With Line length being constant now, we can fold the 2 helpers into 1.
This allows applying any optimizations (forthcoming) to single place.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ARC dcache supports 3 ops - Inv, Flush, Flush-n-Inv.
The programming model however provides 2 commands FLUSH, INV.
INV will either discard or flush-n-discard (based on DT_CTRL bit)
The leaf helper __dc_line_loop() used to take the AUX register
(corresponding to the 2 commands). Now we push that to within the
helper, paving way for code consolidations to follow.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
__get_cpu_var() is used for multiple purposes in the kernel source. One of them is
address calculation via the form &__get_cpu_var(x). This calculates the address for
the instance of the percpu variable of the current processor based on an offset.
Other use cases are for storing and retrieving data from the current processors percpu area.
__get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store and retrieve operations
could use a segment prefix (or global register on other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use
optimized assembly code to read and write per cpu variables.
This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr()
or into a use of this_cpu operations that use the offset. Thereby address calcualtions are avoided
and less registers are used when code is generated.
At the end of the patchset all uses of __get_cpu_var have been removed so the macro is removed too.
The patchset includes passes over all arches as well. Once these operations are used throughout then
specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by
f.e. using a global register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu variable.
DEFINE_PER_CPU(int, u);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(this_cpu_ptr(&x), y, sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
A vmalloc fault needs to sync up PGD/PTE entry from init_mm to current
task's "active_mm". ARC vmalloc fault handler however was using mm.
A vmalloc fault for non user task context (actually pre-userland, from
init thread's open for /dev/console) caused the handler to deref NULL mm
(for mm->pgd)
The reasons it worked so far is amazing:
1. By default (!SMP), vmalloc fault handler uses a cached value of PGD.
In SMP that MMU register is repurposed hence need for mm pointer deref.
2. In pre-3.12 SMP kernel, the problem triggering vmalloc didn't exist in
pre-userland code path - it was introduced with commit 20bafb3d23
"n_tty: Move buffers into n_tty_data"
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Cc: Gilad Ben-Yossef <gilad@benyossef.com>
Cc: Noam Camus <noamc@ezchip.com>
Cc: stable@vger.kernel.org #3.10 and 3.11
Cc: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ARCompact TRAP_S insn used for breakpoints, commits before exception is
taken (updating architectural PC). So ptregs->ret contains next-PC and
not the breakpoint PC itself. This is different from other restartable
exceptions such as TLB Miss where ptregs->ret has exact faulting PC.
gdb needs to know exact-PC hence ARC ptrace GETREGSET provides for
@stop_pc which returns ptregs->ret vs. EFA depending on the
situation.
However, writing stop_pc (SETREGSET request), which updates ptregs->ret
doesn't makes sense stop_pc doesn't always correspond to that reg as
described above.
This was not an issue so far since user_regs->ret / user_regs->stop_pc
had same value and both writing to ptregs->ret was OK, needless, but NOT
broken, hence not observed.
With gdb "jump", they diverge, and user_regs->ret updating ptregs is
overwritten immediately with stop_pc, which this patch fixes.
Reported-by: Anton Kolesov <akolesov@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Previously, when a signal was registered with SA_SIGINFO, parameters 2
and 3 of the signal handler were written to registers r1 and r2 before
the register set was saved. This led to corruption of these two
registers after returning from the signal handler (the wrong values were
restored).
With this patch, registers are now saved before any parameters are
passed, thus maintaining the processor state from before signal entry.
Signed-off-by: Christian Ruppert <christian.ruppert@abilis.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
clockevents_config_and_register is more clever and correct than doing it
by hand; so use it.
[vgupta: fixed build failure due to missing ; in patch]
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Some ARC SMP systems lack native atomic R-M-W (LLOCK/SCOND) insns and
can only use atomic EX insn (reg with mem) to build higher level R-M-W
primitives. This includes a SystemC based SMP simulation model.
So rwlocks need to use a protecting spinlock for atomic cmp-n-exchange
operation to update reader(s)/writer count.
The spinlock operation itself looks as follows:
mov reg, 1 ; 1=locked, 0=unlocked
retry:
EX reg, [lock] ; load existing, store 1, atomically
BREQ reg, 1, rety ; if already locked, retry
In single-threaded simulation, SystemC alternates between the 2 cores
with "N" insn each based scheduling. Additionally for insn with global
side effect, such as EX writing to shared mem, a core switch is
enforced too.
Given that, 2 cores doing a repeated EX on same location, Linux often
got into a livelock e.g. when both cores were fiddling with tasklist
lock (gdbserver / hackbench) for read/write respectively as the
sequence diagram below shows:
core1 core2
-------- --------
1. spin lock [EX r=0, w=1] - LOCKED
2. rwlock(Read) - LOCKED
3. spin unlock [ST 0] - UNLOCKED
spin lock [EX r=0,w=1] - LOCKED
-- resched core 1----
5. spin lock [EX r=1] - ALREADY-LOCKED
-- resched core 2----
6. rwlock(Write) - READER-LOCKED
7. spin unlock [ST 0]
8. rwlock failed, retry again
9. spin lock [EX r=0, w=1]
-- resched core 1----
10 spinlock locked in #9, retry #5
11. spin lock [EX gets 1]
-- resched core 2----
...
...
The fix was to unlock using the EX insn too (step 7), to trigger another
SystemC scheduling pass which would let core1 proceed, eliding the
livelock.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Anton reported
| LTP tests syscalls/process_vm_readv01 and process_vm_writev01 fail
| similarly in one testcase test_iov_invalid -> lvec->iov_base.
| Testcase expects errno EFAULT and return code -1,
| but it gets return code 1 and ERRNO is 0 what means success.
Essentially test case was passing a pointer of -1 which access_ok()
was not catching. It was doing [@addr + @sz <= TASK_SIZE] which would
pass for @addr == -1
Fixed that by rewriting as [@addr <= TASK_SIZE - @sz]
Reported-by: Anton Kolesov <Anton.Kolesov@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
If a load or store is the last instruction in a zero-overhead-loop, and
it's misaligned, the loop would execute only once.
This fixes that problem.
Signed-off-by: Mischa Jonker <mjonker@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
After the last architecture switched to generic hard irqs the config
options HAVE_GENERIC_HARDIRQS & GENERIC_HARDIRQS and the related code
for !CONFIG_GENERIC_HARDIRQS can be removed.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Merge more patches from Andrew Morton:
"The rest of MM. Plus one misc cleanup"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (35 commits)
mm/Kconfig: add MMU dependency for MIGRATION.
kernel: replace strict_strto*() with kstrto*()
mm, thp: count thp_fault_fallback anytime thp fault fails
thp: consolidate code between handle_mm_fault() and do_huge_pmd_anonymous_page()
thp: do_huge_pmd_anonymous_page() cleanup
thp: move maybe_pmd_mkwrite() out of mk_huge_pmd()
mm: cleanup add_to_page_cache_locked()
thp: account anon transparent huge pages into NR_ANON_PAGES
truncate: drop 'oldsize' truncate_pagecache() parameter
mm: make lru_add_drain_all() selective
memcg: document cgroup dirty/writeback memory statistics
memcg: add per cgroup writeback pages accounting
memcg: check for proper lock held in mem_cgroup_update_page_stat
memcg: remove MEMCG_NR_FILE_MAPPED
memcg: reduce function dereference
memcg: avoid overflow caused by PAGE_ALIGN
memcg: rename RESOURCE_MAX to RES_COUNTER_MAX
memcg: correct RESOURCE_MAX to ULLONG_MAX
mm: memcg: do not trap chargers with full callstack on OOM
mm: memcg: rework and document OOM waiting and wakeup
...
Unlike global OOM handling, memory cgroup code will invoke the OOM killer
in any OOM situation because it has no way of telling faults occuring in
kernel context - which could be handled more gracefully - from
user-triggered faults.
Pass a flag that identifies faults originating in user space from the
architecture-specific fault handlers to generic code so that memcg OOM
handling can be improved.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg code can trap tasks in the context of the failing allocation
until an OOM situation is resolved. They can hold all kinds of locks
(fs, mm) at this point, which makes it prone to deadlocking.
This series converts memcg OOM handling into a two step process that is
started in the charge context, but any waiting is done after the fault
stack is fully unwound.
Patches 1-4 prepare architecture handlers to support the new memcg
requirements, but in doing so they also remove old cruft and unify
out-of-memory behavior across architectures.
Patch 5 disables the memcg OOM handling for syscalls, readahead, kernel
faults, because they can gracefully unwind the stack with -ENOMEM. OOM
handling is restricted to user triggered faults that have no other
option.
Patch 6 reworks memcg's hierarchical OOM locking to make it a little
more obvious wth is going on in there: reduce locked regions, rename
locking functions, reorder and document.
Patch 7 implements the two-part OOM handling such that tasks are never
trapped with the full charge stack in an OOM situation.
This patch:
Back before smart OOM killing, when faulting tasks were killed directly on
allocation failures, the arch-specific fault handlers needed special
protection for the init process.
Now that all fault handlers call into the generic OOM killer (see commit
609838cfed: "mm: invoke oom-killer from remaining unconverted page
fault handlers"), which already provides init protection, the
arch-specific leftovers can be removed.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Acked-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc bits]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 05b016ecf5 "ARC: Setup Vector Table Base in early boot" moved
the Interrupt vector Table setup out of arc_init_IRQ() which is called
for all CPUs, to entry point of boot cpu only, breaking booting of others.
Fix by adding the same to entry point of non-boot CPUs too.
read_arc_build_cfg_regs() printing IVT Base Register didn't help the
casue since it prints a synthetic value if zero which is totally bogus,
so fix that to print the exact Register.
[vgupta: Remove the now stale comment from header of arc_init_IRQ and
also added the commentary for halt-on-reset]
Cc: Gilad Ben-Yossef <gilad@benyossef.com>
Cc: Cc: <stable@vger.kernel.org> #3.11
Signed-off-by: Noam Camus <noamc@ezchip.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Generally minor changes. A bunch of bug fixes, particularly for
initialization and some refactoring. Most notable change if feeding the
entire flattened tree into the random pool at boot. May not be
significant, but shouldn't hurt either.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJSL12LAAoJEEFnBt12D9kB64gP/RBipnYbo3RPanHg+lE/J1V7
KSVFNGKWJHxTg47VVC1YJGIG21jqxAilpdS2MQL5FP7iyd+IzvtHpQiJgp+2G+pq
di06yrdyrYErxRgZgGQi8IpR538ZzOEVLCKJGdb09YelkRzPT5au7CC1MAsX3qco
yba7PHk0/Nc4hZE4aGbgR1DlRmn86ob7mM0KFE/LORaSN2BueMgWcwKhQXYNGyoh
assX4yNhAbUG6Bgw7paBLDGqHh8c5Ei5AppU8yPb+N094jgYHBJryUoDlzzUHD23
qqiEqHhUKT0TpgHNs8KH0WZFugcmjKvYEbzdzadBxqfXnJN4fKSEcdfF3iz4T14j
U6EZks89GoHwA523OghUZkKNOqlsUdWfdKz+8/grQqKisYwDcf3fCxEYk/4weDCQ
b6fFlOv6+AI3btjXp6F511ZKxyT4ZZzkHjp/ZSrhBygyamNZfax0ma0j+ZS9AZql
kPxQS0nOve6NKaP7vXxMmW5sGMnL19ER/Hm31wthGcWI43GVebUdklnzfGaEeSjs
pmP8oiCNemceqVpiPKxcOxiguf/eyIjP1SFXbguASygUmQeTDbbJ8n1FYznCitue
xJgWttKWsEf/aMR3eJtQ3aBmHR3rijAV4E28Wlq8XMkocwvpQm2zMocS2Z5BJ80S
hi1kQVy8+RxNX96tOSp1
=GSWl
-----END PGP SIGNATURE-----
Merge tag 'devicetree-for-linus' of git://git.secretlab.ca/git/linux
Pull device tree core updates from Grant Likely:
"Generally minor changes. A bunch of bug fixes, particularly for
initialization and some refactoring. Most notable change if feeding
the entire flattened tree into the random pool at boot. May not be
significant, but shouldn't hurt either"
Tim Bird questions whether the boot time cost of the random feeding may
be noticeable. And "add_device_randomness()" is definitely not some
speed deamon of a function.
* tag 'devicetree-for-linus' of git://git.secretlab.ca/git/linux:
of/platform: add error reporting to of_amba_device_create()
irq/of: Fix comment typo for irq_of_parse_and_map
of: Feed entire flattened device tree into the random pool
of/fdt: Clean up casting in unflattening path
of/fdt: Remove duplicate memory clearing on FDT unflattening
gpio: implement gpio-ranges binding document fix
of: call __of_parse_phandle_with_args from of_parse_phandle
of: introduce of_parse_phandle_with_fixed_args
of: move of_parse_phandle()
of: move documentation of of_parse_phandle_with_args
of: Fix missing memory initialization on FDT unflattening
of: consolidate definition of early_init_dt_alloc_memory_arch()
of: Make of_get_phy_mode() return int i.s.o. const int
include: dt-binding: input: create a DT header defining key codes.
of/platform: Staticize of_platform_device_create_pdata()
of: Specify initrd location using 64-bit
dt: Typo fix
OF: make of_property_for_each_{u32|string}() use parameters if OF is not enabled
--------------->8--------------------
WARNING: vmlinux.o(.text+0x708): Section mismatch in reference from the
function read_arc_build_cfg_regs() to the function
.init.text:read_decode_cache_bcr()
WARNING: vmlinux.o(.text+0x702): Section mismatch in reference from the
function read_arc_build_cfg_regs() to the function
.init.text:read_decode_mmu_bcr()
--------------->8--------------------
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Cast usecs to u64, to ensure that the (usecs * 4295 * HZ)
multiplication is 64 bit.
Initially, the (usecs * 4295 * HZ) part was done as a 32 bit
multiplication, with the result casted to 64 bit. This led to some bits
falling off, causing a "DMA initialization error" in the stmmac Ethernet
driver, due to a premature timeout.
Signed-off-by: Mischa Jonker <mjonker@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
It prevents kernel parameters such as 'loglevel' from doing their job.
Signed-off-by: Mischa Jonker <mjonker@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Some drivers require these, and ARC didn't had them yet.
Signed-off-by: Mischa Jonker <mjonker@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This helps remove asid-to-mm reverse map
While mm->context.id contains the ASID assigned to a process, our ASID
allocator also used asid_mm_map[] reverse map. In a new allocation
cycle (mm->ASID >= @asid_cache), the Round Robin ASID allocator used this
to check if new @asid_cache belonged to some mm2 (from prev cycle).
If so, it could locate that mm using the ASID reverse map, and mark that
mm as unallocated ASID, to force it to refresh at the time of switch_mm()
However, for SMP, the reverse map has to be maintained per CPU, so
becomes 2 dimensional, hence got rid of it.
With reverse map gone, it is NOT possible to reach out to current
assignee. So we track the ASID allocation generation/cycle and
on every switch_mm(), check if the current generation of CPU ASID is
same as mm's ASID; If not it is refreshed.
(Based loosely on arch/sh implementation)
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ASID allocation changes/2
Use the fact that switch_mm() and activate_mm() are exactly same code
now while acknowledging the semantical difference in comment
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ASID allocation changes/1
This patch does 2 things:
(1) get_new_mmu_context() NOW moves mm->ASID to a new value ONLY if it
was from a prev allocation cycle/generation OR if mm had no ASID
allocated (vs. before would unconditionally moving to a new ASID)
Callers desiring unconditional update of ASID, e.g.local_flush_tlb_mm()
(for parent's address space invalidation at fork) need to first force
the parent to an unallocated ASID.
(2) get_new_mmu_context() always sets the MMU PID reg with unchanged/new
ASID value.
The gains are:
- consolidation of all asid alloc logic into get_new_mmu_context()
- avoiding code duplication in switch_mm() for PID reg setting
- Enables future change to fold activate_mm() into switch_mm()
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
-Asm code already has values of SW and HW ASID values, so they can be
passed to the printing routine.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This reorganizes the current TLB operations into psuedo-ops to better
pair with MMUv4's native Insert/Delete operations
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
With previous commit freeing up PTE bits, reassign them so as to:
- Match the bit to H/w counterpart where possible
(e.g. MMUv2 GLOBAL/PRESENT, this avoids a shift in create_tlb())
- Avoid holes in _PAGE_xxx definitions
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The current ARC VM code has 13 flags in Page Table entry: some software
(accesed/dirty/non-linear-maps) and rest hardware specific. With 8k MMU
page, we need 19 bits for addressing page frame so remaining 13 bits is
just about enough to accomodate the current flags.
In MMUv4 there are 2 additional flags, SZ (normal or super page) and WT
(cache access mode write-thru) - and additionally PFN is 20 bits (vs. 19
before for 8k). Thus these can't be held in current PTE w/o making each
entry 64bit wide.
It seems there is some scope of compressing the current PTE flags (and
freeing up a few bits). Currently PTE contains fully orthogonal distinct
access permissions for kernel and user mode (Kr, Kw, Kx; Ur, Uw, Ux)
which can be folded into one set (R, W, X). The translation of 3 PTE
bits into 6 TLB bits (when programming the MMU) can be done based on
following pre-requites/assumptions:
1. For kernel-mode-only translations (vmalloc: 0x7000_0000 to
0x7FFF_FFFF), PTE additionally has PAGE_GLOBAL flag set (and user
space entries can never be global). Thus such a PTE can translate
to Kr, Kw, Kx (as appropriate) and zero for User mode counterparts.
2. For non global entries, the PTE flags can be used to create mirrored
K and U TLB bits. This is true after commit a950549c67
"ARC: copy_(to|from)_user() to honor usermode-access permissions"
which ensured that user-space translations _MUST_ have same access
permissions for both U/K mode accesses so that copy_{to,from}_user()
play fair with fault based CoW break and such...
There is no such thing as free lunch - the cost is slightly infalted
TLB-Miss Handlers.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
* reduce editor lines taken by pt_regs
* ARCompact ISA specific part of TLB Miss handlers clubbed together
* cleanup some comments
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Most architectures use the same implementation. Collapse the common ones
into a single weak function that can be overridden.
Signed-off-by: Grant Likely <grant.likely@linaro.org>
In the exception return path, for both U/K cases, intr are already
disabled (for various existing reasons). So when we drop down to
@restore_regs, we need not redo that.
There was subtle issue - when intr were NOT being disabled for
ret-to-kernel-but-no-preemption case - now fixed by moving the
IRQ_DISABLE further up in @resume_kernel_mode.
So what do we gain:
* Shaves off a few insn in return path.
* Eliminates the need for IRQ_DISABLE_SAVE assembler macro for ARCv2
hence allows for entry code sharing.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
After the recent cleanups, all the exception handlers now have same
boilerplate prologue code. Move that into common macro.
This reduces readability but helps greatly with sharing / duplicating
entry code with ARCv2 ISA where the handlers are pretty much the same,
just the entry prologue is different (due to hardware assist).
Also while at it, add the missing FAKE_RET_FROM_EXCPN calls in couple of
places to drop down to pure kernel mode (from exception mode) before
jumping off into "C" code.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
On some PAE architectures, the entire range of physical memory could reside
outside the 32-bit limit. These systems need the ability to specify the
initrd location using 64-bit numbers.
This patch globally modifies the early_init_dt_setup_initrd_arch() function to
use 64-bit numbers instead of the current unsigned long.
There has been quite a bit of debate about whether to use u64 or phys_addr_t.
It was concluded to stick to u64 to be consistent with rest of the device
tree code. As summarized by Geert, "The address to load the initrd is decided
by the bootloader/user and set at that point later in time. The dtb should not
be tied to the kernel you are booting"
More details on the discussion can be found here:
https://lkml.org/lkml/2013/6/20/690https://lkml.org/lkml/2012/9/13/544
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Rob Herring <rob.herring@calxeda.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Signed-off-by: Grant Likely <grant.likely@linaro.org>
corresponding drivers (net/ethernet/arc/*, irqctl/irq-tb10x.c) have now
been merged into your tree.
Ideally these shd have been part of same submissions, oh well...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJR3OKpAAoJEGnX8d3iisJeB5EP/i4HlYQXrZWpT/6Bm7gdyzqA
hvA0oObRvGfgVbxG7R/9sKHU/FDx479pwrZbXPU4I+WM34QRnueXtAodBzrK7jQp
FdcBVN+YCcKUJh4Gxs+a5jtKj8v6u8+NaJc3L/S2+4vJlznoAY6CxnlQX3SK0SAC
d7irz9ZlP58q8eFHBJXa96HMIf7A2EACmwG3Uo6oDj15LVx+XW5i2o6rABvfUNDx
eKnSekoav1CRJyW4RJYI/hJdUM3vcbbRcz/2IyqSquWn8EqyZWY9iijdIwoUha3c
6geZ2YXi4rikU5kA/3cVuEQa68gj7gTaceEE7RT8y5H0DQjpgB07Tkyr9kFLpnRI
b+SGpQVA6FsLtDFNiRjsu2Ft/411UnRfhgv5d7SsuCqeVVPkCEd13Ttj4g49EJjw
Z3FWXTY0f/zYOSzU/6UQ6KZ/ZEvnnasLSCzDPrEK7WVu4lFuMz9BJglzSAbMMUQI
XZaWsm8ForzuYYUDFXQ79ORGsGKjhq3Pl1kF4CQ4TYjL75DwWgEAi9TI6ENuLH8+
+Ox4l385V51/YgcasawgpmGG1APgLtqw5ZFu6GUu6mytQs2huenaoT9+ov2FSu2N
B0o04nmm6h1rgSdiq7ZKDHv5lS1RXYYgoIDYYLqp5Lxk2JcMxvZYfMhbb/4KV+7/
y6w3ui2SNA5ttV7v41zW
=QgUU
-----END PGP SIGNATURE-----
Merge tag 'arc-v3.11-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull second set of ARC architecture updates from Vineet Gupta:
"Couple of Platform updates (Device Tree files primarily) given that
the corresponding drivers (net/ethernet/arc/*, irqctl/irq-tb10x.c)
have now been merged into your tree.
Ideally these shd have been part of same submissions, oh well..."
* tag 'arc-v3.11-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc:
ARC: [TB10x] Updates for irqchip driver
ARC: [plat-arcfpga] Enable arc_emac for ARCAngle4 Board
A few remaining architectures directly kill the page faulting task in an
out of memory situation. This is usually not a good idea since that
task might not even use a significant amount of memory and so may not be
the optimal victim to resolve the situation.
Since 2.6.29's 1c0fe6e ("mm: invoke oom-killer from page fault") there
is a hook that architecture page fault handlers are supposed to call to
invoke the OOM killer and let it pick the right task to kill. Convert
the remaining architectures over to this hook.
To have the previous behavior of simply taking out the faulting task the
vm.oom_kill_allocating_task sysctl can be set to 1.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc bits]
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull i2c updates from Wolfram Sang:
- new drivers: Kontron PLD, Wondermedia VT
- mv64xxx driver gained sun4i support and a bigger cleanup
- duplicate driver 'intel-mid' removed
- added generic device tree binding for sda holding time (and
designware driver already uses it)
- we tried to allow driver probing with only device tree and no i2c
ids, but I had to revert it because of side effects. Needs some
rethinking.
- driver bugfixes, cleanups...
* 'i2c/for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux: (34 commits)
i2c-designware: use div_u64 to fix link
i2c: Kontron PLD i2c bus driver
i2c: iop3xxx: fix build failure after waitqueue changes
i2c-designware: make SDA hold time configurable
i2c: mv64xxx: Set bus frequency to 100kHz if clock-frequency is not provided
i2c: imx: allow autoloading on dt ids
i2c: mv64xxx: Fix transfer error code
i2c: i801: SMBus patch for Intel Coleto Creek DeviceIDs
i2c: omap: correct usage of the interrupt enable register
i2c-pxa: prepare clock before use
Revert "i2c: core: make it possible to match a pure device tree driver"
i2c: nomadik: allocate adapter number dynamically
i2c: nomadik: support elder Nomadiks
i2c: mv64xxx: Add Allwinner sun4i compatible
i2c: mv64xxx: make the registers offset configurable
i2c: mv64xxx: Add macros to access parts of registers
i2c: vt8500: Add support for I2C bus on Wondermedia SoCs
i2c: designware: fix race between subsequent xfers
i2c: bfin-twi: Read and write the FIFO in loop
i2c: core: make it possible to match a pure device tree driver
...
Merge Kconfig menu diet patches from Dave Hansen:
"I think the "Kernel Hacking" menu has gotten a bit out of hand. It is
over 120 lines long on my system with everything enabled and options
are scattered around it haphazardly.
http://sr71.net/~dave/linux/kconfig-horror.png
Let's try to introduce some sanity. This set takes that 120 lines
down to 55 and makes it vastly easier to find some things. It's a
start.
This set stands on its own, but there is plenty of room for follow-up
patches. The arch-specific debug options still end up getting stuck
in the top-level "kernel hacking" menu. OPTIMIZE_INLINING, for
instance, could obviously go in to the "compiler options" menu, but
the fact that it is defined in arch/ in a separate Kconfig file keeps
it on its own for the moment.
The Signed-off-by's in here look funky. I changed employers while
working on this set, so I have signoffs from both email addresses"
* emailed patches from Dave Hansen <dave@sr71.net>:
hang and lockup detection menu
kconfig: consolidate printk options
group locking debugging options
consolidate compilation option configs
consolidate runtime testing configs
order memory debugging Kconfig options
consolidate per-arch stack overflow debugging options
Original posting:
http://lkml.kernel.org/r/20121214184202.F54094D9@kernel.stglabs.ibm.com
Several architectures have similar stack debugging config options.
They all pretty much do the same thing, some with slightly
differing help text.
This patch changes the architectures to instead enable a Kconfig
boolean, and then use that boolean in the generic Kconfig.debug
to present the actual menu option. This removes a bunch of
duplication and adds consistency across arches.
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com> [for tile]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge first patch-bomb from Andrew Morton:
- various misc bits
- I'm been patchmonkeying ocfs2 for a while, as Joel and Mark have been
distracted. There has been quite a bit of activity.
- About half the MM queue
- Some backlight bits
- Various lib/ updates
- checkpatch updates
- zillions more little rtc patches
- ptrace
- signals
- exec
- procfs
- rapidio
- nbd
- aoe
- pps
- memstick
- tools/testing/selftests updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (445 commits)
tools/testing/selftests: don't assume the x bit is set on scripts
selftests: add .gitignore for kcmp
selftests: fix clean target in kcmp Makefile
selftests: add .gitignore for vm
selftests: add hugetlbfstest
self-test: fix make clean
selftests: exit 1 on failure
kernel/resource.c: remove the unneeded assignment in function __find_resource
aio: fix wrong comment in aio_complete()
drivers/w1/slaves/w1_ds2408.c: add magic sequence to disable P0 test mode
drivers/memstick/host/r592.c: convert to module_pci_driver
drivers/memstick/host/jmb38x_ms: convert to module_pci_driver
pps-gpio: add device-tree binding and support
drivers/pps/clients/pps-gpio.c: convert to module_platform_driver
drivers/pps/clients/pps-gpio.c: convert to devm_* helpers
drivers/parport/share.c: use kzalloc
Documentation/accounting/getdelays.c: avoid strncpy in accounting tool
aoe: update internal version number to v83
aoe: update copyright date
aoe: perform I/O completions in parallel
...
Prepare for removing num_physpages and simplify mem_init().
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com> # for arch/arc
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Rob Herring <rob.herring@calxeda.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Concentrate code to modify totalram_pages into the mm core, so the arch
memory initialized code doesn't need to take care of it. With these
changes applied, only following functions from mm core modify global
variable totalram_pages: free_bootmem_late(), free_all_bootmem(),
free_all_bootmem_node(), adjust_managed_page_count().
With this patch applied, it will be much more easier for us to keep
totalram_pages and zone->managed_pages in consistence.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: <sworddragon2@aol.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>