This patch standardized the string auditing interfaces. No userspace
changes will be visible and this is all just cleanup and consistancy
work. We have the following string audit interfaces to use:
void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len);
void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n);
void audit_log_string(struct audit_buffer *ab, const char *buf);
void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n);
void audit_log_untrustedstring(struct audit_buffer *ab, const char *string);
This may be the first step to possibly fixing some of the issues that
people have with the string output from the kernel audit system. But we
still don't have an agreed upon solution to that problem.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
A deadlock is possible between kauditd and auditd under load if auditd
receives a signal. When auditd receives a signal it sends a netlink
message to the kernel asking for information about the sender of the
signal. In that same context the audit system will attempt to send a
netlink message back to the userspace auditd. If kauditd has already
filled the socket buffer (see netlink_attachskb()) auditd will now put
itself to sleep waiting for room to send the message. Since auditd is
responsible for draining that socket we have a deadlock. The fix, since
the response from the kernel does not need to be synchronous is to send
the signal information back to auditd in a separate thread. And thus
auditd can continue to drain the audit queue normally.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch causes the kernel audit subsystem to store up to
audit_backlog_limit messages for use by auditd if it ever appears
sometime in the future in userspace. This is useful to collect audit
messages during bootup and even when auditd is stopped. This is NOT a
reliable mechanism, it does not ever call audit_panic, nor should it.
audit_log_lost()/audit_panic() are called during the normal delivery
mechanism. The messages are still sent to printk/syslog as usual and if
too many messages appear to be queued they will be silently discarded.
I liked doing it by default, but this patch only uses the queue in
question if it was booted with audit=1 or if the kernel was built
enabling audit by default.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Previously I added sessionid output to all audit messages where it was
available but we still didn't know the sessionid of the sender of
netlink messages. This patch adds that information to netlink messages
so we can audit who sent netlink messages.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
A couple of audit printk statements did not have a newline.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The SIE instruction on s390 uses the 2nd half of the page table page to
virtualize the storage keys of a guest. This patch offers the s390_enable_sie
function, which reorganizes the page tables of a single-threaded process to
reserve space in the page table:
s390_enable_sie makes sure that the process is single threaded and then uses
dup_mm to create a new mm with reorganized page tables. The old mm is freed
and the process has now a page status extended field after every page table.
Code that wants to exploit pgstes should SELECT CONFIG_PGSTE.
This patch has a small common code hit, namely making dup_mm non-static.
Edit (Carsten): I've modified Martin's patch, following Jeremy Fitzhardinge's
review feedback. Now we do have the prototype for dup_mm in
include/linux/sched.h. Following Martin's suggestion, s390_enable_sie() does now
call task_lock() to prevent race against ptrace modification of mm_users.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Arrgghhh...
Sorry about that, I'd been sure I'd folded that one, but it actually got
lost. Please apply - that breaks execve().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* let unshare_files() give caller the displaced files_struct
* don't bother with grabbing reference only to drop it in the
caller if it hadn't been shared in the first place
* in that form unshare_files() is trivially implemented via
unshare_fd(), so we eliminate the duplicate logics in fork.c
* reset_files_struct() is not just only called for current;
it will break the system if somebody ever calls it for anything
else (we can't modify ->files of somebody else). Lose the
task_struct * argument.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* unshare_files() can fail; doing it after irreversible actions is wrong
and de_thread() is certainly irreversible.
* since we do it unconditionally anyway, we might as well do it in do_execve()
and save ourselves the PITA in binfmt handlers, etc.
* while we are at it, binfmt_som actually leaked files_struct on failure.
As a side benefit, unshare_files(), put_files_struct() and reset_files_struct()
become unexported.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There is no guarantee that there is physical ram below 4GB, and in
fact many boxes don't have exactly that.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix __aggregate_redistribute_shares() related lockup reported by
David S. Miller.
The problem this code tries to solve is 'accurately' calculating the 'fair'
share of the group weight for each cpu. The current code falls back to a global
group rebalance in case the sched_domain's span it looks at has no shares, but
does have tasks.
The reason it gets stuck here, is because its inherently racy - if someone
steals the last task after we compute the agg->rq_weight, but before we
rebalance, we'll never get out of the loop.
We could of course go fix that, but while looking at this issue I found that
this 'fallback' wasn't nearly as rare as I'd hoped it to be. In fact its quite
common - and given it walks the whole machine, thats very bad.
The new approach is simple (why didn't I think of it before?), we set the
aggregate shares to the full task group weight, and each larger sched domain
that encounters an aggregate shares larger than the weight, clips it (it
already re-distributes anyway).
This nicely converges to the desired global picture where the sum of all
shares equals the task group weight.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
David Miller reported:
|--------------->
the following commit:
| commit 27ec4407790d075c325e1f4da0a19c56953cce23
| Author: Ingo Molnar <mingo@elte.hu>
| Date: Thu Feb 28 21:00:21 2008 +0100
|
| sched: make cpu_clock() globally synchronous
|
| Alexey Zaytsev reported (and bisected) that the introduction of
| cpu_clock() in printk made the timestamps jump back and forth.
|
| Make cpu_clock() more reliable while still keeping it fast when it's
| called frequently.
|
| Signed-off-by: Ingo Molnar <mingo@elte.hu>
causes watchdog triggers when a cpu exits NOHZ state when it has been
there for >= the soft lockup threshold, for example here are some
messages from a 128 cpu Niagara2 box:
[ 168.106406] BUG: soft lockup - CPU#11 stuck for 128s! [dd:3239]
[ 168.989592] BUG: soft lockup - CPU#21 stuck for 86s! [swapper:0]
[ 168.999587] BUG: soft lockup - CPU#29 stuck for 91s! [make:4511]
[ 168.999615] BUG: soft lockup - CPU#2 stuck for 85s! [swapper:0]
[ 169.020514] BUG: soft lockup - CPU#37 stuck for 91s! [swapper:0]
[ 169.020514] BUG: soft lockup - CPU#45 stuck for 91s! [sh:4515]
[ 169.020515] BUG: soft lockup - CPU#69 stuck for 92s! [swapper:0]
[ 169.020515] BUG: soft lockup - CPU#77 stuck for 92s! [swapper:0]
[ 169.020515] BUG: soft lockup - CPU#61 stuck for 92s! [swapper:0]
[ 169.112554] BUG: soft lockup - CPU#85 stuck for 92s! [swapper:0]
[ 169.112554] BUG: soft lockup - CPU#101 stuck for 92s! [swapper:0]
[ 169.112554] BUG: soft lockup - CPU#109 stuck for 92s! [swapper:0]
[ 169.112554] BUG: soft lockup - CPU#117 stuck for 92s! [swapper:0]
[ 169.171483] BUG: soft lockup - CPU#40 stuck for 80s! [dd:3239]
[ 169.331483] BUG: soft lockup - CPU#13 stuck for 86s! [swapper:0]
[ 169.351500] BUG: soft lockup - CPU#43 stuck for 101s! [dd:3239]
[ 169.531482] BUG: soft lockup - CPU#9 stuck for 129s! [mkdir:4565]
[ 169.595754] BUG: soft lockup - CPU#20 stuck for 93s! [swapper:0]
[ 169.626787] BUG: soft lockup - CPU#52 stuck for 93s! [swapper:0]
[ 169.626787] BUG: soft lockup - CPU#84 stuck for 92s! [swapper:0]
[ 169.636812] BUG: soft lockup - CPU#116 stuck for 94s! [swapper:0]
It's simple enough to trigger this by doing a 10 minute sleep after a
fresh bootup then starting a parallel kernel build.
I suspect this might be reintroducing a problem we've had and fixed
before, see the thread:
http://marc.info/?l=linux-kernel&m=119546414004065&w=2
<---------------|
touch the softlockup watchdog when exiting NOHZ state - we are
obviously not locked up.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Regression caused by 434d53b00d6bb7be0a1d3dcc0d0d5df6c042e164
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
A recent change prevents SGI Altix from booting.
This patch fixes the problem.
The regresson was introduced in commit 434d53b00d6bb7be0a1d3dcc0d0d5df6c042e164
Signed-off-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6:
iwlwifi: Fix built-in compilation of iwlcore
net: Unexport move_addr_to_{kernel,user}
rt2x00: Select LEDS_CLASS.
iwlwifi: Select LEDS_CLASS.
leds: Do not guard NEW_LEDS with HAS_IOMEM
[IPSEC]: Fix catch-22 with algorithm IDs above 31
time: Export set_normalized_timespec.
tcp: Make use of before macro in tcp_input.c
hamradio: Remove unneeded and deprecated cli()/sti() calls in dmascc.c
[NETNS]: Remove empty ->init callback.
[DCCP]: Convert do_gettimeofday() to getnstimeofday().
[NETNS]: Don't initialize err variable twice.
[NETNS]: The ip6_fib_timer can work with garbage on net namespace stop.
[IPV4]: Convert do_gettimeofday() to getnstimeofday().
[IPV4]: Make icmp_sk_init() static.
[IPV6]: Make struct ip6_prohibit_entry_template static.
tcp: Trivial fix to correct function name in a comment in net/ipv4/tcp.c
[NET]: Expose netdevice dev_id through sysfs
skbuff: fix missing kernel-doc notation
[ROSE]: Fix soft lockup wrt. rose_node_list_lock
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
[PATCH] get rid of __exit_files(), __exit_fs() and __put_fs_struct()
[PATCH] proc_readfd_common() race fix
[PATCH] double-free of inode on alloc_file() failure exit in create_write_pipe()
[PATCH] teach seq_file to discard entries
[PATCH] umount_tree() will unhash everything itself
[PATCH] get rid of more nameidata passing in namespace.c
[PATCH] switch a bunch of LSM hooks from nameidata to path
[PATCH] lock exclusively in collect_mounts() and drop_collected_mounts()
[PATCH] move a bunch of declarations to fs/internal.h
The only reason to have separated __...() for those was to keep them inlined
for local users in exit.c. Since Alexey removed the inline on those, there's
no reason whatsoever to keep them around; just collapse with normal variants.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add missing kernel-doc in kernel/sched.c:
Warning(linux-2.6.25-git3//kernel/sched.c:7044): No description found for parameter 'span'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sorry I have just realized set_normalized_timespec() (used in
timespec_sub()) is not exported, and link will fail because of it...
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/juhl/trivial: (24 commits)
DOC: A couple corrections and clarifications in USB doc.
Generate a slightly more informative error msg for bad HZ
fix typo "is" -> "if" in Makefile
ext*: spelling fix prefered -> preferred
DOCUMENTATION: Use newer DEFINE_SPINLOCK macro in docs.
KEYS: Fix the comment to match the file name in rxrpc-type.h.
RAID: remove trailing space from printk line
DMA engine: typo fixes
Remove unused MAX_NODES_SHIFT
MAINTAINERS: Clarify access to OCFS2 development mailing list.
V4L: Storage class should be before const qualifier (sn9c102)
V4L: Storage class should be before const qualifier
sonypi: Storage class should be before const qualifier
intel_menlow: Storage class should be before const qualifier
DVB: Storage class should be before const qualifier
arm: Storage class should be before const qualifier
ALSA: Storage class should be before const qualifier
acpi: Storage class should be before const qualifier
firmware_sample_driver.c: fix coding style
MAINTAINERS: Add ati_remote2 driver
...
Fixed up trivial conflicts in firmware_sample_driver.c
This adds support for PTRACE_GETSIGINFO and PTRACE_SETSIGINFO in
compat_ptrace_request. It relies on existing arch definitions for
copy_siginfo_to_user32 and copy_siginfo_from_user32.
On powerpc, this fixes a longstanding regression of 32-bit ptrace
calls on 64-bit kernels vs native calls (64-bit calls or 32-bit
kernels). This can be seen in a 32-bit call using PTRACE_GETSIGINFO
to examine e.g. siginfo_t.si_addr from a signal that sets it.
(This was broken as of 2.6.24 and, I presume, many or all prior versions.)
Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/tglx/linux-2.6-hrt:
hrtimer: optimize the softirq time optimization
hrtimer: reduce calls to hrtimer_get_softirq_time()
clockevents: fix typo in tick-broadcast.c
jiffies: add time_is_after_jiffies and others which compare with jiffies
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched-devel: (62 commits)
sched: build fix
sched: better rt-group documentation
sched: features fix
sched: /debug/sched_features
sched: add SCHED_FEAT_DEADLINE
sched: debug: show a weight tree
sched: fair: weight calculations
sched: fair-group: de-couple load-balancing from the rb-trees
sched: fair-group scheduling vs latency
sched: rt-group: optimize dequeue_rt_stack
sched: debug: add some debug code to handle the full hierarchy
sched: fair-group: SMP-nice for group scheduling
sched, cpuset: customize sched domains, core
sched, cpuset: customize sched domains, docs
sched: prepatory code movement
sched: rt: multi level group constraints
sched: task_group hierarchy
sched: fix the task_group hierarchy for UID grouping
sched: allow the group scheduler to have multiple levels
sched: mix tasks and groups
...
These are small cleanups all over the tree.
Trivial style and comment changes to
fs/select.c, kernel/signal.c, kernel/stop_machine.c & mm/pdflush.c
Signed-off-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
The previous optimization did not take the case into account where a
clock provides its own softirq_get_time() function.
Check for the availablitiy of the clock get time function first and
then check if we need to retrieve the time for both clocks via
hrtimer_softirq_gettime() to avoid a double evaluation of time in that
case as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
It seems that hrtimer_run_queues() is calling hrtimer_get_softirq_time() more
often than it needs to. This can cause frequent contention on systems with
large numbers of processors/cores.
With this patch, hrtimer_run_queues only calls hrtimer_get_softirq_time() if
there is a pending timer in one of the hrtimer bases, and only once.
This also combines hrtimer_run_queues() and the inline run_hrtimer_queue()
into one function.
[ tglx@linutronix.de: coding style ]
Signed-off-by: Dimitri Sivanich <sivanich@sgi.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
braodcast -> broadcast
Signed-off-by: Glauber Costa <gcosta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Done per Linus' request and suggestions. Linus has explained that
better than I'll be able to explain:
On Thu, Mar 27, 2008 at 10:12:10AM -0700, Linus Torvalds wrote:
> Actually, before we go any further, there might be a less intrusive
> alternative: add just a couple of flags to the resource flags field (we
> still have something like 8 unused bits on 32-bit), and use those to
> implement a generic "resource_alignment()" routine.
>
> Two flags would do it:
>
> - IORESOURCE_SIZEALIGN: size indicates alignment (regular PCI device
> resources)
>
> - IORESOURCE_STARTALIGN: start field is alignment (PCI bus resources
> during probing)
>
> and then the case of both flags zero (or both bits set) would actually be
> "invalid", and we would also clear the IORESOURCE_STARTALIGN flag when we
> actually allocate the resource (so that we don't use the "start" field as
> alignment incorrectly when it no longer indicates alignment).
>
> That wouldn't be totally generic, but it would have the nice property of
> automatically at least add sanity checking for that whole "res->start has
> the odd meaning of 'alignment' during probing" and remove the need for a
> new field, and it would allow us to have a generic "resource_alignment()"
> routine that just gets a resource pointer.
Besides, I removed IORESOURCE_BUS_HAS_VGA flag which was unused for ages.
Signed-off-by: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Gary Hade <garyhade@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
provide a text based interface to the scheduler features; this saves the
'user' from setting bits using decimal arithmetic.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to level the hierarchy, we need to calculate load based on the
root view. That is, each task's load is in the same unit.
A
/ \
B 1
/ \
2 3
To compute 1's load we do:
weight(1)
--------------
rq_weight(A)
To compute 2's load we do:
weight(2) weight(B)
------------ * -----------
rq_weight(B) rw_weight(A)
This yields load fractions in comparable units.
The consequence is that it changes virtual time. We used to have:
time_{i}
vtime_{i} = ------------
weight_{i}
vtime = \Sum vtime_{i} = time / rq_weight.
But with the new way of load calculation we get that vtime equals time.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
De-couple load-balancing from the rb-trees, so that I can change their
organization.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently FAIR_GROUP sched grows the scheduler latency outside of
sysctl_sched_latency, invert this so it stays within.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that the group hierarchy can have an arbitrary depth the O(n^2) nature
of RT task dequeues will really hurt. Optimize this by providing space to
store the tree path, so we can walk it the other way.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add some extra debug output so we can get a better overview of the
full hierarchy.
We print the cgroup path after each cfs_rq, so we can see what group
we're looking at.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Implement SMP nice support for the full group hierarchy.
On each load-balance action, compile a sched_domain wide view of the full
task_group tree. We compute the domain wide view when walking down the
hierarchy, and readjust the weights when walking back up.
After collecting and readjusting the domain wide view, we try to balance the
tasks within the task_groups. The current approach is a naively balance each
task group until we've moved the targeted amount of load.
Inspired by Srivatsa Vaddsgiri's previous code and Abhishek Chandra's H-SMP
paper.
XXX: there will be some numerical issues due to the limited nature of
SCHED_LOAD_SCALE wrt to representing a task_groups influence on the
total weight. When the tree is deep enough, or the task weight small
enough, we'll run out of bits.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Abhishek Chandra <chandra@cs.umn.edu>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
[rebased for sched-devel/latest]
- Add a new cpuset file, having levels:
sched_relax_domain_level
- Modify partition_sched_domains() and build_sched_domains()
to take attributes parameter passed from cpuset.
- Fill newidle_idx for node domains which currently unused but
might be required if sched_relax_domain_level become higher.
- We can change the default level by boot option 'relax_domain_level='.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add the full parent<->child relation thing into task_groups as well.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
UID grouping doesn't actually have a task_group representing the root of
the task_group tree. Add one.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>