Now that percpu allocator is mostly stable, there is no reason to
print alloc information with KERN_INFO and clutter the boot messages.
Switch it to KERN_DEBUG.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Mike Travis <travis@sgi.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: update comments to reflect that percpu allocations are always zero-filled
percpu: Optimize __get_cpu_var()
x86, percpu: Optimize this_cpu_ptr
percpu: clear memory allocated with the km allocator
percpu: fix build breakage on s390 and cleanup build configuration tests
percpu: use percpu allocator on UP too
percpu: reduce PCPU_MIN_UNIT_SIZE to 32k
vmalloc: pcpu_get/free_vm_areas() aren't needed on UP
Fixed up trivial conflicts in include/linux/percpu.h
pcpu_first/last_unit_cpu are used to track which cpu has the first and
last units assigned. This in turn is used to determine the span of a
chunk for man/unmap cache flushes and whether an address belongs to
the first chunk or not in per_cpu_ptr_to_phys().
When the number of possible CPUs isn't power of two, a chunk may
contain unassigned units towards the end of a chunk. The logic to
determine pcpu_last_unit_cpu was incorrect when there was an unused
unit at the end of a chunk. It failed to ignore the unused unit and
assigned the unused marker NR_CPUS to pcpu_last_unit_cpu.
This was discovered through kdump failure which was caused by
malfunctioning per_cpu_ptr_to_phys() on a kvm setup with 50 possible
CPUs by CAI Qian.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: CAI Qian <caiqian@redhat.com>
Cc: stable@kernel.org
Commit bbddff05 (percpu: use percpu allocator on UP too) incorrectly
excluded pcpu_build_alloc_info() on SMP configurations which use
generic setup_per_cpu_area() like s390. The config ifdefs are
becoming confusing. Fix and clean it up by,
* Move pcpu_build_alloc_info() right on top of its two users -
pcpu_{embed|page}_first_chunk() which are already in CONFIG_SMP
block.
* Define BUILD_{EMBED|PAGE}_FIRST_CHUNK which indicate whether each
first chunk function needs to be included and use them to control
inclusion of the three functions to reduce confusion.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Sachin Sant <sachinp@in.ibm.com>
On UP, percpu allocations were redirected to kmalloc. This has the
following problems.
* For certain amount of allocations (determined by
PERCPU_DYNAMIC_EARLY_SLOTS and PERCPU_DYNAMIC_EARLY_SIZE), percpu
allocator can be used before the usual kernel memory allocator is
brought online. On SMP, this is used to initialize the kernel
memory allocator.
* percpu allocator honors alignment upto PAGE_SIZE but kmalloc()
doesn't. For example, workqueue makes use of larger alignments for
cpu_workqueues.
Currently, users of percpu allocators need to handle UP differently,
which is somewhat fragile and ugly. Other than small amount of
memory, there isn't much to lose by enabling percpu allocator on UP.
It can simply use kernel memory based chunk allocation which was added
for SMP archs w/o MMUs.
This patch removes mm/percpu_up.c, builds mm/percpu.c on UP too and
makes UP build use percpu-km. As percpu addresses and kernel
addresses are always identity mapped and static percpu variables don't
need any special treatment, nothing is arch dependent and mm/percpu.c
implements generic setup_per_cpu_areas() for UP.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
When pcpu_build_alloc_info() searches best_upa value, it ignores current value
if the number of waste units exceeds 1/3 of the number of total cpus. But the
comment on the code says that it will ignore if wastage is over 25%.
Modify the comment.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The original code did not free the old map. This patch fixes it.
tj: use @old as memcpy source instead of @chunk->map, and indentation
and description update
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@kernel.org
This patch updates percpu allocator such that it can serve limited
amount of allocation before slab comes online. This is primarily to
allow slab to depend on working percpu allocator.
Two parameters, PERCPU_DYNAMIC_EARLY_SIZE and SLOTS, determine how
much memory space and allocation map slots are reserved. If this
reserved area is exhausted, WARN_ON_ONCE() will trigger and allocation
will fail till slab comes online.
The following changes are made to implement early alloc.
* pcpu_mem_alloc() now checks slab_is_available()
* Chunks are allocated using pcpu_mem_alloc()
* Init paths make sure ai->dyn_size is at least as large as
PERCPU_DYNAMIC_EARLY_SIZE.
* Initial alloc maps are allocated in __initdata and copied to
kmalloc'd areas once slab is online.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
In pcpu_build_alloc_info() and pcpu_embed_first_chunk(), @dyn_size was
ssize_t, -1 meant auto-size, 0 forced 0 and positive meant minimum
size. There's no use case for forcing 0 and the upcoming early alloc
support always requires non-zero dynamic size. Make @dyn_size always
mean minimum dyn_size.
While at it, make pcpu_build_alloc_info() static which doesn't have
any external caller as suggested by David Rientjes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
per_cpu_ptr_to_phys() determines whether the passed in @addr belongs
to the first_chunk or not by just matching the address against the
address range of the base unit (unit0, used by cpu0). When an adress
from another cpu was passed in, it will always determine that the
address doesn't belong to the first chunk even when it does. This
makes the function return a bogus physical address which may lead to
crash.
This problem was discovered by Cliff Wickman while investigating a
crash during kdump on a SGI UV system.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Cliff Wickman <cpw@sgi.com>
Tested-by: Cliff Wickman <cpw@sgi.com>
Cc: stable@kernel.org
Fix the following two trivial bugs in pcpu_build_alloc_info()
* we should memset group_cnt to 0 by size of group_cnt, not size of
group_map (both are of the same size, so the bug isn't dangerous)
* we can delete useless variable group_cnt_max.
Signed-off-by: Pavel V. Panteleev <pp_84@mail.ru>
Signed-off-by: Tejun Heo <tj@kernel.org>
Implement an alternate percpu chunk management based on kernel memeory
for nommu SMP architectures. Instead of mapping into vmalloc area,
chunks are allocated as a contiguous kernel memory using
alloc_pages(). As such, percpu allocator on nommu will have the
following restrictions.
* It can't fill chunks on-demand page-by-page. It has to allocate
each chunk fully upfront.
* It can't support sparse chunk for NUMA configurations. SMP w/o mmu
is crazy enough. Let's hope no one does NUMA w/o mmu. :-P
* If chunk size isn't power-of-two multiple of PAGE_SIZE, the
unaligned amount will be wasted on each chunk. So, archs which use
this better align chunk size.
For instructions on how to use this, read the comment on top of
mm/percpu-km.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Howells <dhowells@redhat.com>
Cc: Graff Yang <graff.yang@gmail.com>
Cc: Sonic Zhang <sonic.adi@gmail.com>
Separate out and move chunk management (creation/desctruction and
[de]population) code into percpu-vm.c which is included by percpu.c
and compiled together. The interface for chunk management is defined
as follows.
* pcpu_populate_chunk - populate the specified range of a chunk
* pcpu_depopulate_chunk - depopulate the specified range of a chunk
* pcpu_create_chunk - create a new chunk
* pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
* pcpu_addr_to_page - translate address to physical address
* pcpu_verify_alloc_info - check alloc_info is acceptable during init
Other than wrapping vmalloc_to_page() inside pcpu_addr_to_page() and
dummy pcpu_verify_alloc_info() implementation, this patch only moves
code around. This separation is to allow alternate chunk management
implementation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Howells <dhowells@redhat.com>
Cc: Graff Yang <graff.yang@gmail.com>
Cc: Sonic Zhang <sonic.adi@gmail.com>
Make the following misc preparations for percpu nommu support.
* Remove refernces to vmalloc in common comments as nommu percpu won't
use it.
* Rename chunk->vms to chunk->data and make it void *. Its use is
determined by chunk management implementation.
* Relocate utility functions and add __maybe_unused to functions which
might not be used by different chunk management implementations.
This patch doesn't cause any functional change. This is to allow
alternate chunk management implementation for percpu nommu support.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Howells <dhowells@redhat.com>
Cc: Graff Yang <graff.yang@gmail.com>
Cc: Sonic Zhang <sonic.adi@gmail.com>
Reorganize alloc/free_pcpu_chunk() such that chunk struct alloc/free
live in pcpu_alloc/free_chunk() and the rest in
pcpu_create/destroy_chunk(). While at it, add missing error handling
for chunk->map allocation failure.
This is to allow alternate chunk management implementation for percpu
nommu support.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Howells <dhowells@redhat.com>
Cc: Graff Yang <graff.yang@gmail.com>
Cc: Sonic Zhang <sonic.adi@gmail.com>
Factor out pcpu_addr_in_first/reserved_chunk() from
pcpu_chunk_addr_search() and use it to update per_cpu_ptr_to_phys()
such that it handles first chunk differently from the rest.
This patch doesn't cause any functional change and is to prepare for
percpu nommu support.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Howells <dhowells@redhat.com>
Cc: Graff Yang <graff.yang@gmail.com>
Cc: Sonic Zhang <sonic.adi@gmail.com>
lockdep has custom code to check whether a pointer belongs to static
percpu area which is somewhat broken. Implement proper
is_kernel/module_percpu_address() and replace the custom code.
On UP, percpu variables are regular static variables and can't be
distinguished from them. Always return %false on UP.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@redhat.com>
Add __percpu sparse annotations to core subsystems.
These annotations are to make sparse consider percpu variables to be
in a different address space and warn if accessed without going
through percpu accessors. This patch doesn't affect normal builds.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-mm@kvack.org
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric Biederman <ebiederm@xmission.com>
__pcpu_ptr_to_addr() can be overridden by the architecture and might not
behave well if passed a NULL pointer. So avoid calling it until we have
verified that its arg is not NULL.
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using break statement at the end of a for loop is confusing,
refactor it by replacing the for loop.
Signed-off-by: WANG Cong <amwang@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
o kdump functionality reserves a per cpu area at boot time and exports the
physical address of that area to user space through sys interface. This
area stores some dump related information like cpu register states etc
at the time of crash.
o We were assuming that per cpu area always come from linearly mapped meory
region and using __pa() to determine physical address.
With percpu_alloc=page, per cpu area can come from vmalloc region also and
__pa() breaks.
o This patch implments a new function to convert per cpu address to
physical address.
Before the patch, crash_notes addresses looked as follows.
cpu0 60fffff49800
cpu1 60fffff60800
cpu2 60fffff77800
These are bogus phsyical addresses.
After the patch, address are following.
cpu0 13eb44000
cpu1 13eb43000
cpu2 13eb42000
cpu3 13eb41000
These look fine. I got 4G of memory and /proc/iomem tell me following.
100000000-13fffffff : System RAM
tj: * added missing asm/io.h include reported by Stephen Rothwell
* repositioned per_cpu_ptr_phys() in percpu.c and added comment.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
pcpu_extend_area_map() had the following two bugs.
* It should return 1 if pcpu_lock was dropped and reacquired but it
returned 0. This could lead to oops if free_percpu() races with
area map extension.
* pcpu_mem_free() was called under pcpu_lock. pcpu_mem_free() might
end up calling vfree() which isn't IRQ safe. This could lead to
deadlock through lock order inversion via IRQ.
In addition, Linus pointed out that the temporary lock dropping and
subtle three-way return value of pcpu_extend_area_map() was very ugly
and suggested to split the function into two - pcpu_need_to_extend()
and pcpu_extend_area_map().
This patch restructures pcpu_extend_area_map() as suggested and fixes
the two bugs.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Make the following changes to remove some sparse warnings.
* Make DEFINE_PER_CPU_SECTION() declare __pcpu_unique_* before
defining it.
* Annotate pcpu_extend_area_map() that it is entered with pcpu_lock
held, releases it and then reacquires it.
* Make percpu related macros use unique nested variable names.
* While at it, add pcpu prefix to __size_call[_return]() macros as
to-be-implemented sparse annotations will add percpu specific stuff
to these macros.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
pcpu_alloc() and pcpu_extend_area_map() perform a series of
spin_lock_irq()/spin_unlock_irq() calls, which make them unsafe
with respect to being called from contexts which have IRQs off.
This patch converts the code to perform save/restore of flags instead,
making pcpu_alloc() (or __alloc_percpu() respectively) to be called
from early kernel startup stage, where IRQs are off.
This is needed for proper initialization of per-cpu rq_weight data from
sched_init().
tj: added comment explaining why irqsave/restore is used in alloc path.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Tejun Heo <tj@kernel.org>
Fix the following two compile warnings which show up on i386.
mm/percpu.c:1873: warning: comparison of distinct pointer types lacks a cast
mm/percpu.c:1879: warning: format '%lx' expects type 'long unsigned int', but argument 2 has type 'size_t'
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
With ia64 converted, there's no arch left which still uses legacy
percpu allocator. Kill it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Delightedly-acked-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Warn and dump stack when percpu allocation fails. percpu allocator is
still young and unchecked NULL percpu pointer usage can result in
random memory corruption when combined with the pointer shifting in
access macros. Allocation failures should be rare and the warning
message will be disabled after certain times.
Signed-off-by: Tejun Heo <tj@kernel.org>
The parameters to pcpu_setup_first_chunk() come from different sources
depending on architecture and can be quite complex. The function runs
various sanity checks on the parameters and triggers BUG() if
something isn't right. However, this is very early during the boot
and not reporting exactly what the problem is makes debugging even
harder.
Add PCPU_SETUP_BUG() macro which prints out enough information about
the parameters. As the macro still puts separate BUG() for each
check, it won't lose any information even on the situations where only
the program counter can be retrieved.
While at it, also bump pcpu_dump_alloc_info() message to KERN_INFO so
that it's visible on the console if boot fails to complete.
Signed-off-by: Tejun Heo <tj@kernel.org>
Embedding first chunk allocator maintains the distances between units
in the vmalloc area and thus needs vmalloc space to be larger than the
maximum distances between units; otherwise, it wouldn't be able to
create any dynamic chunks. This patch makes the embedding first chunk
allocator check vmalloc space size and if the maximum distance between
units is larger than 75% of it, print warning and, if page mapping
allocator is available, fail initialization so that the system falls
back onto it.
This should work around percpu allocation failure problems on certain
sparc64 configurations where distances between NUMA nodes are larger
than the vmalloc area and makes percpu allocator more robust for
future configurations.
Signed-off-by: Tejun Heo <tj@kernel.org>
pcpu_build_alloc_info() may be called multiple times when percpu is
falling back to different first chunk allocator. Make it clear static
buffers so that they don't contain values from previous runs.
Signed-off-by: Tejun Heo <tj@kernel.org>
pcpu_setup_first_chunk() incorrectly used NR_CPUS as the impossible
unit number while unit number can equal and go over NR_CPUS with
sparse unit map. This triggers BUG_ON() spuriously on machines which
have non-power-of-two number of cpus. Use UINT_MAX instead.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Tony Vroon <tony@linx.net>
percpu incorrectly assumed that cpu0 was always there which led to the
following warning and eventual oops on sparc machines w/o cpu0.
WARNING: at mm/percpu.c:651 pcpu_map+0xdc/0x100()
Modules linked in:
Call Trace:
[000000000045eb70] warn_slowpath_common+0x50/0xa0
[000000000045ebdc] warn_slowpath_null+0x1c/0x40
[00000000004d493c] pcpu_map+0xdc/0x100
[00000000004d59a4] pcpu_alloc+0x3e4/0x4e0
[00000000004d5af8] __alloc_percpu+0x18/0x40
[00000000005b112c] __percpu_counter_init+0x4c/0xc0
...
Unable to handle kernel NULL pointer dereference
...
I7: <sysfs_new_dirent+0x30/0x120>
Disabling lock debugging due to kernel taint
Caller[000000000053c1b0]: sysfs_new_dirent+0x30/0x120
Caller[000000000053c7a4]: create_dir+0x24/0xc0
Caller[000000000053c870]: sysfs_create_dir+0x30/0x80
Caller[00000000005990e8]: kobject_add_internal+0xc8/0x200
...
Kernel panic - not syncing: Attempted to kill the idle task!
This patch fixes the problem by backporting parts from devel branch to
make percpu core not depend on the existence of cpu0.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Meelis Roos <mroos@linux.ee>
Cc: David Miller <davem@davemloft.net>
With x86 converted to embedding allocator, lpage doesn't have any user
left. Kill it along with cpa handling code.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jan Beulich <JBeulich@novell.com>
Now that percpu core can handle very sparse units, given that vmalloc
space is large enough, embedding first chunk allocator can use any
memory to build the first chunk. This patch teaches
pcpu_embed_first_chunk() about distances between cpus and to use
alloc/free callbacks to allocate node specific areas for each group
and use them for the first chunk.
This brings the benefits of embedding allocator to NUMA configurations
- no extra TLB pressure with the flexibility of unified dynamic
allocator and no need to restructure arch code to build memory layout
suitable for percpu. With units put into atom_size aligned groups
according to cpu distances, using large page for dynamic chunks is
also easily possible with falling back to reuglar pages if large
allocation fails.
Embedding allocator users are converted to specify NULL
cpu_distance_fn, so this patch doesn't cause any visible behavior
difference. Following patches will convert them.
Signed-off-by: Tejun Heo <tj@kernel.org>
ai->groups[] contains which units need to be put consecutively and at
what offset from the chunk base address. Compile this information
into pcpu_group_offsets[] and pcpu_group_sizes[] in
pcpu_setup_first_chunk() and use them to allocate sparse vm areas
using pcpu_get_vm_areas().
This will be used to allow directly using sparse NUMA memories as
percpu areas.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <npiggin@suse.de>
The only thing percpu allocator wants to know about a vmalloc area is
the base address. Instead of requiring chunk->vm, add
chunk->base_addr which contains the necessary value. This simplifies
the code a bit and makes the dummy first_vm unnecessary. This change
will ease allowing a chunk to be mapped by multiple vms.
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently units are mapped sequentially into address space. This
patch adds pcpu_unit_offsets[] which allows units to be mapped to
arbitrary offsets from the chunk base address. This is necessary to
allow sparse embedding which might would need to allocate address
ranges and memory areas which aren't aligned to unit size but
allocation atom size (page or large page size). This also simplifies
things a bit by removing the need to calculate offset from unit
number.
With this change, there's no need for the arch code to know
pcpu_unit_size. Update pcpu_setup_first_chunk() and first chunk
allocators to return regular 0 or -errno return code instead of unit
size or -errno.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David S. Miller <davem@davemloft.net>
Till now, non-linear cpu->unit map was expressed using an integer
array which maps each cpu to a unit and used only by lpage allocator.
Although how many units have been placed in a single contiguos area
(group) is known while building unit_map, the information is lost when
the result is recorded into the unit_map array. For lpage allocator,
as all allocations are done by lpages and whether two adjacent lpages
are in the same group or not is irrelevant, this didn't cause any
problem. Non-linear cpu->unit mapping will be used for sparse
embedding and this grouping information is necessary for that.
This patch introduces pcpu_alloc_info which contains all the
information necessary for initializing percpu allocator.
pcpu_alloc_info contains array of pcpu_group_info which describes how
units are grouped and mapped to cpus. pcpu_group_info also has
base_offset field to specify its offset from the chunk's base address.
pcpu_build_alloc_info() initializes this field as if all groups are
allocated back-to-back as is currently done but this will be used to
sparsely place groups.
pcpu_alloc_info is a rather complex data structure which contains a
flexible array which in turn points to nested cpu_map arrays.
* pcpu_alloc_alloc_info() and pcpu_free_alloc_info() are provided to
help dealing with pcpu_alloc_info.
* pcpu_lpage_build_unit_map() is updated to build pcpu_alloc_info,
generalized and renamed to pcpu_build_alloc_info().
@cpu_distance_fn may be NULL indicating that all cpus are of
LOCAL_DISTANCE.
* pcpul_lpage_dump_cfg() is updated to process pcpu_alloc_info,
generalized and renamed to pcpu_dump_alloc_info(). It now also
prints which group each alloc unit belongs to.
* pcpu_setup_first_chunk() now takes pcpu_alloc_info instead of the
separate parameters. All first chunk allocators are updated to use
pcpu_build_alloc_info() to build alloc_info and call
pcpu_setup_first_chunk() with it. This has the side effect of
packing units for sparse possible cpus. ie. if cpus 0, 2 and 4 are
possible, they'll be assigned unit 0, 1 and 2 instead of 0, 2 and 4.
* x86 setup_pcpu_lpage() is updated to deal with alloc_info.
* sparc64 setup_per_cpu_areas() is updated to build alloc_info.
Although the changes made by this patch are pretty pervasive, it
doesn't cause any behavior difference other than packing of sparse
cpus. It mostly changes how information is passed among
initialization functions and makes room for more flexibility.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Unit map handling will be generalized and extended and used for
embedding sparse first chunk and other purposes. Relocate two
unit_map related functions upward in preparation. This patch just
moves the code without any actual change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that all actual first chunk allocation and copying happen in the
first chunk allocators and helpers, there's no reason for
pcpu_setup_first_chunk() to try to determine @dyn_size automatically.
The only left user is page first chunk allocator. Make it determine
dyn_size like other allocators and make @dyn_size mandatory for
pcpu_setup_first_chunk().
Signed-off-by: Tejun Heo <tj@kernel.org>
First chunk allocators assume percpu areas have been linked using one
of PERCPU_*() macros and depend on __per_cpu_load symbol defined by
those macros, so there isn't much point in passing in static area size
explicitly when it can be easily calculated from __per_cpu_start and
__per_cpu_end. Drop @static_size from all percpu first chunk
allocators and helpers.
Signed-off-by: Tejun Heo <tj@kernel.org>