The exportfs encode handle function should return the minimum required
handle size. This helps user to find out the handle size by passing 0
handle size in the first step and then redoing to the call again with
the returned handle size value.
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Commit e1181ee6 "vfs: pass struct file to do_truncate on O_TRUNC
opens" broke the behavior of open(O_TRUNC|O_RDONLY) in fuse. Fuse
assumed that when called from open, a truncate() will be done, not an
ftruncate().
Fix by restoring the old behavior, based on the ATTR_OPEN flag.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Single threaded NTFS-3G could get stuck if a delayed RELEASE reply
triggered a DESTROY request via path_put().
Fix this by
a) making RELEASE requests synchronous, whenever possible, on fuseblk
filesystems
b) if not possible (triggered by an asynchronous read/write) then do
the path_put() in a separate thread with schedule_work().
Reported-by: Oliver Neukum <oneukum@suse.de>
Cc: stable@kernel.org
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse:
fuse: fix ioctl ABI
fuse: allow batching of FORGET requests
fuse: separate queue for FORGET requests
fuse: ioctl cleanup
Fix up trivial conflict in fs/fuse/inode.c due to RCU lookup having done
the RCU-freeing of the inode in fuse_destroy_inode().
Require filesystems be aware of .d_revalidate being called in rcu-walk
mode (nd->flags & LOOKUP_RCU). For now do a simple push down, returning
-ECHILD from all implementations.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Reduce some branches and memory accesses in dcache lookup by adding dentry
flags to indicate common d_ops are set, rather than having to check them.
This saves a pointer memory access (dentry->d_op) in common path lookup
situations, and saves another pointer load and branch in cases where we
have d_op but not the particular operation.
Patched with:
git grep -E '[.>]([[:space:]])*d_op([[:space:]])*=' | xargs sed -e 's/\([^\t ]*\)->d_op = \(.*\);/d_set_d_op(\1, \2);/' -e 's/\([^\t ]*\)\.d_op = \(.*\);/d_set_d_op(\&\1, \2);/' -i
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
RCU free the struct inode. This will allow:
- Subsequent store-free path walking patch. The inode must be consulted for
permissions when walking, so an RCU inode reference is a must.
- sb_inode_list_lock to be moved inside i_lock because sb list walkers who want
to take i_lock no longer need to take sb_inode_list_lock to walk the list in
the first place. This will simplify and optimize locking.
- Could remove some nested trylock loops in dcache code
- Could potentially simplify things a bit in VM land. Do not need to take the
page lock to follow page->mapping.
The downsides of this is the performance cost of using RCU. In a simple
creat/unlink microbenchmark, performance drops by about 10% due to inability to
reuse cache-hot slab objects. As iterations increase and RCU freeing starts
kicking over, this increases to about 20%.
In cases where inode lifetimes are longer (ie. many inodes may be allocated
during the average life span of a single inode), a lot of this cache reuse is
not applicable, so the regression caused by this patch is smaller.
The cache-hot regression could largely be avoided by using SLAB_DESTROY_BY_RCU,
however this adds some complexity to list walking and store-free path walking,
so I prefer to implement this at a later date, if it is shown to be a win in
real situations. I haven't found a regression in any non-micro benchmark so I
doubt it will be a problem.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
In kernel ABI version 7.16 and later FUSE_IOCTL_RETRY reply from a
unrestricted IOCTL request shall return with an array of 'struct
fuse_ioctl_iovec' instead of 'struct iovec'. This fixes the ABI
ambiguity of 32bit vs. 64bit.
Reported-by: "ccmail111" <ccmail111@yahoo.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
CC: Tejun Heo <tj@kernel.org>
Terje Malmedal reports that a fuse filesystem with 32 million inodes
on a machine with lots of memory can take up to 30 minutes to process
FORGET requests when all those inodes are evicted from the icache.
To solve this, create a BATCH_FORGET request that allows up to about
8000 FORGET requests to be sent in a single message.
This request is only sent if userspace supports interface version 7.16
or later, otherwise fall back to sending individual FORGET messages.
Reported-by: Terje Malmedal <terje.malmedal@usit.uio.no>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Terje Malmedal reports that a fuse filesystem with 32 million inodes
on a machine with lots of memory can go unresponsive for up to 30
minutes when all those inodes are evicted from the icache.
The reason is that FORGET messages, sent when the inode is evicted,
are queued up together with regular filesystem requests, and while the
huge queue of FORGET messages are processed no other filesystem
operation can proceed.
Since a full fuse request structure is allocated for each inode, these
take up quite a bit of memory as well.
To solve these issues, create a slim 'fuse_forget_link' structure
containing just the minimum of information required to send the FORGET
request and chain these on a separate queue.
When userspace is asking for a request make sure that FORGET and
non-FORGET requests are selected fairly: for each 8 non-FORGET allow
16 FORGET requests. This will make sure FORGETs do not pile up, yet
other requests are also allowed to proceed while the queued FORGETs
are processed.
Reported-by: Terje Malmedal <terje.malmedal@usit.uio.no>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Verify that the total length of the iovec returned in FUSE_IOCTL_RETRY
doesn't overflow iov_length().
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
CC: Tejun Heo <tj@kernel.org>
CC: <stable@kernel.org> [2.6.31+]
If a 32bit CUSE server is run on 64bit this results in EIO being
returned to the caller.
The reason is that FUSE_IOCTL_RETRY reply was defined to use 'struct
iovec', which is different on 32bit and 64bit archs.
Work around this by looking at the size of the reply to determine
which struct was used. This is only needed if CONFIG_COMPAT is
defined.
A more permanent fix for the interface will be to use the same struct
on both 32bit and 64bit.
Reported-by: "ccmail111" <ccmail111@yahoo.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
CC: Tejun Heo <tj@kernel.org>
CC: <stable@kernel.org> [2.6.31+]
The attribute cache for a file was not being cleared when a file is opened
with O_TRUNC.
If the filesystem's open operation truncates the file ("atomic_o_trunc"
feature flag is set) then the kernel should invalidate the cached st_mtime
and st_ctime attributes.
Also i_size should be explicitly be set to zero as it is used sometimes
without refreshing the cache.
Signed-off-by: Ken Sumrall <ksumrall@android.com>
Cc: Anfei <anfei.zhou@gmail.com>
Cc: "Anand V. Avati" <avati@gluster.com>
Signed-off-by: Miklos Szeredi <miklos@szeredi.hu>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace iterated page_cache_release() with release_pages(), which is
faster and shorter.
Needs release_pages() to be exported to modules.
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (52 commits)
split invalidate_inodes()
fs: skip I_FREEING inodes in writeback_sb_inodes
fs: fold invalidate_list into invalidate_inodes
fs: do not drop inode_lock in dispose_list
fs: inode split IO and LRU lists
fs: switch bdev inode bdi's correctly
fs: fix buffer invalidation in invalidate_list
fsnotify: use dget_parent
smbfs: use dget_parent
exportfs: use dget_parent
fs: use RCU read side protection in d_validate
fs: clean up dentry lru modification
fs: split __shrink_dcache_sb
fs: improve DCACHE_REFERENCED usage
fs: use percpu counter for nr_dentry and nr_dentry_unused
fs: simplify __d_free
fs: take dcache_lock inside __d_path
fs: do not assign default i_ino in new_inode
fs: introduce a per-cpu last_ino allocator
new helper: ihold()
...
Commit 7909b1c640 ("fuse: don't use atomic kmap") removed KM_USER0 usage
from fuse/dev.c. Switch KM_USER1 uses to KM_USER0 for clarity. Also
replace open coded clear_highpage().
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After all that's what they are intended for.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of always assigning an increasing inode number in new_inode
move the call to assign it into those callers that actually need it.
For now callers that need it is estimated conservatively, that is
the call is added to all filesystems that do not assign an i_ino
by themselves. For a few more filesystems we can avoid assigning
any inode number given that they aren't user visible, and for others
it could be done lazily when an inode number is actually needed,
but that's left for later patches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
vfs: make no_llseek the default
vfs: don't use BKL in default_llseek
llseek: automatically add .llseek fop
libfs: use generic_file_llseek for simple_attr
mac80211: disallow seeks in minstrel debug code
lirc: make chardev nonseekable
viotape: use noop_llseek
raw: use explicit llseek file operations
ibmasmfs: use generic_file_llseek
spufs: use llseek in all file operations
arm/omap: use generic_file_llseek in iommu_debug
lkdtm: use generic_file_llseek in debugfs
net/wireless: use generic_file_llseek in debugfs
drm: use noop_llseek
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
fs/fuse/dev.c:1357: warning: ‘total_len’ may be used uninitialized in this
function
Initialize total_len to zero, else its value will be undefined.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Sparse doesn't understand lock annotations of the form
__releases(&foo->lock). Change them to __releases(foo->lock). Same
for __acquires().
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
David Bartly reported that fuse can hang in fuse_get_req_nofail() when
the connection to the filesystem server is no longer active.
If bg_queue is not empty then flush_bg_queue() called from
request_end() can put more requests on to the pending queue. If this
happens while ending requests on the processing queue then those
background requests will be queued to the pending list and never
ended.
Another problem is that fuse_dev_release() didn't wake up processes
sleeping on blocked_waitq.
Solve this by:
a) flushing the background queue before calling end_requests() on the
pending and processing queues
b) setting blocked = 0 and waking up processes waiting on
blocked_waitq()
Thanks to David for an excellent bug report.
Reported-by: David Bartley <andareed@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
CC: stable@kernel.org
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (96 commits)
no need for list_for_each_entry_safe()/resetting with superblock list
Fix sget() race with failing mount
vfs: don't hold s_umount over close_bdev_exclusive() call
sysv: do not mark superblock dirty on remount
sysv: do not mark superblock dirty on mount
btrfs: remove junk sb_dirt change
BFS: clean up the superblock usage
AFFS: wait for sb synchronization when needed
AFFS: clean up dirty flag usage
cifs: truncate fallout
mbcache: fix shrinker function return value
mbcache: Remove unused features
add f_flags to struct statfs(64)
pass a struct path to vfs_statfs
update VFS documentation for method changes.
All filesystems that need invalidate_inode_buffers() are doing that explicitly
convert remaining ->clear_inode() to ->evict_inode()
Make ->drop_inode() just return whether inode needs to be dropped
fs/inode.c:clear_inode() is gone
fs/inode.c:evict() doesn't care about delete vs. non-delete paths now
...
Fix up trivial conflicts in fs/nilfs2/super.c
Make sure we check the truncate constraints early on in ->setattr by adding
those checks to inode_change_ok. Also clean up and document inode_change_ok
to make this obvious.
As a fallout we don't have to call inode_newsize_ok from simple_setsize and
simplify it down to a truncate_setsize which doesn't return an error. This
simplifies a lot of setattr implementations and means we use truncate_setsize
almost everywhere. Get rid of fat_setsize now that it's trivial and mark
ext2_setsize static to make the calling convention obvious.
Keep the inode_newsize_ok in vmtruncate for now as all callers need an
audit for its removal anyway.
Note: setattr code in ecryptfs doesn't call inode_change_ok at all and
needs a deeper audit, but that is left for later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Make sure we call inode_change_ok before doing any changes in ->setattr,
and make sure to call it even if our fs wants to ignore normal UNIX
permissions, but use the ATTR_FORCE to skip those.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Currently MAY_ACCESS means that filesystems must check the permissions
right then and not rely on cached results or the results of future
operations on the object. This can be because of a call to sys_access() or
because of a call to chdir() which needs to check search without relying on
any future operations inside that dir. I plan to use MAY_ACCESS for other
purposes in the security system, so I split the MAY_ACCESS and the
MAY_CHDIR cases.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Stephen D. Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
Userspace filesystem can request data to be retrieved from the inode's
mapping. This request is synchronous and the retrieved data is queued
as a new request. If the write to the fuse device returns an error
then the retrieve request was not completed and a reply will not be
sent.
Only present pages are returned in the retrieve reply. Retrieving
stops when it finds a non-present page and only data prior to that is
returned.
This request doesn't change the dirty state of pages.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Userspace filesystem can request data to be stored in the inode's
mapping. This request is synchronous and has no reply. If the write
to the fuse device returns an error then the store request was not
fully completed (but may have updated some pages).
If the stored data overflows the current file size, then the size is
extended, similarly to a write(2) on the filesystem.
Pages which have been completely stored are marked uptodate.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Don't use atomic kmap for mapping userspace buffers in device
read/write/splice.
This is necessary because the next patch (adding store notify)
requires that caller of fuse_copy_page() may sleep between
invocations. The simplest way to ensure this is to change the atomic
kmaps to non-atomic ones.
Thankfully architectures where kmap() is not a no-op are going out of
fashion, so we can ignore the (probably negligible) performance impact
of this change.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse:
mm: export generic_pipe_buf_*() to modules
fuse: support splice() reading from fuse device
fuse: allow splice to move pages
mm: export remove_from_page_cache() to modules
mm: export lru_cache_add_*() to modules
fuse: support splice() writing to fuse device
fuse: get page reference for readpages
fuse: use get_user_pages_fast()
fuse: remove unneeded variable
This adds:
alias: devname:<name>
to some common kernel modules, which will allow the on-demand loading
of the kernel module when the device node is accessed.
Ideally all these modules would be compiled-in, but distros seems too
much in love with their modularization that we need to cover the common
cases with this new facility. It will allow us to remove a bunch of pretty
useless init scripts and modprobes from init scripts.
The static device node aliases will be carried in the module itself. The
program depmod will extract this information to a file in the module directory:
$ cat /lib/modules/2.6.34-00650-g537b60d-dirty/modules.devname
# Device nodes to trigger on-demand module loading.
microcode cpu/microcode c10:184
fuse fuse c10:229
ppp_generic ppp c108:0
tun net/tun c10:200
dm_mod mapper/control c10:235
Udev will pick up the depmod created file on startup and create all the
static device nodes which the kernel modules specify, so that these modules
get automatically loaded when the device node is accessed:
$ /sbin/udevd --debug
...
static_dev_create_from_modules: mknod '/dev/cpu/microcode' c10:184
static_dev_create_from_modules: mknod '/dev/fuse' c10:229
static_dev_create_from_modules: mknod '/dev/ppp' c108:0
static_dev_create_from_modules: mknod '/dev/net/tun' c10:200
static_dev_create_from_modules: mknod '/dev/mapper/control' c10:235
udev_rules_apply_static_dev_perms: chmod '/dev/net/tun' 0666
udev_rules_apply_static_dev_perms: chmod '/dev/fuse' 0666
A few device nodes are switched to statically allocated numbers, to allow
the static nodes to work. This might also useful for systems which still run
a plain static /dev, which is completely unsafe to use with any dynamic minor
numbers.
Note:
The devname aliases must be limited to the *common* and *single*instance*
device nodes, like the misc devices, and never be used for conceptually limited
systems like the loop devices, which should rather get fixed properly and get a
control node for losetup to talk to, instead of creating a random number of
device nodes in advance, regardless if they are ever used.
This facility is to hide the mess distros are creating with too modualized
kernels, and just to hide that these modules are not compiled-in, and not to
paper-over broken concepts. Thanks! :)
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: David S. Miller <davem@davemloft.net>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Alasdair G Kergon <agk@redhat.com>
Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Cc: Ian Kent <raven@themaw.net>
Signed-Off-By: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Allow userspace filesystem implementation to use splice() to read from
the fuse device.
The userspace filesystem can now transfer data coming from a WRITE
request to an arbitrary file descriptor (regular file, block device or
socket) without having to go through a userspace buffer.
The semantics of using splice() to read messages are:
1) with a single splice() call move the whole message from the fuse
device to a temporary pipe
2) read the header from the pipe and determine the message type
3a) if message is a WRITE then splice data from pipe to destination
3b) else read rest of message to userspace buffer
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
When splicing buffers to the fuse device with SPLICE_F_MOVE, try to
move pages from the pipe buffer into the page cache. This allows
populating the fuse filesystem's cache without ever touching the page
contents, i.e. zero copy read capability.
The following steps are performed when trying to move a page into the
page cache:
- buf->ops->confirm() to make sure the new page is uptodate
- buf->ops->steal() to try to remove the new page from it's previous place
- remove_from_page_cache() on the old page
- add_to_page_cache_locked() on the new page
If any of the above steps fail (non fatally) then the code falls back
to copying the page. In particular ->steal() will fail if there are
external references (other than the page cache and the pipe buffer) to
the page.
Also since the remove_from_page_cache() + add_to_page_cache_locked()
are non-atomic it is possible that the page cache is repopulated in
between the two and add_to_page_cache_locked() will fail. This could
be fixed by creating a new atomic replace_page_cache_page() function.
fuse_readpages_end() needed to be reworked so it works even if
page->mapping is NULL for some or all pages which can happen if the
add_to_page_cache_locked() failed.
A number of sanity checks were added to make sure the stolen pages
don't have weird flags set, etc... These could be moved into generic
splice/steal code.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Allow userspace filesystem implementation to use splice() to write to
the fuse device. The semantics of using splice() are:
1) buffer the message header and data in a temporary pipe
2) with a *single* splice() call move the message from the temporary pipe
to the fuse device
The READ reply message has the most interesting use for this, since
now the data from an arbitrary file descriptor (which could be a
regular file, a block device or a socket) can be tranferred into the
fuse device without having to go through a userspace buffer. It will
also allow zero copy moving of pages.
One caveat is that the protocol on the fuse device requires the length
of the whole message to be written into the header. But the length of
the data transferred into the temporary pipe may not be known in
advance. The current library implementation works around this by
using vmplice to write the header and modifying the header after
splicing the data into the pipe (error handling omitted):
struct fuse_out_header out;
iov.iov_base = &out;
iov.iov_len = sizeof(struct fuse_out_header);
vmsplice(pip[1], &iov, 1, 0);
len = splice(input_fd, input_offset, pip[1], NULL, len, 0);
/* retrospectively modify the header: */
out.len = len + sizeof(struct fuse_out_header);
splice(pip[0], NULL, fuse_chan_fd(req->ch), NULL, out.len, flags);
This works since vmsplice only saves a pointer to the data, it does
not copy the data itself.
Since pipes are currently limited to 16 pages and messages need to be
spliced atomically, the length of the data is limited to 15 pages (or
60kB for 4k pages).
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Acquire a page ref on pages in ->readpages() and release them when the
read has finished. Not acquiring a reference didn't seem to cause any
trouble since the page is locked and will not be kicked out of the
page cache during the read.
However the following patches will want to remove the page from the
cache so a separate ref is needed. Making the reference in req->pages
explicit also makes the code easier to understand.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Replace uses of get_user_pages() with get_user_pages_fast(). It looks
nicer and should be faster in most cases.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
"map" isn't needed any more after: 0bd87182d3 "fuse: fix kunmap in
fuse_ioctl_copy_user"
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>