Commit c98929c07a removed the clearing of the FPSCR[31:28] bits from the
vfp_raise_exceptions() function and the new bits are or'ed with the old
FPSCR bits leading to unexpected results (the original commit was
referring to the cumulative bits - FPSCR[4:0]).
Reported-by: Tom Hameenanttila <tmhameen@marvell.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This avoids races in the VFP code where the dead thread may have
state on another CPU. By moving this code to exit_thread(), we
will be running as the thread, and therefore be running on the
current CPU.
This means that we can ensure that the only local state is accessed
in the thread notifiers.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When the VFP notifier is called for flush_thread(), we may be
preemptible, meaning we might migrate to another CPU, which means
referencing the current CPU number without some form of locking is
invalid, and can cause data corruption.
For the most cases, this isn't a problem since atomic notifiers are run
under rcu lock, which for most configurations results in preemption
being disabled - except when the preemptable tree-based rcu
implementation is selected.
Let's make it safe anyway.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Since the Thumb-2 instructions can be 16-bit wide, data in the .text
sections may not be aligned to a 32-bit word and this leads to unaligned
exceptions. This patch does not affect the ARM code generation.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This CPU generates synchronous VFP exceptions in a non-standard way -
the FPEXC.EX bit set but without the FPSCR.IXE bit being set like in the
VFP subarchitecture 1 or just the FPEXC.DEX bit like in VFP
subarchitecture 2. The main problem is that the faulty instruction
(which needs to be emulated in software) will be restarted several times
(normally until a context switch disables the VFP). This patch ensures
that the VFP exception is treated as synchronous.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Nicolas Pitre <nico@cam.org>
We've observed that ARM VFP state can be corrupted during VFP exception
handling when PREEMPT is enabled. The exact conditions are difficult
to reproduce but appear to occur during VFP exception handling when a
task causes a VFP exception which is handled via VFP_bounce and is then
preempted by yet another task which in turn causes yet another VFP
exception. Since the VFP_bounce code is not preempt safe, VFP state then
becomes corrupt. In order to prevent preemption from occuring while
handling a VFP exception, this patch disables preemption while handling
VFP exceptions.
Signed-off-by: George G. Davis <gdavis@mvista.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The VFPv3D16 is a VFPv3 CPU configuration where only 16 double registers
are present, as the VFPv2 configuration. This patch adds the
corresponding hwcap bits so that applications or debuggers have more
information about the supported features.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch adds ptrace support for setting and getting the VFP registers
using PTRACE_SETVFPREGS and PTRACE_GETVFPREGS. The user_vfp structure
defined in asm/user.h contains 32 double registers (to cover VFPv3 and
Neon hardware) and the FPSCR register.
Cc: Paul Brook <paul@codesourcery.com>
Cc: Daniel Jacobowitz <dan@codesourcery.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When CONFIG_PM is selected, the VFP code does not have any handler
installed to deal with either saving the VFP state of the current
task, nor does it do anything to try and restore the VFP after a
resume.
On resume, the VFP will have been reset and the co-processor access
control registers are in an indeterminate state (very probably the
CP10 and CP11 the VFP uses will have been disabled by the ARM core
reset). When this happens, resume will break as soon as it tries to
unfreeze the tasks and restart scheduling.
Add a sys device to allow us to hook the suspend call to save the
current thread state if the thread is using VFP and a resume hook
which restores the CP10/CP11 access and ensures the VFP is disabled
so that the lazy swapping will take place on next access.
Signed-off-by: Ben Dooks <ben-linux@fluff.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On ARMv7, conditional undefined instructions may generate exceptions
even if the condition is not met. The vfphw.S contains the FPINST and
FPINST2 access instructions which may not be present on processors with
synchronous VFP exceptions.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This declaration specifies the "function" type and size for various
assembly functions, mainly needed for generating the correct branch
instructions in Thumb-2.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
It's never used and the comments refer to nonatomic and retry
interchangably. So get rid of it.
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This patch adds the support for VFPv3 (the kernel currently supports
VFPv2). The main difference is 32 double registers (compared to 16).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch allows the VFP support code to run correctly on CPUs
compatible with the common VFP subarchitecture specification (Appendix
B in the ARM ARM v7-A and v7-R edition). It implements support for VFP
subarchitecture 2 while being backwards compatible with
subarchitecture 1.
On VFP subarchitecture 1, the arithmetic exceptions are asynchronous
(or imprecise as described in the old ARM ARM) unless the FPSCR.IXE
bit is 1. The exceptional instructions can be read from FPINST and
FPINST2 registers. With VFP subarchitecture 2, the arithmetic
exceptions can also be synchronous and marked by the FPEXC.DEX bit
(the FPEXC.EX bit is cleared). CPUs implementing the synchronous
arithmetic exceptions don't have the FPINST and FPINST2 registers and
accessing them would trigger and undefined exception.
Note that FPEXC.EX bit has an additional meaning on subarchitecture 1
- if it isn't set, there is no additional information in FPINST and
FPINST2 that needs to be saved at context switch or when lazy-loading
the VFP state of a different thread.
The patch also removes the clearing of the cumulative exception flags in
FPSCR when additional exceptions were raised. It is up to the user
application to clear these bits.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
These two instructions exceptionally take a single precision register
as their operand. This means we can't use vfp_get_dm() to read the
register number - we need to use vfp_get_sm() instead. Add a flag to
indicate this exception to the general rule.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The vector stride of the double-precision vector instructions must be changed
to 1-2 from even 2-4, because the double registers numbering has been
changed to 0-15 from even 0-30 by
1356c1948da967bc1d4c663762bfe21dfcec4b2f commit.
Signed-off-by: Takashi Ohmasa <ohmasa.takashi@jp.panasonic.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
All exception flags of the FPEXC register must be cleared before
returning from exception code to user code, including FP2V and OFC.
Signed-off-by: Takashi Ohmasa <ohmasa.takashi@jp.panasonic.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The variable AFLAGS is a wellknown variable and the usage by
kbuild may result in unexpected behaviour.
On top of that several people over time has asked for a way to
pass in additional flags to gcc.
This patch replace use of AFLAGS with KBUILD_AFLAGS all over
the tree.
Patch was tested on following architectures:
alpha, arm, i386, x86_64, mips, sparc, sparc64, ia64, m68k, s390
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
vfp_init() takes care of the condition when CONFIG_VFP=y but no real VFP
device exists. However, when this condition is true, a compiler might
misplace code lines in a way that will break this support. (To be more
specific - fmrx(FPSID) might be executed before vfp_testing_entry
assignment, which will end up with Oops - undefined instruction).
This patch adds a barrier() to guarantee the right execution ordering.
Signed-off-by: Assaf Hoffman
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Fix a real section mismatch issue; the test code is thrown away after
initialisation, but if we do not detect the VFP hardware, it is left
hooked into the exception handler. Any VFP instructions which are
subsequently executed risk calling the discarded exception handler.
Introduce a new "null" handler which returns to the "unrecognised
fault" return address.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The current lazy saving of the VFP registers is no longer possible
with thread migration on SMP. This patch implements a per-CPU
vfp-state pointer and the saving of the VFP registers at every context
switch. The registers restoring is still performed in a lazy way.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When we install the handlers for context switching, we must enable
VFP on all CPU cores, otherwise undefined (and random) effects
occur.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Don't set HWCAP_VFP in the processor support file; not only does it
depend on the processor features, but it also depends on the support
code being present. Therefore, only set it if the support code
detects that we have a VFP coprocessor attached.
Also, move the VFP handling of the coprocessor access register into
the VFP support code.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The SIGFPE signal should be generated if Division by Zero exception is detected.
Signed-off-by: Takashi Ohmasa <ohmasa.takashi@jp.panasonic.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The significand should be shifted until the value of bit [62] is 1
to normalize the denormal double number.
Signed-off-by: Takashi Ohmasa <ohmasa.takashi@jp.panasonic.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
It looks like Zach Brown's patch pr_debug-check-pr_debug-arguments
worked as inteded. That is, it doesn't "allow completely incorrect code
to build." :).
The arm build fails with the following message:
CC arch/arm/vfp/vfpsingle.o
arch/arm/vfp/vfpsingle.c: In function `__vfp_single_normaliseround':
arch/arm/vfp/vfpsingle.c:201: error: `func' undeclared (first use in
this function)
arch/arm/vfp/vfpsingle.c:201: error: (Each undeclared identifier is
reported only once
arch/arm/vfp/vfpsingle.c:201: error: for each function it appears in.)
make[1]: *** [arch/arm/vfp/vfpsingle.o] Error 1
make: *** [arch/arm/vfp] Error 2
The following patch fixes the issue by using func only when DEBUG is
defined.
Signed-off-by: Frederik Deweerdt <frederik.deweerdt@gmail.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Zach Brown <zach.brown@oracle.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- Document the meaning for OP_SCALAR, OP_SD and add OP_DD.
- Formatting cleanups
- Remove now redundant code for making compare instructions
operate on scalar values.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
VECITR in Floating-Point Exception register indicates the number of
remaining short vector iterations after a potential exception was
detected.
In case of exception caused by scalar instructions, VECITR is NOT updated.
Therefore emulation for VFP must ignore VECITR field
and treat "veclen" as zero when recognizing scalar instructing.
Signed-off-by: Gen Fukatsu <fukatsu.gen@jp.panasonic.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Daniel Jacobowitz
The ARM kernel has several uses of asm("foo%?"). %? is a GCC internal
modifier used to output conditional execution predicates. However, no
version of GCC supports conditionalizing asm statements. GCC 4.2 will
correctly expand %? to the empty string in user asms. Earlier versions may
reuse the condition from the previous instruction. In 'if (foo) asm
("bar%?");' this is somewhat likely to be right... but not reliable.
So, the only safe thing to do is to remove the uses of %?. I believe
the tlbflush.h occurances were supposed to be removed before, based
on the comment about %? not working at the top of that file.
Old versions of GCC could omit branches around user asms if the asm didn't
mark the condition codes as clobbered. This problem hasn't been seen on any
recent (3.x or 4.x) GCC, but it could theoretically happen. So, where
%? was removed a cc clobber was added.
Signed-off-by: Daniel Jacobowitz <dan@codesourcery.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The common case for the thread notifier is a context switch. Tell
gcc that this is the most likely condition so it can optimise the
function for this case.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Daniel Jacobowitz
vfp_put_double didn't work in a CONFIG_AEABI kernel. By swapping
the arguments, we arrange for them to be in the same place regardless
of ABI. I made the same change to vfp_put_float for consistency.
Signed-off-by: Daniel Jacobowitz <dan@codesourcery.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Daniel Jacobowitz
The fcvtds and fcvtsd instructions were generating a qnan bit pattern
for both quiet and signalling NaNs.
Signed-off-by: Daniel Jacobowitz <dan@codesourcery.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Daniel Jacobowitz
The fcvtsd/fcvtds emulation was left behind when the numbering of double
precision registers was changed from 0-30 to 0-15. Both conversion
instructions were writing their results to the wrong register. Also,
the conversion instructions should stop after the first element even
if a vector length is specified.
Signed-off-by: Daniel Jacobowitz <dan@codesourcery.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Daniel Jacobowitz
The recent fix to hide VFP_NAN_FLAG broke the check in vfp_raise_exceptions;
it would attempt to deliver an exception mask of 0xfffffeff instead of reporting
a serious error condition using printk. Define a safe constant to use for
an invalid exception maskm, and use it at both ends.
Signed-off-by: Daniel Jacobowitz <dan@codesourcery.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Since we pass flags to the compiler to control code generation based
on the least capable selected CPU, if we want to include VFP support,
we must tweak the assembler flags to allow the VFP instructions.
Moreover, we must not use the mrrc/mcrr versions since these will not
be recognised by the assembler.
We do not convert all instructions to the VFP-equivalent (yet) since
binutils appears to barf on "fmrx rn, fpinst" and doesn't provide any
other way (other than using the mrc equivalent) to encode this
instruction - which is rather a problem when you have a VFP
implementation which requires these instructions.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Some machine classes need to allow VFP support to be built into the
kernel, but still allow the kernel to run even though VFP isn't
present. Unfortunately, the kernel hard-codes VFP instructions
into the thread switch, which prevents this being run-time selectable.
Solve this by introducing a notifier which things such as VFP can
hook into to be informed of events which affect the VFP subsystem
(eg, creation and destruction of threads, switches between threads.)
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from George G. Davis
The ARM VFP FPSCR register is corrupted when a condition flags modifying
VFP instruction is followed by a non-condition flags modifying VFP
instruction and both instructions raise exceptions. The fix is to
read the current FPSCR in between emulation of these two instructions
and use the current FPSCR value when handling the second exception.
Signed-off-by: George G. Davis <gdavis@mvista.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The VFP code can leak VFP_NAN_FLAG into the FPSCR. It doesn't correspond
to any real FPSCR bit (and overlaps one of the exception flags).
Bug report from Daniel Jacobowitz
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Catalin Marinas
This patch changes the double registers numbering to 0-15 from even 0-30,
in preparation for future VFP extensions. It also fixes the VFP_REG_ZERO
bug (value 16 actually represents the 8th double register with the original
numbering).
The original mcrr/mrrc on CP10 were generating FMRRS/FMSRR instead of
FMRRD/FMDRR. The patch changes to CP11 for the correct instructions.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Catalin Marinas
The NaN case was dealed with by the "exponent >= ... + 32" condition but it
was not setting the value "d" to 0.
Signed-off-by: Ken'ichi Kuromusha <musha@aplix.co.jp>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Catalin Marinas
The current VFP code corrupts the VFP registers (including the control
ones) if more than one floating point application is executed at the same
time. This patch fixes the updating of the load/store base addresses for
the VFP registers.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
5d25ac038a317d454a4321cba955f756400835a5 broke VFP builds due to
enable_irq not being defined as an assembly macro. Move it to
assembler.h so everyone can use it.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Allow the individual coprocessor handlers to decide when to enable
interrupts, rather than unconditionally enabling them.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>