Currently we don't split huge page on partial unmap. It's not an ideal
situation. It can lead to memory overhead.
Furtunately, we can detect partial unmap on page_remove_rmap(). But we
cannot call split_huge_page() from there due to locking context.
It's also counterproductive to do directly from munmap() codepath: in
many cases we will hit this from exit(2) and splitting the huge page
just to free it up in small pages is not what we really want.
The patch introduce deferred_split_huge_page() which put the huge page
into queue for splitting. The splitting itself will happen when we get
memory pressure via shrinker interface. The page will be dropped from
list on freeing through compound page destructor.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds implementation of split_huge_page() for new
refcountings.
Unlike previous implementation, new split_huge_page() can fail if
somebody holds GUP pin on the page. It also means that pin on page
would prevent it from bening split under you. It makes situation in
many places much cleaner.
The basic scheme of split_huge_page():
- Check that sum of mapcounts of all subpage is equal to page_count()
plus one (caller pin). Foll off with -EBUSY. This way we can avoid
useless PMD-splits.
- Freeze the page counters by splitting all PMD and setup migration
PTEs.
- Re-check sum of mapcounts against page_count(). Page's counts are
stable now. -EBUSY if page is pinned.
- Split compound page.
- Unfreeze the page by removing migration entries.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're going to allow mapping of individual 4k pages of THP compound. It
means we need to track mapcount on per small page basis.
Straight-forward approach is to use ->_mapcount in all subpages to track
how many time this subpage is mapped with PMDs or PTEs combined. But
this is rather expensive: mapping or unmapping of a THP page with PMD
would require HPAGE_PMD_NR atomic operations instead of single we have
now.
The idea is to store separately how many times the page was mapped as
whole -- compound_mapcount. This frees up ->_mapcount in subpages to
track PTE mapcount.
We use the same approach as with compound page destructor and compound
order to store compound_mapcount: use space in first tail page,
->mapping this time.
Any time we map/unmap whole compound page (THP or hugetlb) -- we
increment/decrement compound_mapcount. When we map part of compound
page with PTE we operate on ->_mapcount of the subpage.
page_mapcount() counts both: PTE and PMD mappings of the page.
Basically, we have mapcount for a subpage spread over two counters. It
makes tricky to detect when last mapcount for a page goes away.
We introduced PageDoubleMap() for this. When we split THP PMD for the
first time and there's other PMD mapping left we offset up ->_mapcount
in all subpages by one and set PG_double_map on the compound page.
These additional references go away with last compound_mapcount.
This approach provides a way to detect when last mapcount goes away on
per small page basis without introducing new overhead for most common
cases.
[akpm@linux-foundation.org: fix typo in comment]
[mhocko@suse.com: ignore partial THP when moving task]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're going to allow mapping of individual 4k pages of THP compound
page. It means we cannot rely on PageTransHuge() check to decide if
map/unmap small page or THP.
The patch adds new argument to rmap functions to indicate whether we
want to operate on whole compound page or only the small page.
[n-horiguchi@ah.jp.nec.com: fix mapcount mismatch in hugepage migration]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently looking at /proc/<pid>/status or statm, there is no way to
distinguish shmem pages from pages mapped to a regular file (shmem pages
are mapped to /dev/zero), even though their implication in actual memory
use is quite different.
The internal accounting currently counts shmem pages together with
regular files. As a preparation to extend the userspace interfaces,
this patch adds MM_SHMEMPAGES counter to mm_rss_stat to account for
shmem pages separately from MM_FILEPAGES. The next patch will expose it
to userspace - this patch doesn't change the exported values yet, by
adding up MM_SHMEMPAGES to MM_FILEPAGES at places where MM_FILEPAGES was
used before. The only user-visible change after this patch is the OOM
killer message that separates the reported "shmem-rss" from "file-rss".
[vbabka@suse.cz: forward-porting, tweak changelog]
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark those kmem allocations that are known to be easily triggered from
userspace as __GFP_ACCOUNT/SLAB_ACCOUNT, which makes them accounted to
memcg. For the list, see below:
- threadinfo
- task_struct
- task_delay_info
- pid
- cred
- mm_struct
- vm_area_struct and vm_region (nommu)
- anon_vma and anon_vma_chain
- signal_struct
- sighand_struct
- fs_struct
- files_struct
- fdtable and fdtable->full_fds_bits
- dentry and external_name
- inode for all filesystems. This is the most tedious part, because
most filesystems overwrite the alloc_inode method.
The list is far from complete, so feel free to add more objects.
Nevertheless, it should be close to "account everything" approach and
keep most workloads within bounds. Malevolent users will be able to
breach the limit, but this was possible even with the former "account
everything" approach (simply because it did not account everything in
fact).
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hitherto page migration has avoided using a migration entry for a
swapcache page mapped into userspace, apparently for historical reasons.
So any page blessed with swapcache would entail a minor fault when it's
next touched, which page migration otherwise tries to avoid. Swapcache in
an mlocked area is rare, so won't often matter, but still better fixed.
Just rearrange the block in try_to_unmap_one(), to handle TTU_MIGRATION
before checking PageAnon, that's all (apart from some reindenting).
Well, no, that's not quite all: doesn't this by the way fix a soft_dirty
bug, that page migration of a file page was forgetting to transfer the
soft_dirty bit? Probably not a serious bug: if I understand correctly,
soft_dirty afficionados usually have to handle file pages separately
anyway; but we publish the bit in /proc/<pid>/pagemap on file mappings as
well as anonymous, so page migration ought not to perturb it.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KernelThreadSanitizer (ktsan) has shown that the down_read_trylock() of
mmap_sem in try_to_unmap_one() (when going to set PageMlocked on a page
found mapped in a VM_LOCKED vma) is ineffective against races with
exit_mmap()'s munlock_vma_pages_all(), because mmap_sem is not held when
tearing down an mm.
But that's okay, those races are benign; and although we've believed for
years in that ugly down_read_trylock(), it's unsuitable for the job, and
frustrates the good intention of setting PageMlocked when it fails.
It just doesn't matter if here we read vm_flags an instant before or after
a racing mlock() or munlock() or exit_mmap() sets or clears VM_LOCKED: the
syscalls (or exit) work their way up the address space (taking pt locks
after updating vm_flags) to establish the final state.
We do still need to be careful never to mark a page Mlocked (hence
unevictable) by any race that will not be corrected shortly after. The
page lock protects from many of the races, but not all (a page is not
necessarily locked when it's unmapped). But the pte lock we just dropped
is good to cover the rest (and serializes even with
munlock_vma_pages_all(), so no special barriers required): now hold on to
the pte lock while calling mlock_vma_page(). Is that lock ordering safe?
Yes, that's how follow_page_pte() calls it, and how page_remove_rmap()
calls the complementary clear_page_mlock().
This fixes the following case (though not a case which anyone has
complained of), which mmap_sem did not: truncation's preliminary
unmap_mapping_range() is supposed to remove even the anonymous COWs of
filecache pages, and that might race with try_to_unmap_one() on a
VM_LOCKED vma, so that mlock_vma_page() sets PageMlocked just after
zap_pte_range() unmaps the page, causing "Bad page state (mlocked)" when
freed. The pte lock protects against this.
You could say that it also protects against the more ordinary case, racing
with the preliminary unmapping of a filecache page itself: but in our
current tree, that's independently protected by i_mmap_rwsem; and that
race would be why "Bad page state (mlocked)" was seen before commit
48ec833b78 ("Revert mm/memory.c: share the i_mmap_rwsem").
Vlastimil Babka points out another race which this patch protects against.
try_to_unmap_one() might reach its mlock_vma_page() TestSetPageMlocked a
moment after munlock_vma_pages_all() did its Phase 1 TestClearPageMlocked:
leaving PageMlocked and unevictable when it should be evictable. mmap_sem
is ineffective because exit_mmap() does not hold it; page lock ineffective
because __munlock_pagevec() only takes it afterwards, in Phase 2; pte lock
is effective because __munlock_pagevec_fill() takes it to get the page,
after VM_LOCKED was cleared from vm_flags, so visible to try_to_unmap_one.
Kirill Shutemov points out that if the compiler chooses to implement a
"vma->vm_flags &= VM_WHATEVER" or "vma->vm_flags |= VM_WHATEVER" operation
with an intermediate store of unrelated bits set, since I'm here foregoing
its usual protection by mmap_sem, try_to_unmap_one() might catch sight of
a spurious VM_LOCKED in vm_flags, and make the wrong decision. This does
not appear to be an immediate problem, but we may want to define vm_flags
accessors in future, to guard against such a possibility.
While we're here, make a related optimization in try_to_munmap_one(): if
it's doing TTU_MUNLOCK, then there's no point at all in descending the
page tables and getting the pt lock, unless the vma is VM_LOCKED. Yes,
that can change racily, but it can change racily even without the
optimization: it's not critical. Far better not to waste time here.
Stopped short of separating try_to_munlock_one() from try_to_munmap_one()
on this occasion, but that's probably the sensible next step - with a
rename, given that try_to_munlock()'s business is to try to set Mlocked.
Updated the unevictable-lru Documentation, to remove its reference to mmap
semaphore, but found a few more updates needed in just that area.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While at it add it to the file and anon walks too.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Petr Holasek <pholasek@redhat.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently there's no easy way to get per-process usage of hugetlb pages,
which is inconvenient because userspace applications which use hugetlb
typically want to control their processes on the basis of how much memory
(including hugetlb) they use. So this patch simply provides easy access
to the info via /proc/PID/status.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Joern Engel <joern@logfs.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Knowing the portion of memory that is not used by a certain application or
memory cgroup (idle memory) can be useful for partitioning the system
efficiently, e.g. by setting memory cgroup limits appropriately.
Currently, the only means to estimate the amount of idle memory provided
by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
access bit for all pages mapped to a particular process by writing 1 to
clear_refs, wait for some time, and then count smaps:Referenced. However,
this method has two serious shortcomings:
- it does not count unmapped file pages
- it affects the reclaimer logic
To overcome these drawbacks, this patch introduces two new page flags,
Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
A page's Idle flag can only be set from userspace by setting bit in
/sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
and it is cleared whenever the page is accessed either through page tables
(it is cleared in page_referenced() in this case) or using the read(2)
system call (mark_page_accessed()). Thus by setting the Idle flag for
pages of a particular workload, which can be found e.g. by reading
/proc/PID/pagemap, waiting for some time to let the workload access its
working set, and then reading the bitmap file, one can estimate the amount
of pages that are not used by the workload.
The Young page flag is used to avoid interference with the memory
reclaimer. A page's Young flag is set whenever the Access bit of a page
table entry pointing to the page is cleared by writing to the bitmap file.
If page_referenced() is called on a Young page, it will add 1 to its
return value, therefore concealing the fact that the Access bit was
cleared.
Note, since there is no room for extra page flags on 32 bit, this feature
uses extended page flags when compiled on 32 bit.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: kpageidle requires an MMU]
[akpm@linux-foundation.org: decouple from page-flags rework]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a PTE is unmapped and it's dirty then it was writable recently. Due to
deferred TLB flushing, it's best to assume a writable TLB cache entry
exists. With that assumption, the TLB must be flushed before any IO can
start or the page is freed to avoid lost writes or data corruption. This
patch defers flushing of potentially writable TLBs as long as possible.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An IPI is sent to flush remote TLBs when a page is unmapped that was
potentially accesssed by other CPUs. There are many circumstances where
this happens but the obvious one is kswapd reclaiming pages belonging to a
running process as kswapd and the task are likely running on separate
CPUs.
On small machines, this is not a significant problem but as machine gets
larger with more cores and more memory, the cost of these IPIs can be
high. This patch uses a simple structure that tracks CPUs that
potentially have TLB entries for pages being unmapped. When the unmapping
is complete, the full TLB is flushed on the assumption that a refill cost
is lower than flushing individual entries.
Architectures wishing to do this must give the following guarantee.
If a clean page is unmapped and not immediately flushed, the
architecture must guarantee that a write to that linear address
from a CPU with a cached TLB entry will trap a page fault.
This is essentially what the kernel already depends on but the window is
much larger with this patch applied and is worth highlighting. The
architecture should consider whether the cost of the full TLB flush is
higher than sending an IPI to flush each individual entry. An additional
architecture helper called flush_tlb_local is required. It's a trivial
wrapper with some accounting in the x86 case.
The impact of this patch depends on the workload as measuring any benefit
requires both mapped pages co-located on the LRU and memory pressure. The
case with the biggest impact is multiple processes reading mapped pages
taken from the vm-scalability test suite. The test case uses NR_CPU
readers of mapped files that consume 10*RAM.
Linear mapped reader on a 4-node machine with 64G RAM and 48 CPUs
4.2.0-rc1 4.2.0-rc1
vanilla flushfull-v7
Ops lru-file-mmap-read-elapsed 159.62 ( 0.00%) 120.68 ( 24.40%)
Ops lru-file-mmap-read-time_range 30.59 ( 0.00%) 2.80 ( 90.85%)
Ops lru-file-mmap-read-time_stddv 6.70 ( 0.00%) 0.64 ( 90.38%)
4.2.0-rc1 4.2.0-rc1
vanilla flushfull-v7
User 581.00 611.43
System 5804.93 4111.76
Elapsed 161.03 122.12
This is showing that the readers completed 24.40% faster with 29% less
system CPU time. From vmstats, it is known that the vanilla kernel was
interrupted roughly 900K times per second during the steady phase of the
test and the patched kernel was interrupts 180K times per second.
The impact is lower on a single socket machine.
4.2.0-rc1 4.2.0-rc1
vanilla flushfull-v7
Ops lru-file-mmap-read-elapsed 25.33 ( 0.00%) 20.38 ( 19.54%)
Ops lru-file-mmap-read-time_range 0.91 ( 0.00%) 1.44 (-58.24%)
Ops lru-file-mmap-read-time_stddv 0.28 ( 0.00%) 0.47 (-65.34%)
4.2.0-rc1 4.2.0-rc1
vanilla flushfull-v7
User 58.09 57.64
System 111.82 76.56
Elapsed 27.29 22.55
It's still a noticeable improvement with vmstat showing interrupts went
from roughly 500K per second to 45K per second.
The patch will have no impact on workloads with no memory pressure or have
relatively few mapped pages. It will have an unpredictable impact on the
workload running on the CPU being flushed as it'll depend on how many TLB
entries need to be refilled and how long that takes. Worst case, the TLB
will be completely cleared of active entries when the target PFNs were not
resident at all.
[sasha.levin@oracle.com: trace tlb flush after disabling preemption in try_to_unmap_flush]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup writeback support from Jens Axboe:
"This is the big pull request for adding cgroup writeback support.
This code has been in development for a long time, and it has been
simmering in for-next for a good chunk of this cycle too. This is one
of those problems that has been talked about for at least half a
decade, finally there's a solution and code to go with it.
Also see last weeks writeup on LWN:
http://lwn.net/Articles/648292/"
* 'for-4.2/writeback' of git://git.kernel.dk/linux-block: (85 commits)
writeback, blkio: add documentation for cgroup writeback support
vfs, writeback: replace FS_CGROUP_WRITEBACK with SB_I_CGROUPWB
writeback: do foreign inode detection iff cgroup writeback is enabled
v9fs: fix error handling in v9fs_session_init()
bdi: fix wrong error return value in cgwb_create()
buffer: remove unusued 'ret' variable
writeback: disassociate inodes from dying bdi_writebacks
writeback: implement foreign cgroup inode bdi_writeback switching
writeback: add lockdep annotation to inode_to_wb()
writeback: use unlocked_inode_to_wb transaction in inode_congested()
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates
writeback: implement [locked_]inode_to_wb_and_lock_list()
writeback: implement foreign cgroup inode detection
writeback: make writeback_control track the inode being written back
writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb()
mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use
writeback: implement memcg writeback domain based throttling
writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
writeback: implement memcg wb_domain
writeback: update wb_over_bg_thresh() to use wb_domain aware operations
...
We have confusing functions to clear pmd, pmd_clear_* and pmd_clear. Add
_huge_ to pmdp_clear functions so that we are clear that they operate on
hugepage pte.
We don't bother about other functions like pmdp_set_wrprotect,
pmdp_clear_flush_young, because they operate on PTE bits and hence
indicate they are operating on hugepage ptes
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As noted by Paul the compiler is free to store a temporary result in a
variable on stack, heap or global unless it is explicitly marked as
volatile, see:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4455.html#sample-optimizations
This can result in a race between do_wp_page() and shrink_active_list()
as follows.
In do_wp_page() we can call page_move_anon_rmap(), which sets
page->mapping as follows:
anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
page->mapping = (struct address_space *) anon_vma;
The page in question may be on an LRU list, because nowhere in
do_wp_page() we remove it from the list, neither do we take any LRU
related locks. Although the page is locked, shrink_active_list() can
still call page_referenced() on it concurrently, because the latter does
not require an anonymous page to be locked:
CPU0 CPU1
---- ----
do_wp_page shrink_active_list
lock_page page_referenced
PageAnon->yes, so skip trylock_page
page_move_anon_rmap
page->mapping = anon_vma
rmap_walk
PageAnon->no
rmap_walk_file
BUG
page->mapping += PAGE_MAPPING_ANON
This patch fixes this race by explicitly forbidding the compiler to split
page->mapping store in page_move_anon_rmap() with the aid of WRITE_ONCE.
[akpm@linux-foundation.org: tweak comment, per Minchan]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When modifying PG_Dirty on cached file pages, update the new
MEM_CGROUP_STAT_DIRTY counter. This is done in the same places where
global NR_FILE_DIRTY is managed. The new memcg stat is visible in the
per memcg memory.stat cgroupfs file. The most recent past attempt at
this was http://thread.gmane.org/gmane.linux.kernel.cgroups/8632
The new accounting supports future efforts to add per cgroup dirty
page throttling and writeback. It also helps an administrator break
down a container's memory usage and provides evidence to understand
memcg oom kills (the new dirty count is included in memcg oom kill
messages).
The ability to move page accounting between memcg
(memory.move_charge_at_immigrate) makes this accounting more
complicated than the global counter. The existing
mem_cgroup_{begin,end}_page_stat() lock is used to serialize move
accounting with stat updates.
Typical update operation:
memcg = mem_cgroup_begin_page_stat(page)
if (TestSetPageDirty()) {
[...]
mem_cgroup_update_page_stat(memcg)
}
mem_cgroup_end_page_stat(memcg)
Summary of mem_cgroup_end_page_stat() overhead:
- Without CONFIG_MEMCG it's a no-op
- With CONFIG_MEMCG and no inter memcg task movement, it's just
rcu_read_lock()
- With CONFIG_MEMCG and inter memcg task movement, it's
rcu_read_lock() + spin_lock_irqsave()
A memcg parameter is added to several routines because their callers
now grab mem_cgroup_begin_page_stat() which returns the memcg later
needed by for mem_cgroup_update_page_stat().
Because mem_cgroup_begin_page_stat() may disable interrupts, some
adjustments are needed:
- move __mark_inode_dirty() from __set_page_dirty() to its caller.
__mark_inode_dirty() locking does not want interrupts disabled.
- use spin_lock_irqsave(tree_lock) rather than spin_lock_irq() in
__delete_from_page_cache(), replace_page_cache_page(),
invalidate_complete_page2(), and __remove_mapping().
text data bss dec hex filename
8925147 1774832 1785856 12485835 be84cb vmlinux-!CONFIG_MEMCG-before
8925339 1774832 1785856 12486027 be858b vmlinux-!CONFIG_MEMCG-after
+192 text bytes
8965977 1784992 1785856 12536825 bf4bf9 vmlinux-CONFIG_MEMCG-before
8966750 1784992 1785856 12537598 bf4efe vmlinux-CONFIG_MEMCG-after
+773 text bytes
Performance tests run on v4.0-rc1-36-g4f671fe2f952. Lower is better for
all metrics, they're all wall clock or cycle counts. The read and write
fault benchmarks just measure fault time, they do not include I/O time.
* CONFIG_MEMCG not set:
baseline patched
kbuild 1m25.030000(+-0.088% 3 samples) 1m25.426667(+-0.120% 3 samples)
dd write 100 MiB 0.859211561 +-15.10% 0.874162885 +-15.03%
dd write 200 MiB 1.670653105 +-17.87% 1.669384764 +-11.99%
dd write 1000 MiB 8.434691190 +-14.15% 8.474733215 +-14.77%
read fault cycles 254.0(+-0.000% 10 samples) 253.0(+-0.000% 10 samples)
write fault cycles 2021.2(+-3.070% 10 samples) 1984.5(+-1.036% 10 samples)
* CONFIG_MEMCG=y root_memcg:
baseline patched
kbuild 1m25.716667(+-0.105% 3 samples) 1m25.686667(+-0.153% 3 samples)
dd write 100 MiB 0.855650830 +-14.90% 0.887557919 +-14.90%
dd write 200 MiB 1.688322953 +-12.72% 1.667682724 +-13.33%
dd write 1000 MiB 8.418601605 +-14.30% 8.673532299 +-15.00%
read fault cycles 266.0(+-0.000% 10 samples) 266.0(+-0.000% 10 samples)
write fault cycles 2051.7(+-1.349% 10 samples) 2049.6(+-1.686% 10 samples)
* CONFIG_MEMCG=y non-root_memcg:
baseline patched
kbuild 1m26.120000(+-0.273% 3 samples) 1m25.763333(+-0.127% 3 samples)
dd write 100 MiB 0.861723964 +-15.25% 0.818129350 +-14.82%
dd write 200 MiB 1.669887569 +-13.30% 1.698645885 +-13.27%
dd write 1000 MiB 8.383191730 +-14.65% 8.351742280 +-14.52%
read fault cycles 265.7(+-0.172% 10 samples) 267.0(+-0.000% 10 samples)
write fault cycles 2070.6(+-1.512% 10 samples) 2084.4(+-2.148% 10 samples)
As expected anon page faults are not affected by this patch.
tj: Updated to apply on top of the recent cancel_dirty_page() changes.
Signed-off-by: Sha Zhengju <handai.szj@gmail.com>
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.
This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses. This makes things cleaner, instead
of using separate/multiple sets of APIs.
Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I have constantly stumbled upon "kernel BUG at mm/rmap.c:399!" after
upgrading to 3.19 and had no luck with 4.0-rc1 neither.
So, after looking into new logic introduced by commit 7a3ef208e6 ("mm:
prevent endless growth of anon_vma hierarchy"), I found chances are that
unlink_anon_vmas() is called without incrementing dst->anon_vma->degree
in anon_vma_clone() due to allocation failure. If dst->anon_vma is not
NULL in error path, its degree will be incorrectly decremented in
unlink_anon_vmas() and eventually underflow when exiting as a result of
another call to unlink_anon_vmas(). That's how "kernel BUG at
mm/rmap.c:399!" is triggered for me.
This patch fixes the underflow by dropping dst->anon_vma when allocation
fails. It's safe to do so regardless of original value of dst->anon_vma
because dst->anon_vma doesn't have valid meaning if anon_vma_clone()
fails. Besides, callers don't care dst->anon_vma in such case neither.
Also suggested by Michal Hocko, we can clean up vma_adjust() a bit as
anon_vma_clone() now does the work.
[akpm@linux-foundation.org: tweak comment]
Fixes: 7a3ef208e6 ("mm: prevent endless growth of anon_vma hierarchy")
Signed-off-by: Leon Yu <chianglungyu@gmail.com>
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The complexity of memcg page stat synchronization is currently leaking
into the callsites, forcing them to keep track of the move_lock state and
the IRQ flags. Simplify the API by tracking it in the memcg.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't create non-linear mappings anymore. Let's drop code which
handles them in rmap.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Constantly forking task causes unlimited grow of anon_vma chain. Each
next child allocates new level of anon_vmas and links vma to all
previous levels because pages might be inherited from any level.
This patch adds heuristic which decides to reuse existing anon_vma
instead of forking new one. It adds counter anon_vma->degree which
counts linked vmas and directly descending anon_vmas and reuses anon_vma
if counter is lower than two. As a result each anon_vma has either vma
or at least two descending anon_vmas. In such trees half of nodes are
leafs with alive vmas, thus count of anon_vmas is no more than two times
bigger than count of vmas.
This heuristic reuses anon_vmas as few as possible because each reuse
adds false aliasing among vmas and rmap walker ought to scan more ptes
when it searches where page is might be mapped.
Link: http://lkml.kernel.org/r/20120816024610.GA5350@evergreen.ssec.wisc.edu
Fixes: 5beb493052 ("mm: change anon_vma linking to fix multi-process server scalability issue")
[akpm@linux-foundation.org: fix typo, per Rik]
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Reported-by: Daniel Forrest <dan.forrest@ssec.wisc.edu>
Tested-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Jerome Marchand <jmarchan@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.34+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As discussed on LKML http://marc.info/?i=54611D86.4040306%40de.ibm.com
ACCESS_ONCE might fail with specific compilers for non-scalar accesses.
Here is a set of patches to tackle that problem.
The first patch introduce READ_ONCE and ASSIGN_ONCE. If the data structure
is larger than the machine word size memcpy is used and a warning is emitted.
The next patches fix up several in-tree users of ACCESS_ONCE on non-scalar
types.
This merge does not yet contain a patch that forces ACCESS_ONCE to work only
on scalar types. This is targetted for the next merge window as Linux next
already contains new offenders regarding ACCESS_ONCE vs. non-scalar types.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJUkrVGAAoJEBF7vIC1phx8stkP/2LmN5y6LOseoEW06xa5MX4m
cbIKsZNtsGHl7EDcTzzuWs6Sq5/Cj7V3yzeBF7QGbUKOqvFWU3jvpUBCCfjMg37C
77/Vf0ZPrxTXXxeJ4Ykdy2CGvuMtuYY9TWkrRNKmLU0xex7lGblEzCt9z6+mZviw
26/DN8ctjkHRvIUAi+7RfQBBc3oSMYAC1mzxYKBAsAFLV+LyFmsGU/4iofZMAsdt
XFyVXlrLn0Bjx/MeceGkOlMDiVx4FnfccfFaD4hhuTLBJXWitkUK/MRa4JBiXWzH
agY8942A8/j9wkI2DFp/pqZYqA/sTXLndyOWlhE//ZSti0n0BSJaOx3S27rTLkAc
5VmZEVyIrS3hyOpyyAi0sSoPkDnjeCHmQg9Rqn34/poKLd7JDrW2UkERNCf/T3eh
GI2rbhAlZz3v5mIShn8RrxzslWYmOObpMr3HYNUdRk8YUfTf6d6aZ3txHp2nP4mD
VBAEzsvP9rcVT2caVhU2dnBzeaZAj3zeDxBtjcb3X2osY9tI7qgLc9Fa/fWKgILk
2evkLcctsae2mlLNGHyaK3Dm/ZmYJv+57MyaQQEZNfZZgeB1y4k0DkxH4w1CFmCi
s8XlH5voEHgnyjSQXXgc/PNVlkPAKr78ZyTiAfiKmh8rpe41/W4hGcgao7L9Lgiu
SI0uSwKibuZt4dHGxQuG
=IQ5o
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux
Pull ACCESS_ONCE cleanup preparation from Christian Borntraeger:
"kernel: Provide READ_ONCE and ASSIGN_ONCE
As discussed on LKML http://marc.info/?i=54611D86.4040306%40de.ibm.com
ACCESS_ONCE might fail with specific compilers for non-scalar
accesses.
Here is a set of patches to tackle that problem.
The first patch introduce READ_ONCE and ASSIGN_ONCE. If the data
structure is larger than the machine word size memcpy is used and a
warning is emitted. The next patches fix up several in-tree users of
ACCESS_ONCE on non-scalar types.
This does not yet contain a patch that forces ACCESS_ONCE to work only
on scalar types. This is targetted for the next merge window as Linux
next already contains new offenders regarding ACCESS_ONCE vs.
non-scalar types"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux:
s390/kvm: REPLACE barrier fixup with READ_ONCE
arm/spinlock: Replace ACCESS_ONCE with READ_ONCE
arm64/spinlock: Replace ACCESS_ONCE READ_ONCE
mips/gup: Replace ACCESS_ONCE with READ_ONCE
x86/gup: Replace ACCESS_ONCE with READ_ONCE
x86/spinlock: Replace ACCESS_ONCE with READ_ONCE
mm: replace ACCESS_ONCE with READ_ONCE or barriers
kernel: Provide READ_ONCE and ASSIGN_ONCE
ACCESS_ONCE does not work reliably on non-scalar types. For
example gcc 4.6 and 4.7 might remove the volatile tag for such
accesses during the SRA (scalar replacement of aggregates) step
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145)
Let's change the code to access the page table elements with
READ_ONCE that does implicit scalar accesses for the gup code.
mm_find_pmd is tricky, because m68k and sparc(32bit) define pmd_t
as array of longs. This code requires just that the pmd_present
and pmd_trans_huge check are done on the same value, so a barrier
is sufficent.
A similar case is in handle_pte_fault. On ppc44x the word size is
32 bit, but a pte is 64 bit. A barrier is ok as well.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: linux-mm@kvack.org
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Pull drm updates from Dave Airlie:
"Highlights:
- AMD KFD driver merge
This is the AMD HSA interface for exposing a lowlevel interface for
GPGPU use. They have an open source userspace built on top of this
interface, and the code looks as good as it was going to get out of
tree.
- Initial atomic modesetting work
The need for an atomic modesetting interface to allow userspace to
try and send a complete set of modesetting state to the driver has
arisen, and been suffering from neglect this past year. No more,
the start of the common code and changes for msm driver to use it
are in this tree. Ongoing work to get the userspace ioctl finished
and the code clean will probably wait until next kernel.
- DisplayID 1.3 and tiled monitor exposed to userspace.
Tiled monitor property is now exposed for userspace to make use of.
- Rockchip drm driver merged.
- imx gpu driver moved out of staging
Other stuff:
- core:
panel - MIPI DSI + new panels.
expose suggested x/y properties for virtual GPUs
- i915:
Initial Skylake (SKL) support
gen3/4 reset work
start of dri1/ums removal
infoframe tracking
fixes for lots of things.
- nouveau:
tegra k1 voltage support
GM204 modesetting support
GT21x memory reclocking work
- radeon:
CI dpm fixes
GPUVM improvements
Initial DPM fan control
- rcar-du:
HDMI support added
removed some support for old boards
slave encoder driver for Analog Devices adv7511
- exynos:
Exynos4415 SoC support
- msm:
a4xx gpu support
atomic helper conversion
- tegra:
iommu support
universal plane support
ganged-mode DSI support
- sti:
HDMI i2c improvements
- vmwgfx:
some late fixes.
- qxl:
use suggested x/y properties"
* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (969 commits)
drm: sti: fix module compilation issue
drm/i915: save/restore GMBUS freq across suspend/resume on gen4
drm: sti: correctly cleanup CRTC and planes
drm: sti: add HQVDP plane
drm: sti: add cursor plane
drm: sti: enable auxiliary CRTC
drm: sti: fix delay in VTG programming
drm: sti: prepare sti_tvout to support auxiliary crtc
drm: sti: use drm_crtc_vblank_{on/off} instead of drm_vblank_{on/off}
drm: sti: fix hdmi avi infoframe
drm: sti: remove event lock while disabling vblank
drm: sti: simplify gdp code
drm: sti: clear all mixer control
drm: sti: remove gpio for HDMI hot plug detection
drm: sti: allow to change hdmi ddc i2c adapter
drm/doc: Document drm_add_modes_noedid() usage
drm/i915: Remove '& 0xffff' from the mask given to WA_REG()
drm/i915: Invert the mask and val arguments in wa_add() and WA_REG()
drm: Zero out DRM object memory upon cleanup
drm/i915/bdw: Fix the write setting up the WIZ hashing mode
...
Call page_to_pgoff() to get the page offset once we are sure we actually
need it, and any very obvious initial function checks have passed.
Trivial micro-optimization, and potentially save some cycles.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similarly to the anon memory counterpart, we can share the mapping's lock
ownership as the interval tree is not modified when doing doing the walk,
only the file page.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The i_mmap_mutex is a close cousin of the anon vma lock, both protecting
similar data, one for file backed pages and the other for anon memory. To
this end, this lock can also be a rwsem. In addition, there are some
important opportunities to share the lock when there are no tree
modifications.
This conversion is straightforward. For now, all users take the write
lock.
[sfr@canb.auug.org.au: update fremap.c]
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit d7365e783e ("mm: memcontrol: fix missed end-writeback
page accounting") mem_cgroup_end_page_stat consumes locked and flags
variables directly rather than via pointers which might trigger C
undefined behavior as those variables are initialized only in the slow
path of mem_cgroup_begin_page_stat.
Although mem_cgroup_end_page_stat handles parameters correctly and
touches them only when they hold a sensible value it is caller which
loads a potentially uninitialized value which then might allow compiler
to do crazy things.
I haven't seen any warning from gcc and it seems that the current
version (4.9) doesn't exploit this type undefined behavior but Sasha has
reported the following:
UBSan: Undefined behaviour in mm/rmap.c:1084:2
load of value 255 is not a valid value for type '_Bool'
CPU: 4 PID: 8304 Comm: rngd Not tainted 3.18.0-rc2-next-20141029-sasha-00039-g77ed13d-dirty #1427
Call Trace:
dump_stack (lib/dump_stack.c:52)
ubsan_epilogue (lib/ubsan.c:159)
__ubsan_handle_load_invalid_value (lib/ubsan.c:482)
page_remove_rmap (mm/rmap.c:1084 mm/rmap.c:1096)
unmap_page_range (./arch/x86/include/asm/atomic.h:27 include/linux/mm.h:463 mm/memory.c:1146 mm/memory.c:1258 mm/memory.c:1279 mm/memory.c:1303)
unmap_single_vma (mm/memory.c:1348)
unmap_vmas (mm/memory.c:1377 (discriminator 3))
exit_mmap (mm/mmap.c:2837)
mmput (kernel/fork.c:659)
do_exit (./arch/x86/include/asm/thread_info.h:168 kernel/exit.c:462 kernel/exit.c:747)
do_group_exit (include/linux/sched.h:775 kernel/exit.c:873)
SyS_exit_group (kernel/exit.c:901)
tracesys_phase2 (arch/x86/kernel/entry_64.S:529)
Fix this by using pointer parameters for both locked and flags and be
more robust for future compiler changes even though the current code is
implemented correctly.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUhNLZAAoJEHm+PkMAQRiGAEcH/iclYDW7k2GKemMqboy+Ohmh
+ELbQothNhlGZlS1wWdD69LBiiXkkQ+ufVYFh/hC0oy0gUdfPMt5t+bOHy6cjn6w
9zOcACtpDKnqbOwRqXZjZgNmIabk7lRjbn7GK4GQqpIaW4oO0FWcT91FFhtGSPDa
tjtmGRqDmbNsqfzr18h0WPEpUZmT6MxIdv17AYDliPB1MaaRuAv1Kss05TJrXdfL
Oucv+C0uwnybD9UWAz6pLJ3H/HR9VJFdkaJ4Y0pbCHAuxdd1+swoTpicluHlsJA1
EkK5iWQRMpcmGwKvB0unCAQljNpaJiq4/Tlmmv8JlYpMlmIiVLT0D8BZx5q05QQ=
=oGNw
-----END PGP SIGNATURE-----
Merge tag 'v3.18' into drm-next
Linux 3.18
Backmerge Linus tree into -next as we had conflicts in i915/radeon/nouveau,
and everyone was solving them individually.
* tag 'v3.18': (57 commits)
Linux 3.18
watchdog: s3c2410_wdt: Fix the mask bit offset for Exynos7
uapi: fix to export linux/vm_sockets.h
i2c: cadence: Set the hardware time-out register to maximum value
i2c: davinci: generate STP always when NACK is received
ahci: disable MSI on SAMSUNG 0xa800 SSD
context_tracking: Restore previous state in schedule_user
slab: fix nodeid bounds check for non-contiguous node IDs
lib/genalloc.c: export devm_gen_pool_create() for modules
mm: fix anon_vma_clone() error treatment
mm: fix swapoff hang after page migration and fork
fat: fix oops on corrupted vfat fs
ipc/sem.c: fully initialize sem_array before making it visible
drivers/input/evdev.c: don't kfree() a vmalloc address
cxgb4: Fill in supported link mode for SFP modules
xen-netfront: Remove BUGs on paged skb data which crosses a page boundary
mm/vmpressure.c: fix race in vmpressure_work_fn()
mm: frontswap: invalidate expired data on a dup-store failure
mm: do not overwrite reserved pages counter at show_mem()
drm/radeon: kernel panic in drm_calc_vbltimestamp_from_scanoutpos with 3.18.0-rc6
...
Conflicts:
drivers/gpu/drm/i915/intel_display.c
drivers/gpu/drm/nouveau/nouveau_drm.c
drivers/gpu/drm/radeon/radeon_cs.c
Andrew Morton noticed that the error return from anon_vma_clone() was
being dropped and replaced with -ENOMEM (which is not itself a bug
because the only error return value from anon_vma_clone() is -ENOMEM).
I did an audit of callers of anon_vma_clone() and discovered an actual
bug where the error return was being lost. In __split_vma(), between
Linux 3.11 and 3.12 the code was changed so the err variable is used
before the call to anon_vma_clone() and the default initial value of
-ENOMEM is overwritten. So a failure of anon_vma_clone() will return
success since err at this point is now zero.
Below is a patch which fixes this bug and also propagates the error
return value from anon_vma_clone() in all cases.
Fixes: ef0855d334 ("mm: mempolicy: turn vma_set_policy() into vma_dup_policy()")
Signed-off-by: Daniel Forrest <dan.forrest@ssec.wisc.edu>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tim Hartrick <tim@edgecast.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_remove_rmap() has too many branches on PageAnon() and is hard to
follow. Move the file part into a separate function.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API") changed
page migration to uncharge the old page right away. The page is locked,
unmapped, truncated, and off the LRU, but it could race with writeback
ending, which then doesn't unaccount the page properly:
test_clear_page_writeback() migration
wait_on_page_writeback()
TestClearPageWriteback()
mem_cgroup_migrate()
clear PCG_USED
mem_cgroup_update_page_stat()
if (PageCgroupUsed(pc))
decrease memcg pages under writeback
release pc->mem_cgroup->move_lock
The per-page statistics interface is heavily optimized to avoid a
function call and a lookup_page_cgroup() in the file unmap fast path,
which means it doesn't verify whether a page is still charged before
clearing PageWriteback() and it has to do it in the stat update later.
Rework it so that it looks up the page's memcg once at the beginning of
the transaction and then uses it throughout. The charge will be
verified before clearing PageWriteback() and migration can't uncharge
the page as long as that is still set. The RCU lock will protect the
memcg past uncharge.
As far as losing the optimization goes, the following test results are
from a microbenchmark that maps, faults, and unmaps a 4GB sparse file
three times in a nested fashion, so that there are two negative passes
that don't account but still go through the new transaction overhead.
There is no actual difference:
old: 33.195102545 seconds time elapsed ( +- 0.01% )
new: 33.199231369 seconds time elapsed ( +- 0.03% )
The time spent in page_remove_rmap()'s callees still adds up to the
same, but the time spent in the function itself seems reduced:
# Children Self Command Shared Object Symbol
old: 0.12% 0.11% filemapstress [kernel.kallsyms] [k] page_remove_rmap
new: 0.12% 0.08% filemapstress [kernel.kallsyms] [k] page_remove_rmap
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: <stable@vger.kernel.org> [3.17.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Trivially convert a few VM_BUG_ON calls to VM_BUG_ON_VMA to extract
more information when they trigger.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1. We were calling clear_flush_young_notify in unmap_one, but we are
within an mmu notifier invalidate range scope. The spte exists no more
(due to range_start) and the accessed bit info has already been
propagated (due to kvm_pfn_set_accessed). Simply call
clear_flush_young.
2. We clear_flush_young on a primary MMU PMD, but this may be mapped
as a collection of PTEs by the secondary MMU (e.g. during log-dirty).
This required expanding the interface of the clear_flush_young mmu
notifier, so a lot of code has been trivially touched.
3. In the absence of shadow_accessed_mask (e.g. EPT A bit), we emulate
the access bit by blowing the spte. This requires proper synchronizing
with MMU notifier consumers, like every other removal of spte's does.
Signed-off-by: Andres Lagar-Cavilla <andreslc@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The memcg uncharging code that is involved towards the end of a page's
lifetime - truncation, reclaim, swapout, migration - is impressively
complicated and fragile.
Because anonymous and file pages were always charged before they had their
page->mapping established, uncharges had to happen when the page type
could still be known from the context; as in unmap for anonymous, page
cache removal for file and shmem pages, and swap cache truncation for swap
pages. However, these operations happen well before the page is actually
freed, and so a lot of synchronization is necessary:
- Charging, uncharging, page migration, and charge migration all need
to take a per-page bit spinlock as they could race with uncharging.
- Swap cache truncation happens during both swap-in and swap-out, and
possibly repeatedly before the page is actually freed. This means
that the memcg swapout code is called from many contexts that make
no sense and it has to figure out the direction from page state to
make sure memory and memory+swap are always correctly charged.
- On page migration, the old page might be unmapped but then reused,
so memcg code has to prevent untimely uncharging in that case.
Because this code - which should be a simple charge transfer - is so
special-cased, it is not reusable for replace_page_cache().
But now that charged pages always have a page->mapping, introduce
mem_cgroup_uncharge(), which is called after the final put_page(), when we
know for sure that nobody is looking at the page anymore.
For page migration, introduce mem_cgroup_migrate(), which is called after
the migration is successful and the new page is fully rmapped. Because
the old page is no longer uncharged after migration, prevent double
charges by decoupling the page's memcg association (PCG_USED and
pc->mem_cgroup) from the page holding an actual charge. The new bits
PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
to the new page during migration.
mem_cgroup_migrate() is suitable for replace_page_cache() as well,
which gets rid of mem_cgroup_replace_page_cache(). However, care
needs to be taken because both the source and the target page can
already be charged and on the LRU when fuse is splicing: grab the page
lock on the charge moving side to prevent changing pc->mem_cgroup of a
page under migration. Also, the lruvecs of both pages change as we
uncharge the old and charge the new during migration, and putback may
race with us, so grab the lru lock and isolate the pages iff on LRU to
prevent races and ensure the pages are on the right lruvec afterward.
Swap accounting is massively simplified: because the page is no longer
uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
before the final put_page() in page reclaim.
Finally, page_cgroup changes are now protected by whatever protection the
page itself offers: anonymous pages are charged under the page table lock,
whereas page cache insertions, swapin, and migration hold the page lock.
Uncharging happens under full exclusion with no outstanding references.
Charging and uncharging also ensure that the page is off-LRU, which
serializes against charge migration. Remove the very costly page_cgroup
lock and set pc->flags non-atomically.
[mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
[vdavydov@parallels.com: fix flags definition]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These patches rework memcg charge lifetime to integrate more naturally
with the lifetime of user pages. This drastically simplifies the code and
reduces charging and uncharging overhead. The most expensive part of
charging and uncharging is the page_cgroup bit spinlock, which is removed
entirely after this series.
Here are the top-10 profile entries of a stress test that reads a 128G
sparse file on a freshly booted box, without even a dedicated cgroup (i.e.
executing in the root memcg). Before:
15.36% cat [kernel.kallsyms] [k] copy_user_generic_string
13.31% cat [kernel.kallsyms] [k] memset
11.48% cat [kernel.kallsyms] [k] do_mpage_readpage
4.23% cat [kernel.kallsyms] [k] get_page_from_freelist
2.38% cat [kernel.kallsyms] [k] put_page
2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge
2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common
1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list
1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup
1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn
After:
15.67% cat [kernel.kallsyms] [k] copy_user_generic_string
13.48% cat [kernel.kallsyms] [k] memset
11.42% cat [kernel.kallsyms] [k] do_mpage_readpage
3.98% cat [kernel.kallsyms] [k] get_page_from_freelist
2.46% cat [kernel.kallsyms] [k] put_page
2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list
1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup
1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn
1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk
1.30% cat [kernel.kallsyms] [k] kfree
As you can see, the memcg footprint has shrunk quite a bit.
text data bss dec hex filename
37970 9892 400 48262 bc86 mm/memcontrol.o.old
35239 9892 400 45531 b1db mm/memcontrol.o
This patch (of 4):
The memcg charge API charges pages before they are rmapped - i.e. have an
actual "type" - and so every callsite needs its own set of charge and
uncharge functions to know what type is being operated on. Worse,
uncharge has to happen from a context that is still type-specific, rather
than at the end of the page's lifetime with exclusive access, and so
requires a lot of synchronization.
Rewrite the charge API to provide a generic set of try_charge(),
commit_charge() and cancel_charge() transaction operations, much like
what's currently done for swap-in:
mem_cgroup_try_charge() attempts to reserve a charge, reclaiming
pages from the memcg if necessary.
mem_cgroup_commit_charge() commits the page to the charge once it
has a valid page->mapping and PageAnon() reliably tells the type.
mem_cgroup_cancel_charge() aborts the transaction.
This reduces the charge API and enables subsequent patches to
drastically simplify uncharging.
As pages need to be committed after rmap is established but before they
are added to the LRU, page_add_new_anon_rmap() must stop doing LRU
additions again. Revive lru_cache_add_active_or_unevictable().
[hughd@google.com: fix shmem_unuse]
[hughd@google.com: Add comments on the private use of -EAGAIN]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I triggered VM_BUG_ON() in vma_address() when I tried to migrate an
anonymous hugepage with mbind() in the kernel v3.16-rc3. This is
because pgoff's calculation in rmap_walk_anon() fails to consider
compound_order() only to have an incorrect value.
This patch introduces page_to_pgoff(), which gets the page's offset in
PAGE_CACHE_SIZE.
Kirill pointed out that page cache tree should natively handle
hugepages, and in order to make hugetlbfs fit it, page->index of
hugetlbfs page should be in PAGE_CACHE_SIZE. This is beyond this patch,
but page_to_pgoff() contains the point to be fixed in a single function.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Trinity has reported:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1))
CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W
3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398
lock_acquire (arch/x86/include/asm/current.h:14
kernel/locking/lockdep.c:3602)
_raw_spin_lock (include/linux/spinlock_api_smp.h:143
kernel/locking/spinlock.c:151)
remove_migration_pte (mm/migrate.c:137)
rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699)
remove_migration_ptes (mm/migrate.c:224)
migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126)
migrate_misplaced_page (mm/migrate.c:1733)
__handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925)
handle_mm_fault (mm/memory.c:3948)
__get_user_pages (mm/memory.c:1851)
__mlock_vma_pages_range (mm/mlock.c:255)
__mm_populate (mm/mlock.c:711)
SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791)
I believe this comes about because, whereas collapsing and splitting THP
functions take anon_vma lock in write mode (which excludes concurrent
rmap walks), faulting THP functions (write protection and misplaced
NUMA) do not - and mostly they do not need to.
But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for
an instant (indeed, for a long instant, given the inter-CPU TLB flush in
there), leaves *pmd neither present not trans_huge.
Which can confuse a concurrent rmap walk, as when removing migration
ptes, seen in the dumped trace. Although that rmap walk has a 4k page
to insert, anon_vmas containing THPs are in no way segregated from
4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with
that instant when a trans_huge pmd is temporarily absent.
I don't think we need strengthen the locking at the THP end: it's easily
handled with an ACCESS_ONCE() before testing both conditions.
And since mm_find_pmd() had only one caller who wanted a THP rather than
a pmd, let's slightly repurpose it to fail when it hits a THP or
non-present pmd, and open code split_huge_page_address() again.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Lameter <cl@gentwo.org>
Cc: Dave Jones <davej@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that 3.15 is released, this merges the 'next' branch into 'master',
bringing us to the normal situation where my 'master' branch is the
merge window.
* accumulated work in next: (6809 commits)
ufs: sb mutex merge + mutex_destroy
powerpc: update comments for generic idle conversion
cris: update comments for generic idle conversion
idle: remove cpu_idle() forward declarations
nbd: zero from and len fields in NBD_CMD_DISCONNECT.
mm: convert some level-less printks to pr_*
MAINTAINERS: adi-buildroot-devel is moderated
MAINTAINERS: add linux-api for review of API/ABI changes
mm/kmemleak-test.c: use pr_fmt for logging
fs/dlm/debug_fs.c: replace seq_printf by seq_puts
fs/dlm/lockspace.c: convert simple_str to kstr
fs/dlm/config.c: convert simple_str to kstr
mm: mark remap_file_pages() syscall as deprecated
mm: memcontrol: remove unnecessary memcg argument from soft limit functions
mm: memcontrol: clean up memcg zoneinfo lookup
mm/memblock.c: call kmemleak directly from memblock_(alloc|free)
mm/mempool.c: update the kmemleak stack trace for mempool allocations
lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations
mm: introduce kmemleak_update_trace()
mm/kmemleak.c: use %u to print ->checksum
...
While working address sanitizer for kernel I've discovered
use-after-free bug in __put_anon_vma.
For the last anon_vma, anon_vma->root freed before child anon_vma.
Later in anon_vma_free(anon_vma) we are referencing to already freed
anon_vma->root to check rwsem.
This fixes it by freeing the child anon_vma before freeing
anon_vma->root.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # v3.0+
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Transform action part of ttu_flags into individiual bits. These flags
aren't part of any uses-space visible api or even trace events.
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In its munmap mode, try_to_unmap_one() searches other mlocked vmas, it
never unmaps pages. There is no reason for invalidation because ptes are
left unchanged.
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In previous commit(mm: use the light version __mod_zone_page_state in
mlocked_vma_newpage()) a irq-unsafe __mod_zone_page_state is used. And as
suggested by Andrew, to reduce the risks that new call sites incorrectly
using mlocked_vma_newpage() without knowing they are adding racing, this
patch folds mlocked_vma_newpage() into its only call site,
page_add_new_anon_rmap, to make it open-cocded for people to know what is
going on.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Suggested-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mlocked_vma_newpage() is called with pte lock held(a spinlock), which
implies preemtion disabled, and the vm stat counter is not modified from
interrupt context, so we need not use an irq-safe mod_zone_page_state()
here, using a light-weight version __mod_zone_page_state() would be OK.
This patch also documents __mod_zone_page_state() and some of its
callsites. The comment above __mod_zone_page_state() is from Hugh
Dickins, and acked by Christoph.
Most credits to Hugh and Christoph for the clarification on the usage of
the __mod_zone_page_state().
[akpm@linux-foundation.org: coding-style fixes]
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM was converted to use rmap_walk() and now nobody uses these functions
outside mm/rmap.c.
Let's covert them back to static.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pte_file_mksoft_dirty operates with argument passed by a value and
returns modified result thus we need to assign @ptfile here, otherwise
itis a no-op which may lead to loss of the softdirty bit.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Trinity reports BUG:
sleeping function called from invalid context at kernel/locking/rwsem.c:47
in_atomic(): 0, irqs_disabled(): 0, pid: 5787, name: trinity-c27
__might_sleep < down_write < __put_anon_vma < page_get_anon_vma <
migrate_pages < compact_zone < compact_zone_order < try_to_compact_pages ..
Right, since conversion to mutex then rwsem, we should not put_anon_vma()
from inside an rcu_read_lock()ed section: fix the two places that did so.
And add might_sleep() to anon_vma_free(), as suggested by Peter Zijlstra.
Fixes: 88c22088bf ("mm: optimize page_lock_anon_vma() fast-path")
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>