Reiserfs is currently able to be deadlocked by having two NFS clients
where one has removed and recreated a file and another is accessing the
file with an open file handle.
If one client deletes and recreates a file with timing such that the
recreated file obtains the same [dirid, objectid] pair as the original
file while another client accesses the file via file handle, the create
and lookup can race and deadlock if the lookup manages to create the
in-memory inode first.
The create thread, in insert_inode_locked4, will hold the write lock
while waiting on the other inode to be unlocked. The lookup thread,
anywhere in the iget path, will release and reacquire the write lock while
it schedules. If it needs to reacquire the lock while the create thread
has it, it will never be able to make forward progress because it needs
to reacquire the lock before ultimately unlocking the inode.
This patch drops the write lock across the insert_inode_locked4 call so
that the ordering of inode_wait -> write lock is retained. Since this
would have been the case before the BKL push-down, this is safe.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Jan Kara <jack@suse.cz>
reiserfs_chown_xattrs() takes the iattr struct passed into ->setattr
and uses it to iterate over all the attrs associated with a file to change
ownership of xattrs (and transfer quota associated with the xattr files).
When the setuid bit is cleared during chown, ATTR_MODE and iattr->ia_mode
are passed to all the xattrs as well. This means that the xattr directory
will have S_IFREG added to its mode bits.
This has been prevented in practice by a missing IS_PRIVATE check
in reiserfs_acl_chmod, which caused a double-lock to occur while holding
the write lock. Since the file system was completely locked up, the
writeout of the corrupted mode never happened.
This patch temporarily clears everything but ATTR_UID|ATTR_GID for the
calls to reiserfs_setattr and adds the missing IS_PRIVATE check.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Jan Kara <jack@suse.cz>
After sleeping for filldir(), we check to see if the file system has
changed and research. The next_pos pointer is updated but its value
isn't pushed into the key used for the search itself. As a result,
the search returns the same item that the last cycle of the loop did
and filldir() is called multiple times with the same data.
The end result is that the buffer can contain the same name multiple
times. This can be returned to userspace or used internally in the
xattr code where it can manifest with the following warning:
jdm-20004 reiserfs_delete_xattrs: Couldn't delete all xattrs (-2)
reiserfs_for_each_xattr uses reiserfs_readdir_dentry to iterate over
the xattr names and ends up trying to unlink the same name twice. The
second attempt fails with -ENOENT and the error is returned. At some
point I'll need to add support into reiserfsck to remove the orphaned
directories left behind when this occurs.
The fix is to push the value into the key before researching.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Jan Kara <jack@suse.cz>
For one thing, there's an ABBA deadlock on hpfs fs-wide lock and i_mutex
in hpfs_dir_lseek() - there's a lot of methods that grab the former with
the caller already holding the latter, so it must take i_mutex first.
For another, locking the damn thing, carefully validating the offset,
then dropping locks and assigning the offset is obviously racy.
Moreover, we _must_ do hpfs_add_pos(), or the machinery in dnode.c
won't modify the sucker on B-tree surgeries.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We want to mask lower 5 bits out, not leave only those and clear the
rest... As it is, we end up always starting to read from the beginning
of directory, no matter what the current position had been.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When the group id of a shared mount is not allocated, the umount still
tries to call mnt_release_group_id(), which eventually hits a kernel
warning at ida_remove() spewing a message like:
ida_remove called for id=0 which is not allocated.
This patch fixes the bug simply checking the group id in the caller.
Reported-by: Cristian Rodríguez <crrodriguez@opensuse.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull x86 fixes from Peter Anvin:
- Three EFI-related fixes
- Two early memory initialization fixes
- build fix for older binutils
- fix for an eager FPU performance regression -- currently we don't
allow the use of the FPU at interrupt time *at all* in eager mode,
which is clearly wrong.
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Allow FPU to be used at interrupt time even with eagerfpu
x86, crc32-pclmul: Fix build with older binutils
x86-64, init: Fix a possible wraparound bug in switchover in head_64.S
x86, range: fix missing merge during add range
x86, efi: initial the local variable of DataSize to zero
efivar: fix oops in efivar_update_sysfs_entries() caused by memory reuse
efivarfs: Never return ENOENT from firmware again
Note: this changes the on-disk remote attribute format. I assert
that this is OK to do as CRCs are marked experimental and the first
kernel it is included in has not yet reached release yet. Further,
the userspace utilities are still evolving and so anyone using this
stuff right now is a developer or tester using volatile filesystems
for testing this feature. Hence changing the format right now to
save longer term pain is the right thing to do.
The fundamental change is to move from a header per extent in the
attribute to a header per filesytem block in the attribute. This
means there are more header blocks and the parsing of the attribute
data is slightly more complex, but it has the advantage that we
always know the size of the attribute on disk based on the length of
the data it contains.
This is where the header-per-extent method has problems. We don't
know the size of the attribute on disk without first knowing how
many extents are used to hold it. And we can't tell from a
mapping lookup, either, because remote attributes can be allocated
contiguously with other attribute blocks and so there is no obvious
way of determining the actual size of the atribute on disk short of
walking and mapping buffers.
The problem with this approach is that if we map a buffer
incorrectly (e.g. we make the last buffer for the attribute data too
long), we then get buffer cache lookup failure when we map it
correctly. i.e. we get a size mismatch on lookup. This is not
necessarily fatal, but it's a cache coherency problem that can lead
to returning the wrong data to userspace or writing the wrong data
to disk. And debug kernels will assert fail if this occurs.
I found lots of niggly little problems trying to fix this issue on a
4k block size filesystem, finally getting it to pass with lots of
fixes. The thing is, 1024 byte filesystems still failed, and it was
getting really complex handling all the corner cases that were
showing up. And there were clearly more that I hadn't found yet.
It is complex, fragile code, and if we don't fix it now, it will be
complex, fragile code forever more.
Hence the simple fix is to add a header to each filesystem block.
This gives us the same relationship between the attribute data
length and the number of blocks on disk as we have without CRCs -
it's a linear mapping and doesn't require us to guess anything. It
is simple to implement, too - the remote block count calculated at
lookup time can be used by the remote attribute set/get/remove code
without modification for both CRC and non-CRC filesystems. The world
becomes sane again.
Because the copy-in and copy-out now need to iterate over each
filesystem block, I moved them into helper functions so we separate
the block mapping and buffer manupulations from the attribute data
and CRC header manipulations. The code becomes much clearer as a
result, and it is a lot easier to understand and debug. It also
appears to be much more robust - once it worked on 4k block size
filesystems, it has worked without failure on 1k block size
filesystems, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit ad1858d77771172e08016890f0eb2faedec3ecee)
xfs_attr3_leaf_compact() uses a temporary buffer for compacting the
the entries in a leaf. It copies the the original buffer into the
temporary buffer, then zeros the original buffer completely. It then
copies the entries back into the original buffer. However, the
original buffer has not been correctly initialised, and so the
movement of the entries goes horribly wrong.
Make sure the zeroed destination buffer is fully initialised, and
once we've set up the destination incore header appropriately, write
is back to the buffer before starting to move entries around.
While debugging this, the _d/_s prefixes weren't sufficient to
remind me what buffer was what, so rename then all _src/_dst.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit d4c712bcf26a25c2b67c90e44e0b74c7993b5334)
xfs_attr3_leaf_unbalance() uses a temporary buffer for recombining
the entries in two leaves when the destination leaf requires
compaction. The temporary buffer ends up being copied back over the
original destination buffer, so the header in the temporary buffer
needs to contain all the information that is in the destination
buffer.
To make sure the temporary buffer is fully initialised, once we've
set up the temporary incore header appropriately, write is back to
the temporary buffer before starting to move entries around.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 8517de2a81da830f5d90da66b4799f4040c76dc9)
If we don't map the buffers correctly (same as for get/set
operations) then the incore buffer lookup will fail. If a block
number matches but a length is wrong, then debug kernels will ASSERT
fail in _xfs_buf_find() due to the length mismatch. Ensure that we
map the buffers correctly by basing the length of the buffer on the
attribute data length rather than the remote block count.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 6863ef8449f1908c19f43db572e4474f24a1e9da)
When an attribute data does not fill then entire remote block, we
zero the remaining part of the buffer. This, however, needs to take
into account that the buffer has a header, and so the offset where
zeroing starts and the length of zeroing need to take this into
account. Otherwise we end up with zeros over the end of the
attribute value when CRCs are enabled.
While there, make sure we only ask to map an extent that covers the
remaining range of the attribute, rather than asking every time for
the full length of remote data. If the remote attribute blocks are
contiguous with other parts of the attribute tree, it will map those
blocks as well and we can potentially zero them incorrectly. We can
also get buffer size mistmatches when trying to read or remove the
remote attribute, and this can lead to not finding the correct
buffer when looking it up in cache.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 4af3644c9a53eb2f1ecf69cc53576561b64be4c6)
Reading a maximally size remote attribute fails when CRCs are
enabled with this verification error:
XFS (vdb): remote attribute header does not match required off/len/owner)
There are two reasons for this, the first being that the
length of the buffer being read is determined from the
args->rmtblkcnt which doesn't take into account CRC headers. Hence
the mapped length ends up being too short and so we need to
calculate it directly from the value length.
The second is that the byte count of valid data within a buffer is
capped by the length of the data and so doesn't take into account
that the buffer might be longer due to headers. Hence we need to
calculate the data space in the buffer first before calculating the
actual byte count of data.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 913e96bc292e1bb248854686c79d6545ef3ee720)
When CRCs are enabled, there may be multiple allocations made if the
headers cause a length overflow. This, however, does not mean that
the number of headers required increases, as the second and
subsequent extents may be contiguous with the previous extent. Hence
when we map the extents to write the attribute data, we may end up
with less extents than allocations made. Hence the assertion that we
consume the number of headers we calculated in the allocation loop
is incorrect and needs to be removed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 90253cf142469a40f89f989904abf0a1e500e1a6)
When the directory freespace index grows to a second block (2017
4k data blocks in the directory), the initialisation of the second
new block header goes wrong. The write verifier fires a corruption
error indicating that the block number in the header is zero. This
was being tripped by xfs/110.
The problem is that the initialisation of the new block is done just
fine in xfs_dir3_free_get_buf(), but the caller then users a dirv2
structure to zero on-disk header fields that xfs_dir3_free_get_buf()
has already zeroed. These lined up with the block number in the dir
v3 header format.
While looking at this, I noticed that the struct xfs_dir3_free_hdr()
had 4 bytes of padding in it that wasn't defined as padding or being
zeroed by the initialisation. Add a pad field declaration and fully
zero the on disk and in-core headers in xfs_dir3_free_get_buf() so
that this is never an issue in the future. Note that this doesn't
change the on-disk layout, just makes the 32 bits of padding in the
layout explicit.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 5ae6e6a401957698f2bd8c9f4a86d86d02199fea)
Currently, swapping extents from one inode to another is a simple
act of switching data and attribute forks from one inode to another.
This, unfortunately in no longer so simple with CRC enabled
filesystems as there is owner information embedded into the BMBT
blocks that are swapped between inodes. Hence swapping the forks
between inodes results in the inodes having mapping blocks that
point to the wrong owner and hence are considered corrupt.
To fix this we need an extent tree block or record based swap
algorithm so that the BMBT block owner information can be updated
atomically in the swap transaction. This is a significant piece of
new work, so for the moment simply don't allow swap extent
operations to succeed on CRC enabled filesystems.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 02f75405a75eadfb072609f6bf839e027de6a29a)
Currently userspace has no way of determining that a filesystem is
CRC enabled. Add a flag to the XFS_IOC_FSGEOMETRY ioctl output to
indicate that the filesystem has v5 superblock support enabled.
This will allow xfs_info to correctly report the state of the
filesystem.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 74137fff067961c9aca1e14d073805c3de8549bd)
When CRCs are enabled, the number of blocks needed to hold a remote
symlink on a 1k block size filesystem may be 2 instead of 1. The
transaction reservation for the allocated blocks was not taking this
into account and only allocating one block. Hence when trying to
read or invalidate such symlinks, we are mapping a hole where there
should be a block and things go bad at that point.
Fix the reservation to use the correct block count, clean up the
block count calculation similar to the remote attribute calculation,
and add a debug guard to detect when we don't write the entire
symlink to disk.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 321a95839e65db3759a07a3655184b0283af90fe)
A long time ago in a galaxy far away....
.. the was a commit made to fix some ilinux specific "fragmented
buffer" log recovery problem:
http://oss.sgi.com/cgi-bin/gitweb.cgi?p=archive/xfs-import.git;a=commitdiff;h=b29c0bece51da72fb3ff3b61391a391ea54e1603
That problem occurred when a contiguous dirty region of a buffer was
split across across two pages of an unmapped buffer. It's been a
long time since that has been done in XFS, and the changes to log
the entire inode buffers for CRC enabled filesystems has
re-introduced that corner case.
And, of course, it turns out that the above commit didn't actually
fix anything - it just ensured that log recovery is guaranteed to
fail when this situation occurs. And now for the gory details.
xfstest xfs/085 is failing with this assert:
XFS (vdb): bad number of regions (0) in inode log format
XFS: Assertion failed: 0, file: fs/xfs/xfs_log_recover.c, line: 1583
Largely undocumented factoid #1: Log recovery depends on all log
buffer format items starting with this format:
struct foo_log_format {
__uint16_t type;
__uint16_t size;
....
As recoery uses the size field and assumptions about 32 bit
alignment in decoding format items. So don't pay much attention to
the fact log recovery thinks that it decoding an inode log format
item - it just uses them to determine what the size of the item is.
But why would it see a log format item with a zero size? Well,
luckily enough xfs_logprint uses the same code and gives the same
error, so with a bit of gdb magic, it turns out that it isn't a log
format that is being decoded. What logprint tells us is this:
Oper (130): tid: a0375e1a len: 28 clientid: TRANS flags: none
BUF: #regs: 2 start blkno: 144 (0x90) len: 16 bmap size: 2 flags: 0x4000
Oper (131): tid: a0375e1a len: 4096 clientid: TRANS flags: none
BUF DATA
----------------------------------------------------------------------------
Oper (132): tid: a0375e1a len: 4096 clientid: TRANS flags: none
xfs_logprint: unknown log operation type (4e49)
**********************************************************************
* ERROR: data block=2 *
**********************************************************************
That we've got a buffer format item (oper 130) that has two regions;
the format item itself and one dirty region. The subsequent region
after the buffer format item and it's data is them what we are
tripping over, and the first bytes of it at an inode magic number.
Not a log opheader like there is supposed to be.
That means there's a problem with the buffer format item. It's dirty
data region is 4096 bytes, and it contains - you guessed it -
initialised inodes. But inode buffers are 8k, not 4k, and we log
them in their entirety. So something is wrong here. The buffer
format item contains:
(gdb) p /x *(struct xfs_buf_log_format *)in_f
$22 = {blf_type = 0x123c, blf_size = 0x2, blf_flags = 0x4000,
blf_len = 0x10, blf_blkno = 0x90, blf_map_size = 0x2,
blf_data_map = {0xffffffff, 0xffffffff, .... }}
Two regions, and a signle dirty contiguous region of 64 bits. 64 *
128 = 8k, so this should be followed by a single 8k region of data.
And the blf_flags tell us that the type of buffer is a
XFS_BLFT_DINO_BUF. It contains inodes. And because it doesn't have
the XFS_BLF_INODE_BUF flag set, that means it's an inode allocation
buffer. So, it should be followed by 8k of inode data.
But we know that the next region has a header of:
(gdb) p /x *ohead
$25 = {oh_tid = 0x1a5e37a0, oh_len = 0x100000, oh_clientid = 0x69,
oh_flags = 0x0, oh_res2 = 0x0}
and so be32_to_cpu(oh_len) = 0x1000 = 4096 bytes. It's simply not
long enough to hold all the logged data. There must be another
region. There is - there's a following opheader for another 4k of
data that contains the other half of the inode cluster data - the
one we assert fail on because it's not a log format header.
So why is the second part of the data not being accounted to the
correct buffer log format structure? It took a little more work with
gdb to work out that the buffer log format structure was both
expecting it to be there but hadn't accounted for it. It was at that
point I went to the kernel code, as clearly this wasn't a bug in
xfs_logprint and the kernel was writing bad stuff to the log.
First port of call was the buffer item formatting code, and the
discontiguous memory/contiguous dirty region handling code
immediately stood out. I've wondered for a long time why the code
had this comment in it:
vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
vecp->i_len = nbits * XFS_BLF_CHUNK;
vecp->i_type = XLOG_REG_TYPE_BCHUNK;
/*
* You would think we need to bump the nvecs here too, but we do not
* this number is used by recovery, and it gets confused by the boundary
* split here
* nvecs++;
*/
vecp++;
And it didn't account for the extra vector pointer. The case being
handled here is that a contiguous dirty region lies across a
boundary that cannot be memcpy()d across, and so has to be split
into two separate operations for xlog_write() to perform.
What this code assumes is that what is written to the log is two
consecutive blocks of data that are accounted in the buf log format
item as the same contiguous dirty region and so will get decoded as
such by the log recovery code.
The thing is, xlog_write() knows nothing about this, and so just
does it's normal thing of adding an opheader for each vector. That
means the 8k region gets written to the log as two separate regions
of 4k each, but because nvecs has not been incremented, the buf log
format item accounts for only one of them.
Hence when we come to log recovery, we process the first 4k region
and then expect to come across a new item that starts with a log
format structure of some kind that tells us whenteh next data is
going to be. Instead, we hit raw buffer data and things go bad real
quick.
So, the commit from 2002 that commented out nvecs++ is just plain
wrong. It breaks log recovery completely, and it would seem the only
reason this hasn't been since then is that we don't log large
contigous regions of multi-page unmapped buffers very often. Never
would be a closer estimate, at least until the CRC code came along....
So, lets fix that by restoring the nvecs accounting for the extra
region when we hit this case.....
.... and there's the problemin log recovery it is apparently working
around:
XFS: Assertion failed: i == item->ri_total, file: fs/xfs/xfs_log_recover.c, line: 2135
Yup, xlog_recover_do_reg_buffer() doesn't handle contigous dirty
regions being broken up into multiple regions by the log formatting
code. That's an easy fix, though - if the number of contiguous dirty
bits exceeds the length of the region being copied out of the log,
only account for the number of dirty bits that region covers, and
then loop again and copy more from the next region. It's a 2 line
fix.
Now xfstests xfs/085 passes, we have one less piece of mystery
code, and one more important piece of knowledge about how to
structure new log format items..
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 709da6a61aaf12181a8eea8443919ae5fc1b731d)
XFS has failed to kill suid/sgid bits correctly when truncating
files of non-zero size since commit c4ed4243 ("xfs: split
xfs_setattr") introduced in the 3.1 kernel. Fix it.
Fix it.
cc: stable kernel <stable@vger.kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 56c19e89b38618390addfc743d822f99519055c6)
Lockdep reports:
=============================================
[ INFO: possible recursive locking detected ]
3.9.0+ #3 Not tainted
---------------------------------------------
setquota/28368 is trying to acquire lock:
(sb_internal){++++.?}, at: [<c11e8846>] xfs_trans_alloc+0x26/0x50
but task is already holding lock:
(sb_internal){++++.?}, at: [<c11e8846>] xfs_trans_alloc+0x26/0x50
from xfs_qm_scall_setqlim()->xfs_dqread() when a dquot needs to be
allocated.
xfs_qm_scall_setqlim() is starting a transaction and then not
passing it into xfs_qm_dqet() and so it starts it's own transaction
when allocating the dquot. Splat!
Fix this by not allocating the dquot in xfs_qm_scall_setqlim()
inside the setqlim transaction. This requires getting the dquot
first (and allocating it if necessary) then dropping and relocking
the dquot before joining it to the setqlim transaction.
Reported-by: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit f648167f3ac79018c210112508c732ea9bf67c7b)
Darrick J. Wong <darrick.wong@oracle.com> reports:
> I have a kvm-based testing setup that netboots VMs over NFS, the
> client end of which seems to have broken somehow in 3.10-rc1. The
> server's exports file looks like this:
>
> /storage/mtr/x64 192.168.122.0/24(ro,sync,no_root_squash,no_subtree_check)
>
> On the client end (inside the VM), the initrd runs the following
> command to try to mount the rootfs over NFS:
>
> # mount -o nolock -o ro -o retrans=10 192.168.122.1:/storage/mtr/x64/ /root
>
> (Note: This is the busybox mount command.)
>
> The mount fails with -EINVAL.
Commit 4580a92d44 "NFS: Use server-recommended security flavor by
default (NFSv3)" introduced a behavior regression for NFS mounts
done via a legacy binary mount(2) call.
Ensure that a default security flavor is specified for legacy binary
mount requests, since they do not invoke nfs_select_flavor() in the
kernel.
Busybox uses klibc's nfsmount command, which performs NFS mounts
using the legacy binary mount data format. /sbin/mount.nfs is not
affected by this regression.
Reported-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Weston Andros Adamson <dros@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
We need to pass the full open mode flags to nfs_may_open() when doing
a delegated open.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: stable@vger.kernel.org
Pull CIFS fixes from Steve French:
"Fixes for a couple of DFS problems, a problem with extended security
negotiation and two other small cifs fixes"
* 'for-3.10' of git://git.samba.org/sfrench/cifs-2.6:
cifs: fix composing of mount options for DFS referrals
cifs: stop printing the unc= option in /proc/mounts
cifs: fix error handling when calling cifs_parse_devname
cifs: allow sec=none mounts to work against servers that don't support extended security
cifs: fix potential buffer overrun when composing a new options string
cifs: only set ops for inodes in I_NEW state
Expand information about posix-timers in /proc/<pid>/timers by adding
info about clock, with which the timer was created. I.e. in the forth
line of timer info after "notify:" line go "ClockID: <clock_id>".
Signed-off-by: Pavel Tikhomirov <snorcht@gmail.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Matthew Helsley <matt.helsley@gmail.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Link: http://lkml.kernel.org/r/1368742323-46949-2-git-send-email-snorcht@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
- Stable fix to prevent an rpc_task wakeup race
- Fix a NFSv4.1 session drain deadlock
- Fix a NFSv4/v4.1 mount regression when not running rpc.gssd
- Ensure auth_gss pipe detection works in namespaces
- Fix SETCLIENTID fallback if rpcsec_gss is not available
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.13 (GNU/Linux)
iQIcBAABAgAGBQJRomGNAAoJEGcL54qWCgDyzUIQALj4hsOtdcmCCAWu0m+Pr+Gz
/6rpO2xJ5cLWyTYS2J9wmPkU+mb/g/OB/OhANyQQsDbfoW3e27TGaXRB8hUs29vk
LHTkFcrBTi4ohlw2Gyb6LWDF6cyHkC7cpH7tfIjLDff77V/qK1uqo41MtYpqUvy3
41tMoFOhvpwsy7HuKqVyYtNlwxnXrdJ5XvK0ycaQYQ9t8om9Hxu/scCgLfl/qwRr
eVhIesC2/Y1eC46UK7/TWCC7aTLkvi85UQY+fywMkajt/gPzjjh6nuhc45aOT9d7
pc0sXgIs8fLEjC+CRa0ojrziJZCHZY93U1kzA+CotRqPq76nPeFeG/1VhViKKb4C
1AU9IA4ntViUqNDQiGrCxE6ZeMewTOKksrCErwSS16Hv9Gqh4SHq84R/bF6MFgBc
dqQsexUbf/vaWHmuosARgbyc/QcBXDwWwbkq0hXSWbHA8vpc8/Lw1wkp49eyKz0V
0zwJ9xInakXr5/DIC72IKEF0Dg26L+GTXWLmDZVcdpVBp5A403trxUKckcsNa/Xf
FXaGMhyv2ZfV4AohW1Z8klkLiMHt4dr+YB7SQAgR/gb81p3odgKgMz51PfmHxFqs
4nxwRQqWplBTGiLrOFSgaRC50jLqEloUweWC2qf56KYEb9N6M6XDIXhllLIMyWLD
94cvihpKj+/ecKH5kQWF
=B8go
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-3.10-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client bugfixes from Trond Myklebust:
- Stable fix to prevent an rpc_task wakeup race
- Fix a NFSv4.1 session drain deadlock
- Fix a NFSv4/v4.1 mount regression when not running rpc.gssd
- Ensure auth_gss pipe detection works in namespaces
- Fix SETCLIENTID fallback if rpcsec_gss is not available
* tag 'nfs-for-3.10-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs:
NFS: Fix SETCLIENTID fallback if GSS is not available
SUNRPC: Prevent an rpc_task wakeup race
NFSv4.1 Fix a pNFS session draining deadlock
SUNRPC: Convert auth_gss pipe detection to work in namespaces
SUNRPC: Faster detection if gssd is actually running
SUNRPC: Fix a bug in gss_create_upcall
- Fix for corruption with FSX on 512 byte blocksize filesystems
- Fix rounding error in xfs_free_file_space
- Fix use-after-free with extent free intents
- Add several missing KM_NOFS flags to fix lockdep reports
- Several fixes for CRC related code
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
iQIcBAABAgAGBQJRn93mAAoJENaLyazVq6ZOPw8P/1ab7Gr4K7ccpuRvC+JiBPx9
/Eb1l2A68r8rWJq3bEvLM/XgN7F0IESastS+iA8lrNuLWJAHCb+Y37mdbyWymhWO
J6LFg/Mic+n5uGmg6nXrqLJ8epTd3L+V+cCEHLpa/20zEwa5yd8sSTV0P1pfcMRi
S36Uof7boe+s4H/s2z4YX8Y+dkaVn1tN7j4PDs5Zd/wiUq0EKA5le4AkbqIJlCDn
E9mJL1S2t3QwfgQWL+pe8f5jzReGTAxJUQWX2ErajX4vYI7PnR1WTYf7YJB291f0
XPfkjqvaK0WCdipSkgb58t/Rj2IxoHItdryvBHa/rnL4e95aBQMpNyY8btNX28ou
NgcIQnqQB+xlJeHpSyb1xNusamGzWw0CEYsXPcDQbXj1uJjd7/GfqTwtVbB4zOlW
Hua7/6N22vaY1dfQcQFwgi1XcKF9jSVKBVOvy7yHEmdNuT7mFejaG1gVO7NpTIgd
s7R91pQVlYpLTmZHK6ZqZap5OC6kS/YJr9HxVxS3FQhaJmFwGqvf6UUjSWOK1MnJ
obTbbygo2Orvh10lgzDNsd+xRJZ9aFn+UfywSeQGTfm91HvTnEQje3xqctv3zmBy
adrWSXXg/eN07nciNk0zTgHnQZo1v/ZeAFlz0AcSslMMQ7Pq4+Pv4LPtdxMIdrxU
1IZ32GunGTUXqm6GRW6v
=hQCM
-----END PGP SIGNATURE-----
Merge tag 'for-linus-v3.10-rc3' of git://oss.sgi.com/xfs/xfs
Pull xfs fixes from Ben Myers:
"Here are fixes for corruption on 512 byte filesystems, a rounding
error, a use-after-free, some flags to fix lockdep reports, and
several fixes related to CRCs. We have a somewhat larger post -rc1
queue than usual due to fixes related to the CRC feature we merged for
3.10:
- Fix for corruption with FSX on 512 byte blocksize filesystems
- Fix rounding error in xfs_free_file_space
- Fix use-after-free with extent free intents
- Add several missing KM_NOFS flags to fix lockdep reports
- Several fixes for CRC related code"
* tag 'for-linus-v3.10-rc3' of git://oss.sgi.com/xfs/xfs:
xfs: remote attribute lookups require the value length
xfs: xfs_attr_shortform_allfit() does not handle attr3 format.
xfs: xfs_da3_node_read_verify() doesn't handle XFS_ATTR3_LEAF_MAGIC
xfs: fix missing KM_NOFS tags to keep lockdep happy
xfs: Don't reference the EFI after it is freed
xfs: fix rounding in xfs_free_file_space
xfs: fix sub-page blocksize data integrity writes
The recent changes overhauling fs/aio.c introduced a bug that results in
the kioctx not being freed when outstanding kiocbs are cancelled at
exit_aio() time. Specifically, a kiocb that is cancelled has its
completion events discarded by batch_complete_aio(), which then fails to
wake up the process stuck in free_ioctx(). Fix this by modifying the
wait_event() condition in free_ioctx() appropriately.
This patch was tested with the cancel operation in the thread based code
posted yesterday.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>
Signed-off-by: Kent Overstreet <koverstreet@google.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Josh Boyer <jwboyer@redhat.com>
Cc: Zach Brown <zab@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Last time we found there is lock/unlock bug in ocfs2_file_aio_write, and
then we did a thorough search for all lock resources in
ocfs2_inode_info, including rw, inode and open lockres and found this
bug. My kernel version is 3.0.13, and it is also in the lastest version
3.9. In ocfs2_fiemap, once ocfs2_get_clusters_nocache failed, it should
goto out_unlock instead of out, because we need release buffer head, up
read alloc sem and unlock inode.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Reviewed-by: Jie Liu <jeff.liu@oracle.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Acked-by: Sunil Mushran <sunil.mushran@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
nilfs2: fix issue of nilfs_set_page_dirty for page at EOF boundary
DESCRIPTION:
There are use-cases when NILFS2 file system (formatted with block size
lesser than 4 KB) can be remounted in RO mode because of encountering of
"broken bmap" issue.
The issue was reported by Anthony Doggett <Anthony2486@interfaces.org.uk>:
"The machine I've been trialling nilfs on is running Debian Testing,
Linux version 3.2.0-4-686-pae (debian-kernel@lists.debian.org) (gcc
version 4.6.3 (Debian 4.6.3-14) ) #1 SMP Debian 3.2.35-2), but I've
also reproduced it (identically) with Debian Unstable amd64 and Debian
Experimental (using the 3.8-trunk kernel). The problematic partitions
were formatted with "mkfs.nilfs2 -b 1024 -B 8192"."
SYMPTOMS:
(1) System log contains error messages likewise:
[63102.496756] nilfs_direct_assign: invalid pointer: 0
[63102.496786] NILFS error (device dm-17): nilfs_bmap_assign: broken bmap (inode number=28)
[63102.496798]
[63102.524403] Remounting filesystem read-only
(2) The NILFS2 file system is remounted in RO mode.
REPRODUSING PATH:
(1) Create volume group with name "unencrypted" by means of vgcreate utility.
(2) Run script (prepared by Anthony Doggett <Anthony2486@interfaces.org.uk>):
----------------[BEGIN SCRIPT]--------------------
VG=unencrypted
lvcreate --size 2G --name ntest $VG
mkfs.nilfs2 -b 1024 -B 8192 /dev/mapper/$VG-ntest
mkdir /var/tmp/n
mkdir /var/tmp/n/ntest
mount /dev/mapper/$VG-ntest /var/tmp/n/ntest
mkdir /var/tmp/n/ntest/thedir
cd /var/tmp/n/ntest/thedir
sleep 2
date
darcs init
sleep 2
dmesg|tail -n 5
date
darcs whatsnew || true
date
sleep 2
dmesg|tail -n 5
----------------[END SCRIPT]--------------------
REPRODUCIBILITY: 100%
INVESTIGATION:
As it was discovered, the issue takes place during segment
construction after executing such sequence of user-space operations:
open("_darcs/index", O_RDWR|O_CREAT|O_NOCTTY, 0666) = 7
fstat(7, {st_mode=S_IFREG|0644, st_size=0, ...}) = 0
ftruncate(7, 60)
The error message "NILFS error (device dm-17): nilfs_bmap_assign: broken
bmap (inode number=28)" takes place because of trying to get block
number for third block of the file with logical offset #3072 bytes. As
it is possible to see from above output, the file has 60 bytes of the
whole size. So, it is enough one block (1 KB in size) allocation for
the whole file. Trying to operate with several blocks instead of one
takes place because of discovering several dirty buffers for this file
in nilfs_segctor_scan_file() method.
The root cause of this issue is in nilfs_set_page_dirty function which
is called just before writing to an mmapped page.
When nilfs_page_mkwrite function handles a page at EOF boundary, it
fills hole blocks only inside EOF through __block_page_mkwrite().
The __block_page_mkwrite() function calls set_page_dirty() after filling
hole blocks, thus nilfs_set_page_dirty function (=
a_ops->set_page_dirty) is called. However, the current implementation
of nilfs_set_page_dirty() wrongly marks all buffers dirty even for page
at EOF boundary.
As a result, buffers outside EOF are inconsistently marked dirty and
queued for write even though they are not mapped with nilfs_get_block
function.
FIX:
This modifies nilfs_set_page_dirty() not to mark hole blocks dirty.
Thanks to Vyacheslav Dubeyko for his effort on analysis and proposals
for this issue.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Reported-by: Anthony Doggett <Anthony2486@interfaces.org.uk>
Reported-by: Vyacheslav Dubeyko <slava@dubeyko.com>
Cc: Vyacheslav Dubeyko <slava@dubeyko.com>
Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In reviewing man pages, I noticed that io_getevents is documented to
update the timeout that gets passed into the library call. This doesn't
happen in kernel space or in the library (even though it's documented to
do so in both places). Unless there is objection, I'd like to fix the
comments/docs to match the code (I will also update the man page upon
consensus).
Signed-off-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>
Acked-by: Cyril Hrubis <chrubis@suse.cz>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 634725a92938 ("hfs: cleanup HFS+ prints") removed the BUG_ON in
hfs_bnode_create in hfsplus. This patch removes it from the hfs version
and avoids an fsfuzzer crash.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Acked-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: Vyacheslav Dubeyko <slava@dubeyko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In ocfs2_file_aio_write(), it does ocfs2_rw_lock() first and then
ocfs2_inode_lock().
But if ocfs2_inode_lock() failed, it goes to out_sems without unlocking
rw lock. This will cause a bug in ocfs2_lock_res_free() when testing
res->l_ex_holders, which is increased in __ocfs2_cluster_lock() and
decreased in __ocfs2_cluster_unlock().
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: "Duyongfeng (B)" <du.duyongfeng@huawei.com>
Acked-by: Sunil Mushran <sunil.mushran@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Intermediate value of fat_clusters can be overflowed on 32bits arch.
Reported-by: Krzysztof Strasburger <strasbur@chkw386.ch.pwr.wroc.pl>
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When msync is called on a memory mapped file, that
data is not flushed to the disk.
In Linux, msync calls fsync for the file. For ecryptfs,
fsync just calls the lower level file system's fsync.
Changed the ecryptfs fsync code to call filemap_write_and_wait
before calling the lower level fsync.
Addresses the problem described in http://crbug.com/239536
Signed-off-by: Paul Taysom <taysom@chromium.org>
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Cc: stable@vger.kernel.org # v3.6+
When reading a remote attribute, to correctly calculate the length
of the data buffer for CRC enable filesystems, we need to know the
length of the attribute data. We get this information when we look
up the attribute, but we don't store it in the args structure along
with the other remote attr information we get from the lookup. Add
this information to the args structure so we can use it
appropriately.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit e461fcb194172b3f709e0b478d2ac1bdac7ab9a3)
xfstests generic/117 fails with:
XFS: Assertion failed: leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)
indicating a function that does not handle the attr3 format
correctly. Fix it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit b38958d715316031fe9ea0cc6c22043072a55f49)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 72916fb8cbcf0c2928f56cdc2fbe8c7bf5517758)
There are several places where we use KM_SLEEP allocation contexts
and use the fact that they are called from transaction context to
add KM_NOFS where appropriate. Unfortunately, there are several
places where the code makes this assumption but can be called from
outside transaction context but with filesystem locks held. These
places need explicit KM_NOFS annotations to avoid lockdep
complaining about reclaim contexts.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit ac14876cf9255175bf3bdad645bf8aa2b8fb2d7c)
Checking the EFI for whether it is being released from recovery
after we've already released the known active reference is a mistake
worthy of a brown paper bag. Fix the (now) obvious use after free
that it can cause.
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 52c24ad39ff02d7bd73c92eb0c926fb44984a41d)
The offset passed into xfs_free_file_space() needs to be rounded
down to a certain size, but the rounding mask is built by a 32 bit
variable. Hence the mask will always mask off the upper 32 bits of
the offset and lead to incorrect writeback and invalidation ranges.
This is not actually exposed as a bug because we writeback and
invalidate from the rounded offset to the end of the file, and hence
the offset we are actually punching a hole out of will always be
covered by the code. This needs fixing, however, if we ever want to
use exact ranges for writeback/invalidation here...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 28ca489c63e9aceed8801d2f82d731b3c9aa50f5)
FSX on 512 byte block size filesystems has been failing for some
time with corrupted data. The fault dates back to the change in
the writeback data integrity algorithm that uses a mark-and-sweep
approach to avoid data writeback livelocks.
Unfortunately, a side effect of this mark-and-sweep approach is that
each page will only be written once for a data integrity sync, and
there is a condition in writeback in XFS where a page may require
two writeback attempts to be fully written. As a result of the high
level change, we now only get a partial page writeback during the
integrity sync because the first pass through writeback clears the
mark left on the page index to tell writeback that the page needs
writeback....
The cause is writing a partial page in the clustering code. This can
happen when a mapping boundary falls in the middle of a page - we
end up writing back the first part of the page that the mapping
covers, but then never revisit the page to have the remainder mapped
and written.
The fix is simple - if the mapping boundary falls inside a page,
then simple abort clustering without touching the page. This means
that the next ->writepage entry that write_cache_pages() will make
is the page we aborted on, and xfs_vm_writepage() will map all
sections of the page correctly. This behaviour is also optimal for
non-data integrity writes, as it results in contiguous sequential
writeback of the file rather than missing small holes and having to
write them a "random" writes in a future pass.
With this fix, all the fsx tests in xfstests now pass on a 512 byte
block size filesystem on a 4k page machine.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 49b137cbbcc836ef231866c137d24f42c42bb483)
The mentioned functions do not pay attention to the error codes returned
by the functions updateSuper(), lmLogInit() and lmLogShutdown(). It brings
to system crash later when writing to log.
The patch adds corresponding code to check and return the error codes
and to print correct error messages in case of errors.
Found by Linux File System Verification project (linuxtesting.org).
Signed-off-by: Vahram Martirosyan <vahram.martirosyan@linuxtesting.org>
Reviewed-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
With the change to ignore the unc= and prefixpath= mount options, there
is no longer any need to add them to the options string when mounting.
By the same token, we now need to build a device name that includes the
prefixpath when mounting.
To make things neater, the delimiters on the devicename are changed
to '/' since that's preferred when mounting anyway.
v2: fix some comments and don't bother looking at whether there is
a prepath in the ref->node_name when deciding whether to pass
a prepath to cifs_build_devname.
v3: rebase on top of potential buffer overrun fix for stable
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
Since we no longer recognize that option, stop printing it out. The
devicename is now the canonical source for this info.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
When we allowed separate unc= and prefixpath= mount options, we could
ignore EINVAL errors from cifs_parse_devname. Now that they are
deprecated, we need to check for that as well and fail the mount if it's
malformed.
Also fix a later error message that refers to the unc= option.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
In the case of sec=none, we're not sending a username or password, so
there's little benefit to mandating NTLMSSP auth. Allow it to use
unencapsulated auth in that case.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
Consider the case where we have a very short ip= string in the original
mount options, and when we chase a referral we end up with a very long
IPv6 address. Be sure to allow for that possibility when estimating the
size of the string to allocate.
Cc: <stable@vger.kernel.org>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>