Add two helper functions; seq_buf_get_buf() and seq_buf_commit() that
are used by seq_buf_path(). This makes the code similar to the
seq_file: seq_path() function, and will help to be able to consolidate
the functions between seq_file and trace_seq.
Link: http://lkml.kernel.org/r/20141104160222.644881406@goodmis.org
Link: http://lkml.kernel.org/r/20141114011412.977571447@goodmis.org
Tested-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently seq_buf is full when all but one byte of the buffer is
filled. Change it so that the seq_buf is full when all of the
buffer is filled.
Some of the functions would fill the buffer completely and report
everything was fine. This was inconsistent with the max of size - 1.
Changing this to be max of size makes all functions consistent.
Link: http://lkml.kernel.org/r/20141104160222.502133196@goodmis.org
Link: http://lkml.kernel.org/r/20141114011412.811957882@goodmis.org
Tested-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add a seq_buf_can_fit() helper function that removes the possible mistakes
of comparing the seq_buf length plus added data compared to the size of
the buffer.
Link: http://lkml.kernel.org/r/20141118164025.GL23958@pathway.suse.cz
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
To be really paranoid about writing out of bound data in
trace_printk_seq(), add another check of len compared to size.
Link: http://lkml.kernel.org/r/20141119144004.GB2332@dhcp128.suse.cz
Suggested-by: Petr Mladek <pmladek@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
As the seq_buf->len will soon be +1 size when there's an overflow, we
must use trace_seq_used() or seq_buf_used() methods to get the real
length. This will prevent buffer overflow issues if just the len
of the seq_buf descriptor is used to copy memory.
Link: http://lkml.kernel.org/r/20141114121911.09ba3d38@gandalf.local.home
Reported-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The function tracing_fill_pipe_page() logic is a little confusing with the
use of count saving the seq.len and reusing it.
Instead of subtracting a number that is calculated from the saved
value of the seq.len from seq.len, just save the seq.len at the start
and if we need to reset it, just assign it again.
When the seq_buf overflow is len == size + 1, the current logic will
break. Changing it to use a saved length for resetting back to the
original value is more robust and will work when we change the way
seq_buf sets the overflow.
Link: http://lkml.kernel.org/r/20141118161546.GJ23958@pathway.suse.cz
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Rewrite seq_buf_path() like it is done in seq_path() and allow
it to accept any escape character instead of just "\n".
Making seq_buf_path() like seq_path() will help prevent problems
when converting seq_file to use the seq_buf logic.
Link: http://lkml.kernel.org/r/20141104160222.048795666@goodmis.org
Link: http://lkml.kernel.org/r/20141114011412.338523371@goodmis.org
Tested-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Create a seq_buf layer that trace_seq sits on. The seq_buf will not
be limited to page size. This will allow other usages of seq_buf
instead of a hard set PAGE_SIZE one that trace_seq has.
Link: http://lkml.kernel.org/r/20141104160221.864997179@goodmis.org
Link: http://lkml.kernel.org/r/20141114011412.170377300@goodmis.org
Tested-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The iput() function tests whether its argument is NULL and then
returns immediately. Thus the test around the call is not needed.
This issue was detected by using the Coccinelle software.
Link: http://lkml.kernel.org/r/5468F875.7080907@users.sourceforge.net
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If the trace_seq of ftrace_raw_output_prep() is full this function
returns TRACE_TYPE_PARTIAL_LINE, otherwise it returns zero.
The problem is that TRACE_TYPE_PARTIAL_LINE happens to be zero!
The thing is, the caller of ftrace_raw_output_prep() expects a
success to be zero. Change that to expect it to be
TRACE_TYPE_HANDLED.
Link: http://lkml.kernel.org/r/20141114112522.GA2988@dhcp128.suse.cz
Reminded-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The trace_seq_printf() and friends are used to store strings into a buffer
that can be passed around from function to function. If the trace_seq buffer
fills up, it will not print any more. The return values were somewhat
inconsistant and using trace_seq_has_overflowed() was a better way to know
if the write to the trace_seq buffer succeeded or not.
Now that all users have removed reading the return value of the printf()
type functions, they can safely return void and keep future users of them
from reading the inconsistent values as well.
Link: http://lkml.kernel.org/r/20141114011411.992510720@goodmis.org
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The functions trace_seq_printf() and friends will not be returning values
soon and will be void functions. To know if they succeeded or not, the
functions trace_seq_has_overflowed() and trace_handle_return() should be
used instead.
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The functions trace_seq_printf() and friends will soon no longer have
return values. Using trace_seq_has_overflowed() and trace_handle_return()
should be used instead.
Link: http://lkml.kernel.org/r/20141114011411.693008134@goodmis.org
Link: http://lkml.kernel.org/r/20141115050602.333705855@goodmis.org
Reviewed-by: Masami Hiramatsu <masami.hiramatu.pt@hitachi.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The functions trace_seq_printf() and friends will soon not have a return
value and will only be a void function. Use trace_seq_has_overflowed()
instead to know if the trace_seq operations succeeded or not.
Link: http://lkml.kernel.org/r/20141114011411.530216306@goodmis.org
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The return values for trace_seq_printf() and friends are going to be
removed and they will become void functions. The mmio tracer checked
their return and even did so incorrectly.
Some of the funtions which returned the values were never checked
themselves. Removing all the checks simplifies the code.
Use trace_seq_has_overflowed() and trace_handle_return() where
necessary instead.
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Instead of checking the return value of trace_seq_printf() and friends
for overflowing of the buffer, use the trace_seq_has_overflowed() helper
function.
This cleans up the code quite a bit and also takes us a step closer to
changing the return values of trace_seq_printf() and friends to void.
Link: http://lkml.kernel.org/r/20141114011411.181812785@goodmis.org
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Instead of doing individual checks all over the place that makes the code
very messy. Just check trace_seq_has_overflowed() at the end or in
strategic places.
This makes the code much cleaner and also helps with getting closer
to removing the return values of trace_seq_printf() and friends.
Link: http://lkml.kernel.org/r/20141114011410.987913836@goodmis.org
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The branch tracer should not be checking the trace_seq_printf() return value
as that will soon be void. There's a new trace_handle_return() helper function
that will return TRACE_TYPE_PARTIAL_LINE if the trace_seq overflowed
and TRACE_TYPE_HANDLED otherwise.
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Remove checking the return value of all trace_seq_puts(). It was wrong
anyway as only the last return value mattered. But as the trace_seq_puts()
is going to be a void function in the future, we should not be checking
the return value of it anyway.
Just return !trace_seq_has_overflowed() instead.
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Checking the return code of every trace_seq_printf() operation and having
to return early if it overflowed makes the code messy.
Using the new trace_seq_has_overflowed() and trace_handle_return() functions
allows us to clean up the code.
In the future, trace_seq_printf() and friends will be turning into void
functions and not returning a value. The trace_seq_has_overflowed() is to
be used instead. This cleanup allows that change to take place.
Cc: Jens Axboe <axboe@fb.com>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Adding a trace_seq_has_overflowed() which returns true if the trace_seq
had too much written into it allows us to simplify the code.
Instead of checking the return value of every call to trace_seq_printf()
and friends, they can all be called normally, and at the end we can
return !trace_seq_has_overflowed() instead.
Several functions also return TRACE_TYPE_PARTIAL_LINE when the trace_seq
overflowed and TRACE_TYPE_HANDLED otherwise. Another helper function
was created called trace_handle_return() which takes a trace_seq and
returns these enums. Using this helper function also simplifies the
code.
This change also makes it possible to remove the return values of
trace_seq_printf() and friends. They should instead just be
void functions.
Link: http://lkml.kernel.org/r/20141114011410.365183157@goodmis.org
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
In trace_seq_bitmask() it calls bitmap_scnprintf() not from the current
position of the trace_seq buffer (s->buffer + s->len), but instead from
the beginning of the buffer (s->buffer).
Luckily, the only user of this "ipi_raise tracepoint" uses it as the
first parameter, and as such, the start of the temp buffer in
include/trace/ftrace.h (see __get_bitmask()).
Reported-by: Petr Mladek <pmladek@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Stack traces that happen from function tracing check if the address
on the stack is a __kernel_text_address(). That is, is the address
kernel code. This calls core_kernel_text() which returns true
if the address is part of the builtin kernel code. It also calls
is_module_text_address() which returns true if the address belongs
to module code.
But what is missing is ftrace dynamically allocated trampolines.
These trampolines are allocated for individual ftrace_ops that
call the ftrace_ops callback functions directly. But if they do a
stack trace, the code checking the stack wont detect them as they
are neither core kernel code nor module address space.
Adding another field to ftrace_ops that also stores the size of
the trampoline assigned to it we can create a new function called
is_ftrace_trampoline() that returns true if the address is a
dynamically allocate ftrace trampoline. Note, it ignores trampolines
that are not dynamically allocated as they will return true with
the core_kernel_text() function.
Link: http://lkml.kernel.org/r/20141119034829.497125839@goodmis.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The function probe counting for traceon and traceoff suffered a race
condition where if the probe was executing on two or more CPUs at the
same time, it could decrement the counter by more than one when
disabling (or enabling) the tracer only once.
The way the traceon and traceoff probes are suppose to work is that
they disable (or enable) tracing once per count. If a user were to
echo 'schedule:traceoff:3' into set_ftrace_filter, then when the
schedule function was called, it would disable tracing. But the count
should only be decremented once (to 2). Then if the user enabled tracing
again (via tracing_on file), the next call to schedule would disable
tracing again and the count would be decremented to 1.
But if multiple CPUS called schedule at the same time, it is possible
that the count would be decremented more than once because of the
simple "count--" used.
By reading the count into a local variable and using memory barriers
we can guarantee that the count would only be decremented once per
disable (or enable).
The stack trace probe had a similar race, but here the stack trace will
decrement for each time it is called. But this had the read-modify-
write race, where it could stack trace more than the number of times
that was specified. This case we use a cmpxchg to stack trace only the
number of times specified.
The dump probes can still use the old "update_count()" function as
they only run once, and that is controlled by the dump logic
itself.
Link: http://lkml.kernel.org/r/20141118134643.4b550ee4@gandalf.local.home
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Usually, "msecs" notation means milli-seconds, and "usecs" notation
means micro-seconds. Since the unit used in the code is micro-seconds,
the notation should be replaced from msecs to usecs.
Link: http://lkml.kernel.org/r/1415171926-9782-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
On the function_graph tracer, the print_graph_irq() function prints a
trace line with the flag ==========> on an irq handler entry, and the
flag <========== on an irq handler return.
But when the latency-format is enable, it is not printing the
latency-format flags, causing the following error in the trace output:
0) ==========> |
0) d... | smp_apic_timer_interrupt() {
This patch fixes this issue by printing the latency-format flags when
it is enable.
Link: http://lkml.kernel.org/r/7c2e226dac20c940b6242178fab7f0e3c9b5ce58.1415233316.git.bristot@redhat.com
Reviewed-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Printing a single character to a seqfile might as well be done with
seq_putc instead of seq_puts; this avoids a strlen() call and a memory
access. It also shaves another few bytes off the generated code.
Link: http://lkml.kernel.org/r/1415479332-25944-4-git-send-email-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Consecutive seq_puts calls with literal strings can be merged to a
single call. This reduces the size of the generated code, and can also
lead to slight .rodata reduction (because of fewer nul and padding
bytes). It should also shave a off a few clock cycles.
Link: http://lkml.kernel.org/r/1415479332-25944-3-git-send-email-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Using seq_printf to print a simple string or a single character is a
lot more expensive than it needs to be, since seq_puts and seq_putc
exist.
These patches do
seq_printf(m, s) -> seq_puts(m, s)
seq_printf(m, "%s", s) -> seq_puts(m, s)
seq_printf(m, "%c", c) -> seq_putc(m, c)
Subsequent patches will simplify further.
Link: http://lkml.kernel.org/r/1415479332-25944-2-git-send-email-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently kdb's ftdump command will livelock by constantly printk'ing
the empty string at KERN_EMERG level if it run when the ftrace system is
not in use. This occurs because trace_empty() never returns false when
the ring buffers are left at the start of a non-consuming read [launched
by ring_buffer_read_start()].
This patch changes the loop exit condition to use the result of
trace_find_next_entry_inc(). Effectively this switches the non-consuming
kdb dumper to follow the approach of the non-consuming userspace
interface [s_next()] rather than the consuming ftrace_dump().
Link: http://lkml.kernel.org/r/1415277716-19419-3-git-send-email-daniel.thompson@linaro.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently kdb's ftdump command unconditionally crashes due to a null
pointer de-reference whenever the command is run. This in turn causes
the kernel to panic.
The abridged stacktrace (gathered with ARCH=arm) is:
--- cut here ---
[<c09535ac>] (panic) from [<c02132dc>] (die+0x264/0x440)
[<c02132dc>] (die) from [<c0952eb8>]
(__do_kernel_fault.part.11+0x74/0x84)
[<c0952eb8>] (__do_kernel_fault.part.11) from [<c021f954>]
(do_page_fault+0x1d0/0x3c4)
[<c021f954>] (do_page_fault) from [<c020846c>] (do_DataAbort+0x48/0xac)
[<c020846c>] (do_DataAbort) from [<c0213c58>] (__dabt_svc+0x38/0x60)
Exception stack(0xc0deba88 to 0xc0debad0)
ba80: e8c29180 00000001 e9854304 e9854300 c0f567d8
c0df2580
baa0: 00000000 00000000 00000000 c0f117b8 c0e3a3c0 c0debb0c 00000000
c0debad0
bac0: 0000672e c02f4d60 60000193 ffffffff
[<c0213c58>] (__dabt_svc) from [<c02f4d60>] (kdb_ftdump+0x1e4/0x3d8)
[<c02f4d60>] (kdb_ftdump) from [<c02ce328>] (kdb_parse+0x2b8/0x698)
[<c02ce328>] (kdb_parse) from [<c02ceef0>] (kdb_main_loop+0x52c/0x784)
[<c02ceef0>] (kdb_main_loop) from [<c02d1b0c>] (kdb_stub+0x238/0x490)
--- cut here ---
The NULL deref occurs due to the initialized use of struct trace_iter's
buffer_iter member.
This is a regression, albeit a fairly elderly one. It was introduced
by commit 6d158a813efc ("tracing: Remove NR_CPUS array from
trace_iterator").
This patch solves this by providing a collection of ring_buffer_iter(s)
and using this to initialize buffer_iter. Note that static allocation
is used solely because the trace_iter itself is also static allocated.
Static allocation also means that we have to NULL-ify the pointer during
cleanup to avoid use-after-free problems.
Link: http://lkml.kernel.org/r/1415277716-19419-2-git-send-email-daniel.thompson@linaro.org
Cc: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
According to the documentation, adding "traceoff_on_warning" to the boot
command line should be enough to enable the feature. But right now it is
necessary to specify "traceoff_on_warning=". Along with fixing that, also
verify if the value passed, if any, is either "0" or "off".
Link: http://lkml.kernel.org/r/20141112231400.GL12281@uudg.org
Signed-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
With the new logic, if only a single user of ftrace function hooks is
used, it will get its own trampoline assigned to it.
The problem is that the control_ops is an indirect ops that perf ops
uses. What that means is that when perf registers its ops with
register_ftrace_function(), it has the CONTROL flag set and gets added
to the control list instead of the global ftrace list. The control_ops
gets added to that instead and the mcount trampoline calls the control_ops
function. The control_ops function will iterate the control list and
call the ops functions that are attached to it.
But currently the trampoline is added to the perf ops and not the
control ops, and when ftrace tries to find a trampoline hook for it,
it fails to find one and gives the following splat:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 10133 at kernel/trace/ftrace.c:2033 ftrace_get_addr_new+0x6f/0xc0()
Modules linked in: [...]
CPU: 0 PID: 10133 Comm: perf Tainted: P 3.18.0-rc1-test+ #388
Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v02.05 05/07/2012
00000000000007f1 ffff8800c2643bc8 ffffffff814fca6e ffff88011ea0ed01
0000000000000000 ffff8800c2643c08 ffffffff81041ffd 0000000000000000
ffffffff810c388c ffffffff81a5a350 ffff880119b00000 ffffffff810001c8
Call Trace:
[<ffffffff814fca6e>] dump_stack+0x46/0x58
[<ffffffff81041ffd>] warn_slowpath_common+0x81/0x9b
[<ffffffff810c388c>] ? ftrace_get_addr_new+0x6f/0xc0
[<ffffffff810001c8>] ? 0xffffffff810001c8
[<ffffffff81042031>] warn_slowpath_null+0x1a/0x1c
[<ffffffff810c388c>] ftrace_get_addr_new+0x6f/0xc0
[<ffffffff8102e938>] ftrace_replace_code+0xd6/0x334
[<ffffffff810c4116>] ftrace_modify_all_code+0x41/0xc5
[<ffffffff8102eba6>] arch_ftrace_update_code+0x10/0x19
[<ffffffff810c293c>] ftrace_run_update_code+0x21/0x42
[<ffffffff810c298f>] ftrace_startup_enable+0x32/0x34
[<ffffffff810c3049>] ftrace_startup+0x14e/0x15a
[<ffffffff810c307c>] register_ftrace_function+0x27/0x40
[<ffffffff810dc118>] perf_ftrace_event_register+0x3e/0xee
[<ffffffff810dbfbe>] perf_trace_init+0x29d/0x2a9
[<ffffffff810eb422>] perf_tp_event_init+0x27/0x3a
[<ffffffff810f18bc>] perf_init_event+0x9e/0xed
[<ffffffff810f1ba4>] perf_event_alloc+0x299/0x330
[<ffffffff810f236b>] SYSC_perf_event_open+0x3ee/0x816
[<ffffffff8115a066>] ? mntput+0x2d/0x2f
[<ffffffff81142b00>] ? __fput+0xa7/0x1b2
[<ffffffff81091300>] ? do_gettimeofday+0x22/0x3a
[<ffffffff810f279c>] SyS_perf_event_open+0x9/0xb
[<ffffffff81502a92>] system_call_fastpath+0x12/0x17
---[ end trace 81a53565150e4982 ]---
Bad trampoline accounting at: ffffffff810001c8 (run_init_process+0x0/0x2d) (10000001)
Update the control_ops trampoline instead of the perf ops one.
Reported-by: lkp@01.org
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The only code that references tracing_sched_switch_trace() and
tracing_sched_wakeup_trace() is the wakeup latency tracer. Those
two functions use to belong to the sched_switch tracer which has
long been removed. These functions were left behind because the
wakeup latency tracer used them. But since the wakeup latency tracer
is the only one to use them, they should be static functions inside
that code.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
After the previous patch it is clear that "tracer_enabled" can never be
true, we can remove the "if (tracer_enabled)" code in probe_sched_switch()
and probe_sched_wakeup(). Plus we can obviously remove tracer_enabled,
ctx_trace, and sched_stopped as well.
Link: http://lkml.kernel.org/p/20140723193503.GA30217@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
tracing_{start,stop}_sched_switch_record() have no callers since
87d80de2800d "tracing: Remove obsolete sched_switch tracer".
The last caller of tracing_sched_switch_assign_trace() was removed
by 30dbb20e68e6 "tracing: Remove boot tracer".
Link: http://lkml.kernel.org/p/20140723193501.GA30214@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
With the introduction of the dynamic trampolines, it is useful that if
things go wrong that ftrace_bug() produces more information about what
the current state is. This can help debug issues that may arise.
Ftrace has lots of checks to make sure that the state of the system it
touchs is exactly what it expects it to be. When it detects an abnormality
it calls ftrace_bug() and disables itself to prevent any further damage.
It is crucial that ftrace_bug() produces sufficient information that
can be used to debug the situation.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Borislav Petkov <bp@suse.de>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When the static ftrace_ops (like function tracer) enables tracing, and it
is the only callback that is referencing a function, a trampoline is
dynamically allocated to the function that calls the callback directly
instead of calling a loop function that iterates over all the registered
ftrace ops (if more than one ops is registered).
But when it comes to dynamically allocated ftrace_ops, where they may be
freed, on a CONFIG_PREEMPT kernel there's no way to know when it is safe
to free the trampoline. If a task was preempted while executing on the
trampoline, there's currently no way to know when it will be off that
trampoline.
But this is not true when it comes to !CONFIG_PREEMPT. The current method
of calling schedule_on_each_cpu() will force tasks off the trampoline,
becaues they can not schedule while on it (kernel preemption is not
configured). That means it is safe to free a dynamically allocated
ftrace ops trampoline when CONFIG_PREEMPT is not configured.
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Borislav Petkov <bp@suse.de>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This patch introduces several new flags to collect kdb commands into
groups (later allowing them to be optionally disabled).
This follows similar prior art to enable/disable magic sysrq
commands.
The commands have been categorized as follows:
Always on: go (w/o args), env, set, help, ?, cpu (w/o args), sr,
dmesg, disable_nmi, defcmd, summary, grephelp
Mem read: md, mdr, mdp, mds, ef, bt (with args), per_cpu
Mem write: mm
Reg read: rd
Reg write: go (with args), rm
Inspect: bt (w/o args), btp, bta, btc, btt, ps, pid, lsmod
Flow ctrl: bp, bl, bph, bc, be, bd, ss
Signal: kill
Reboot: reboot
All: cpu, kgdb, (and all of the above), nmi_console
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Since we now treat KDB_REPEAT_* as flags, there is no need to
pass KDB_REPEAT_NONE. It's just the default behaviour when no
flags are specified.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
We're about to add more options for commands behaviour, so let's give
a more generic name to the low-level kdb command registration function.
There are just various renames, no functional changes.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
If the read loop in trace_buffers_splice_read() keeps failing due to
memory allocation failures without reading even a single page then this
function will keep busy looping.
Remove the risk for that by exiting the function if memory allocation
failures are seen.
Link: http://lkml.kernel.org/r/1415309167-2373-2-git-send-email-rabin@rab.in
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
On a !PREEMPT kernel, attempting to use trace-cmd results in a soft
lockup:
# trace-cmd record -e raw_syscalls:* -F false
NMI watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [trace-cmd:61]
...
Call Trace:
[<ffffffff8105b580>] ? __wake_up_common+0x90/0x90
[<ffffffff81092e25>] wait_on_pipe+0x35/0x40
[<ffffffff810936e3>] tracing_buffers_splice_read+0x2e3/0x3c0
[<ffffffff81093300>] ? tracing_stats_read+0x2a0/0x2a0
[<ffffffff812d10ab>] ? _raw_spin_unlock+0x2b/0x40
[<ffffffff810dc87b>] ? do_read_fault+0x21b/0x290
[<ffffffff810de56a>] ? handle_mm_fault+0x2ba/0xbd0
[<ffffffff81095c80>] ? trace_event_buffer_lock_reserve+0x40/0x80
[<ffffffff810951e2>] ? trace_buffer_lock_reserve+0x22/0x60
[<ffffffff81095c80>] ? trace_event_buffer_lock_reserve+0x40/0x80
[<ffffffff8112415d>] do_splice_to+0x6d/0x90
[<ffffffff81126971>] SyS_splice+0x7c1/0x800
[<ffffffff812d1edd>] tracesys_phase2+0xd3/0xd8
The problem is this: tracing_buffers_splice_read() calls
ring_buffer_wait() to wait for data in the ring buffers. The buffers
are not empty so ring_buffer_wait() returns immediately. But
tracing_buffers_splice_read() calls ring_buffer_read_page() with full=1,
meaning it only wants to read a full page. When the full page is not
available, tracing_buffers_splice_read() tries to wait again with
ring_buffer_wait(), which again returns immediately, and so on.
Fix this by adding a "full" argument to ring_buffer_wait() which will
make ring_buffer_wait() wait until the writer has left the reader's
page, i.e. until full-page reads will succeed.
Link: http://lkml.kernel.org/r/1415645194-25379-1-git-send-email-rabin@rab.in
Cc: stable@vger.kernel.org # 3.16+
Fixes: b1169cc69ba9 ("tracing: Remove mock up poll wait function")
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The file /sys/kernel/debug/tracing/eneabled_functions is used to debug
ftrace function hooks. Add to the output what function is being called
by the trampoline if the arch supports it.
Add support for this feature in x86_64.
Cc: H. Peter Anvin <hpa@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The current method of handling multiple function callbacks is to register
a list function callback that calls all the other callbacks based on
their hash tables and compare it to the function that the callback was
called on. But this is very inefficient.
For example, if you are tracing all functions in the kernel and then
add a kprobe to a function such that the kprobe uses ftrace, the
mcount trampoline will switch from calling the function trace callback
to calling the list callback that will iterate over all registered
ftrace_ops (in this case, the function tracer and the kprobes callback).
That means for every function being traced it checks the hash of the
ftrace_ops for function tracing and kprobes, even though the kprobes
is only set at a single function. The kprobes ftrace_ops is checked
for every function being traced!
Instead of calling the list function for functions that are only being
traced by a single callback, we can call a dynamically allocated
trampoline that calls the callback directly. The function graph tracer
already uses a direct call trampoline when it is being traced by itself
but it is not dynamically allocated. It's trampoline is static in the
kernel core. The infrastructure that called the function graph trampoline
can also be used to call a dynamically allocated one.
For now, only ftrace_ops that are not dynamically allocated can have
a trampoline. That is, users such as function tracer or stack tracer.
kprobes and perf allocate their ftrace_ops, and until there's a safe
way to free the trampoline, it can not be used. The dynamically allocated
ftrace_ops may, although, use the trampoline if the kernel is not
compiled with CONFIG_PREEMPT. But that will come later.
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
ARM has some private syscalls (for example, set_tls(2)) which lie
outside the range of NR_syscalls. If any of these are called while
syscall tracing is being performed, out-of-bounds array access will
occur in the ftrace and perf sys_{enter,exit} handlers.
# trace-cmd record -e raw_syscalls:* true && trace-cmd report
...
true-653 [000] 384.675777: sys_enter: NR 192 (0, 1000, 3, 4000022, ffffffff, 0)
true-653 [000] 384.675812: sys_exit: NR 192 = 1995915264
true-653 [000] 384.675971: sys_enter: NR 983045 (76f74480, 76f74000, 76f74b28, 76f74480, 76f76f74, 1)
true-653 [000] 384.675988: sys_exit: NR 983045 = 0
...
# trace-cmd record -e syscalls:* true
[ 17.289329] Unable to handle kernel paging request at virtual address aaaaaace
[ 17.289590] pgd = 9e71c000
[ 17.289696] [aaaaaace] *pgd=00000000
[ 17.289985] Internal error: Oops: 5 [#1] PREEMPT SMP ARM
[ 17.290169] Modules linked in:
[ 17.290391] CPU: 0 PID: 704 Comm: true Not tainted 3.18.0-rc2+ #21
[ 17.290585] task: 9f4dab00 ti: 9e710000 task.ti: 9e710000
[ 17.290747] PC is at ftrace_syscall_enter+0x48/0x1f8
[ 17.290866] LR is at syscall_trace_enter+0x124/0x184
Fix this by ignoring out-of-NR_syscalls-bounds syscall numbers.
Commit cd0980fc8add "tracing: Check invalid syscall nr while tracing syscalls"
added the check for less than zero, but it should have also checked
for greater than NR_syscalls.
Link: http://lkml.kernel.org/p/1414620418-29472-1-git-send-email-rabin@rab.in
Fixes: cd0980fc8add "tracing: Check invalid syscall nr while tracing syscalls"
Cc: stable@vger.kernel.org # 2.6.33+
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When modifying code, ftrace has several checks to make sure things
are being done correctly. One of them is to make sure any code it
modifies is exactly what it expects it to be before it modifies it.
In order to do so with the new trampoline logic, it must be able
to find out what trampoline a function is hooked to in order to
see if the code that hooks to it is what's expected.
The logic to find the trampoline from a record (accounting descriptor
for a function that is hooked) needs to only look at the "old_hash"
of an ops that is being modified. The old_hash is the list of function
an ops is hooked to before its update. Since a record would only be
pointing to an ops that is being modified if it was already hooked
before.
Currently, it can pick a modified ops based on its new functions it
will be hooked to, and this picks the wrong trampoline and causes
the check to fail, disabling ftrace.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
ftrace: squash into ordering of ops for modification