard stat feature if
that isn't available, so if, for instance, inode numbers or UIDs don't
exist or are fabricated locally...
(This requires a separate system call - I have an fsinfo() call idea
for this).
(12) Store a 16-byte volume ID in the superblock that can be returned in
struct xstat [Steve French].
(Deferred to fsinfo).
(13) Include granularity fields in the time data to indicate the
granularity of each of the times (NFSv4 time_delta) [Steve French].
(Deferred to fsinfo).
(14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags.
Note that the Linux IOC flags are a mess and filesystems such as Ext4
define flags that aren't in linux/fs.h, so translation in the kernel
may be a necessity (or, possibly, we provide the filesystem type too).
(Some attributes are made available in stx_attributes, but the general
feeling was that the IOC flags were to ext[234]-specific and shouldn't
be exposed through statx this way).
(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
Michael Kerrisk].
(Deferred, probably to fsinfo. Finding out if there's an ACL or
seclabal might require extra filesystem operations).
(16) Femtosecond-resolution timestamps [Dave Chinner].
(A __reserved field has been left in the statx_timestamp struct for
this - if there proves to be a need).
(17) A set multiple attributes syscall to go with this.
===============
NEW SYSTEM CALL
===============
The new system call is:
int ret = statx(int dfd,
const char *filename,
unsigned int flags,
unsigned int mask,
struct statx *buffer);
The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat(). There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.
Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):
(1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
respect.
(2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
its attributes with the server - which might require data writeback to
occur to get the timestamps correct.
(3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
network filesystem. The resulting values should be considered
approximate.
mask is a bitmask indicating the fields in struct statx that are of
interest to the caller. The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat(). It should be noted that asking for
more information may entail extra I/O operations.
buffer points to the destination for the data. This must be 256 bytes in
size.
======================
MAIN ATTRIBUTES RECORD
======================
The following structures are defined in which to return the main attribute
set:
struct statx_timestamp {
__s64 tv_sec;
__s32 tv_nsec;
__s32 __reserved;
};
struct statx {
__u32 stx_mask;
__u32 stx_blksize;
__u64 stx_attributes;
__u32 stx_nlink;
__u32 stx_uid;
__u32 stx_gid;
__u16 stx_mode;
__u16 __spare0[1];
__u64 stx_ino;
__u64 stx_size;
__u64 stx_blocks;
__u64 __spare1[1];
struct statx_timestamp stx_atime;
struct statx_timestamp stx_btime;
struct statx_timestamp stx_ctime;
struct statx_timestamp stx_mtime;
__u32 stx_rdev_major;
__u32 stx_rdev_minor;
__u32 stx_dev_major;
__u32 stx_dev_minor;
__u64 __spare2[14];
};
The defined bits in request_mask and stx_mask are:
STATX_TYPE Want/got stx_mode & S_IFMT
STATX_MODE Want/got stx_mode & ~S_IFMT
STATX_NLINK Want/got stx_nlink
STATX_UID Want/got stx_uid
STATX_GID Want/got stx_gid
STATX_ATIME Want/got stx_atime{,_ns}
STATX_MTIME Want/got stx_mtime{,_ns}
STATX_CTIME Want/got stx_ctime{,_ns}
STATX_INO Want/got stx_ino
STATX_SIZE Want/got stx_size
STATX_BLOCKS Want/got stx_blocks
STATX_BASIC_STATS [The stuff in the normal stat struct]
STATX_BTIME Want/got stx_btime{,_ns}
STATX_ALL [All currently available stuff]
stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.
Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution. Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.
The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does. The following
attributes map to FS_*_FL flags and are the same numerical value:
STATX_ATTR_COMPRESSED File is compressed by the fs
STATX_ATTR_IMMUTABLE File is marked immutable
STATX_ATTR_APPEND File is append-only
STATX_ATTR_NODUMP File is not to be dumped
STATX_ATTR_ENCRYPTED File requires key to decrypt in fs
Within the kernel, the supported flags are listed by:
KSTAT_ATTR_FS_IOC_FLAGS
[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]
New flags include:
STATX_ATTR_AUTOMOUNT Object is an automount trigger
These are for the use of GUI tools that might want to mark files specially,
depending on what they are.
Fields in struct statx come in a number of classes:
(0) stx_dev_*, stx_blksize.
These are local system information and are always available.
(1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
stx_size, stx_blocks.
These will be returned whether the caller asks for them or not. The
corresponding bits in stx_mask will be set to indicate whether they
actually have valid values.
If the caller didn't ask for them, then they may be approximated. For
example, NFS won't waste any time updating them from the server,
unless as a byproduct of updating something requested.
If the values don't actually exist for the underlying object (such as
UID or GID on a DOS file), then the bit won't be set in the stx_mask,
even if the caller asked for the value. In such a case, the returned
value will be a fabrication.
Note that there are instances where the type might not be valid, for
instance Windows reparse points.
(2) stx_rdev_*.
This will be set only if stx_mode indicates we're looking at a
blockdev or a chardev, otherwise will be 0.
(3) stx_btime.
Similar to (1), except this will be set to 0 if it doesn't exist.
=======
TESTING
=======
The following test program can be used to test the statx system call:
samples/statx/test-statx.c
Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.
Here's some example output. Firstly, an NFS directory that crosses to
another FSID. Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.
[root@andromeda ~]# /tmp/test-statx -A /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:26 Inode: 1703937 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)
Secondly, the result of automounting on that directory.
[root@andromeda ~]# /tmp/test-statx /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:27 Inode: 2 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
- ask for a commit reply instead of an ack reply in
__ceph_pool_perm_get()
- don't ask for both ack and commit replies in ceph_sync_write()
- since just only one reply is requested now, i_unsafe_writes list
will always be empty -- kill ceph_sync_write_wait() and go back to
a standard ->evict_inode()
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Sage Weil <sage@redhat.com>
We don't really require that the parent be locked in order to update the
lease on a dentry. Lease info is protected by the d_lock. In the event
that the parent is not locked in ceph_fill_trace, and we have both
parent and target info, go ahead and update the dentry lease.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Yan, Zheng <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
In a later patch, we're going to need to allow ceph_fill_trace to
update the dentry's lease when the parent is not locked. This is
potentially racy though -- by the time we get around to processing the
trace, the parent may have already changed.
Change update_dentry_lease to take a ceph_vino pointer and use that to
ensure that the dentry's parent still matches it before updating the
lease.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Yan, Zheng <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
This if block updates the dentry lease even in the case where
the MDS didn't grant one.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Yan, Zheng <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
struct ceph_mds_request has an r_locked_dir pointer, which is set to
indicate the parent inode and that its i_rwsem is locked. In some
critical places, we need to be able to indicate the parent inode to the
request handling code, even when its i_rwsem may not be locked.
Most of the code that operates on r_locked_dir doesn't require that the
i_rwsem be locked. We only really need it to handle manipulation of the
dcache. The rest (filling of the inode, updating dentry leases, etc.)
already has its own locking.
Add a new r_req_flags bit that indicates whether the parent is locked
when doing the request, and rename the pointer to "r_parent". For now,
all the places that set r_parent also set this flag, but that will
change in a later patch.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Yan, Zheng <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Currently, we have a bunch of bool flags in struct ceph_mds_request. We
need more flags though, but each bool takes (at least) a byte. Those
add up over time.
Merge all of the existing bools in this struct into a single unsigned
long, and use the set/test/clear_bit macros to manipulate them. These
are atomic operations, but that is required here to prevent
load/modify/store races. The existing flags are protected by different
locks, so we can't rely on them for that purpose.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Yan, Zheng <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Just get it from r_session since that's what's always passed in.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Yan, Zheng <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Keeping around commented out code is just asking for it to bitrot and
makes viewing the code under cscope more confusing. If
we really need this, then we can revert this patch and put it under a
Kconfig option.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Yan, Zheng <zyan@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
This removes the uses of ACCESS_ONCE in favor of READ_ONCE
Signed-off-by: Seraphime Kirkovski <kirkseraph@gmail.com>
Signed-off-by: Yan, Zheng <zyan@redhat.com>
sparse says:
fs/ceph/inode.c:308:36: warning: incorrect type in argument 1 (different base types)
fs/ceph/inode.c:308:36: expected unsigned int [unsigned] [usertype] a
fs/ceph/inode.c:308:36: got restricted __le32 [usertype] frag
fs/ceph/inode.c:308:46: warning: incorrect type in argument 2 (different base types)
fs/ceph/inode.c:308:46: expected unsigned int [unsigned] [usertype] b
fs/ceph/inode.c:308:46: got restricted __le32 [usertype] frag
We need to convert these values to host-endian before calling the
comparator.
Fixes: a407846ef7c6 ("ceph: don't assume frag tree splits in mds reply are sorted")
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Sage Weil <sage@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Pull partial readlink cleanups from Miklos Szeredi.
This is the uncontroversial part of the readlink cleanup patch-set that
simplifies the default readlink handling.
Miklos and Al are still discussing the rest of the series.
* git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
vfs: make generic_readlink() static
vfs: remove ".readlink = generic_readlink" assignments
vfs: default to generic_readlink()
vfs: replace calling i_op->readlink with vfs_readlink()
proc/self: use generic_readlink
ecryptfs: use vfs_get_link()
bad_inode: add missing i_op initializers