Commit db64fe02258f ("mm: rewrite vmap layer") introduced code that does
address calculations under the assumption that VMAP_BLOCK_SIZE is a
power of two. However, this might not be true if CONFIG_NR_CPUS is not
set to a power of two.
Wrong vmap_block index/offset values could lead to memory corruption.
However, this has never been observed in practice (or never been
diagnosed correctly); what caught this was the BUG_ON in vb_alloc() that
checks for inconsistent vmap_block indices.
To fix this, ensure that VMAP_BLOCK_SIZE always is a power of two.
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=31572
Reported-by: Pavel Kysilka <goldenfish@linuxsoft.cz>
Reported-by: Matias A. Fonzo <selk@dragora.org>
Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Krzysztof Helt <krzysztof.h1@poczta.fm>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: 2.6.28+ <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 8521fc50d433507a7cdc96bec280f9e5888a54cc.
The patch incorrectly assumes that using atomic FLUSHING_CACHED_CHARGE
bit operations is sufficient but that is not true. Johannes Weiner has
reported a crash during parallel memory cgroup removal:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: [<ffffffff81083b70>] css_is_ancestor+0x20/0x70
Oops: 0000 [#1] PREEMPT SMP
Pid: 19677, comm: rmdir Tainted: G W 3.0.0-mm1-00188-gf38d32b #35 ECS MCP61M-M3/MCP61M-M3
RIP: 0010:[<ffffffff81083b70>] css_is_ancestor+0x20/0x70
RSP: 0018:ffff880077b09c88 EFLAGS: 00010202
Process rmdir (pid: 19677, threadinfo ffff880077b08000, task ffff8800781bb310)
Call Trace:
[<ffffffff810feba3>] mem_cgroup_same_or_subtree+0x33/0x40
[<ffffffff810feccf>] drain_all_stock+0x11f/0x170
[<ffffffff81103211>] mem_cgroup_force_empty+0x231/0x6d0
[<ffffffff811036c4>] mem_cgroup_pre_destroy+0x14/0x20
[<ffffffff81080559>] cgroup_rmdir+0xb9/0x500
[<ffffffff81114d26>] vfs_rmdir+0x86/0xe0
[<ffffffff81114e7b>] do_rmdir+0xfb/0x110
[<ffffffff81114ea6>] sys_rmdir+0x16/0x20
[<ffffffff8154d76b>] system_call_fastpath+0x16/0x1b
We are crashing because we try to dereference cached memcg when we are
checking whether we should wait for draining on the cache. The cache is
already cleaned up, though.
There is also a theoretical chance that the cached memcg gets freed
between we test for the FLUSHING_CACHED_CHARGE and dereference it in
mem_cgroup_same_or_subtree:
CPU0 CPU1 CPU2
mem=stock->cached
stock->cached=NULL
clear_bit
test_and_set_bit
test_bit() ...
<preempted> mem_cgroup_destroy
use after free
The percpu_charge_mutex protected from this race because sync draining
is exclusive.
It is safer to revert now and come up with a more parallel
implementation later.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
deactivate_slab() has the comparison if more than the minimum number of
partial pages are in the partial list wrong. An effect of this may be that
empty pages are not freed from deactivate_slab(). The result could be an
OOM due to growth of the partial slabs per node. Frees mostly occur from
__slab_free which is okay so this would only affect use cases where a lot
of switching around of per cpu slabs occur.
Switching per cpu slabs occurs with high frequency if debugging options are
enabled.
Reported-and-tested-by: Xiaotian Feng <xtfeng@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The check_bytes() function is used by slub debugging. It returns a pointer
to the first unmatching byte for a character in the given memory area.
If the character for matching byte is greater than 0x80, check_bytes()
doesn't work. Becuase 64-bit pattern is generated as below.
value64 = value | value << 8 | value << 16 | value << 24;
value64 = value64 | value64 << 32;
The integer promotions are performed and sign-extended as the type of value
is u8. The upper 32 bits of value64 is 0xffffffff in the first line, and
the second line has no effect.
This fixes the 64-bit pattern generation.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Matt Mackall <mpm@selenic.com>
Reviewed-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
slab, lockdep: Annotate the locks before using them
lockdep: Clear whole lockdep_map on initialization
slab, lockdep: Annotate slab -> rcu -> debug_object -> slab
lockdep: Fix up warning
lockdep: Fix trace_hardirqs_on_caller()
futex: Fix regression with read only mappings
Lockdep thinks there's lock recursion through:
kmem_cache_free()
cache_flusharray()
spin_lock(&l3->list_lock) <----------------.
free_block() |
slab_destroy() |
call_rcu() |
debug_object_activate() |
debug_object_init() |
__debug_object_init() |
kmem_cache_alloc() |
cache_alloc_refill() |
spin_lock(&l3->list_lock) --'
Now debug objects doesn't use SLAB_DESTROY_BY_RCU and hence there is no
actual possibility of recursing. Luckily debug objects marks it slab
with SLAB_DEBUG_OBJECTS so we can identify the thing.
Mark all SLAB_DEBUG_OBJECTS (all one!) slab caches with a special
lockdep key so that lockdep sees its a different cachep.
Also add a WARN on trying to create a SLAB_DESTROY_BY_RCU |
SLAB_DEBUG_OBJECTS cache, to avoid possible future trouble.
Reported-and-tested-by: Sebastian Siewior <sebastian@breakpoint.cc>
[ fixes to the initial patch ]
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311341165.27400.58.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'apei-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6:
ACPI, APEI, EINJ Param support is disabled by default
APEI GHES: 32-bit buildfix
ACPI: APEI build fix
ACPI, APEI, GHES: Add hardware memory error recovery support
HWPoison: add memory_failure_queue()
ACPI, APEI, GHES, Error records content based throttle
ACPI, APEI, GHES, printk support for recoverable error via NMI
lib, Make gen_pool memory allocator lockless
lib, Add lock-less NULL terminated single list
Add Kconfig option ARCH_HAVE_NMI_SAFE_CMPXCHG
ACPI, APEI, Add WHEA _OSC support
ACPI, APEI, Add APEI bit support in generic _OSC call
ACPI, APEI, GHES, Support disable GHES at boot time
ACPI, APEI, GHES, Prevent GHES to be built as module
ACPI, APEI, Use apei_exec_run_optional in APEI EINJ and ERST
ACPI, APEI, Add apei_exec_run_optional
ACPI, APEI, GHES, Do not ratelimit fatal error printk before panic
ACPI, APEI, ERST, Fix erst-dbg long record reading issue
ACPI, APEI, ERST, Prevent erst_dbg from loading if ERST is disabled
Make the radix_tree exceptional cases, mostly in filemap.c, clearer.
It's hard to devise a suitable snappy name that illuminates the use by
shmem/tmpfs for swap, while keeping filemap/pagecache/radix_tree
generality. And akpm points out that /* radix_tree_deref_retry(page) */
comments look like calls that have been commented out for unknown
reason.
Skirt the naming difficulty by rearranging these blocks to handle the
transient radix_tree_deref_retry(page) case first; then just explain the
remaining shmem/tmpfs swap case in a comment.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have already acknowledged that swapoff of a tmpfs file is slower than
it was before conversion to the generic radix_tree: a little slower
there will be acceptable, if the hotter paths are faster.
But it was a shock to find swapoff of a 500MB file 20 times slower on my
laptop, taking 10 minutes; and at that rate it significantly slows down
my testing.
Now, most of that turned out to be overhead from PROVE_LOCKING and
PROVE_RCU: without those it was only 4 times slower than before; and
more realistic tests on other machines don't fare as badly.
I've tried a number of things to improve it, including tagging the swap
entries, then doing lookup by tag: I'd expected that to halve the time,
but in practice it's erratic, and often counter-productive.
The only change I've so far found to make a consistent improvement, is
to short-circuit the way we go back and forth, gang lookup packing
entries into the array supplied, then shmem scanning that array for the
target entry. Scanning in place doubles the speed, so it's now only
twice as slow as before (or three times slower when the PROVEs are on).
So, add radix_tree_locate_item() as an expedient, once-off,
single-caller hack to do the lookup directly in place. #ifdef it on
CONFIG_SHMEM and CONFIG_SWAP, as much to document its limited
applicability as save space in other configurations. And, sadly,
#include sched.h for cond_resched().
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove PageSwapBacked (!page_is_file_cache) cases from
add_to_page_cache_locked() and add_to_page_cache_lru(): those pages now
go through shmem_add_to_page_cache().
Remove a comment on maximum tmpfs size from fsstack_copy_inode_size(),
and add a comment on swap entries to invalidate_mapping_pages().
And mincore_page() uses find_get_page() on what might be shmem or a
tmpfs file: allow for a radix_tree_exceptional_entry(), and proceed to
find_get_page() on swapper_space if so (oh, swapper_space needs #ifdef).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
But we've not yet removed the old swp_entry_t i_direct[16] from
shmem_inode_info. That's because it was still being shared with the
inline symlink. Remove it now (saving 64 or 128 bytes from shmem inode
size), and use kmemdup() for short symlinks, say, those up to 128 bytes.
I wonder why mpol_free_shared_policy() is done in shmem_destroy_inode()
rather than shmem_evict_inode(), where we usually do such freeing? I
guess it doesn't matter, and I'm not into NUMA mpol testing right now.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert shmem_writepage() to use shmem_delete_from_page_cache() to use
shmem_radix_tree_replace() to substitute swap entry for page pointer
atomically in the radix tree.
As with shmem_add_to_page_cache(), it's not entirely satisfactory to be
copying such code from delete_from_swap_cache, but again judged easier
to sell than making its other callers go through the extras.
Remove the toy implementation's shmem_put_swap() and shmem_get_swap(),
now unreferenced, and the hack to disable swap: it's now good to go.
The way things have worked out, info->lock no longer helps to guard the
shmem_swaplist: we increment swapped under shmem_swaplist_mutex only.
That global mutex exclusion between shmem_writepage() and shmem_unuse()
is not pretty, and we ought to find another way; but it's been forced on
us by recent race discoveries, not a consequence of this patchset.
And what has become of the WARN_ON_ONCE(1) free_swap_and_cache() if a
swap entry was found already present? That's no longer possible, the
(unknown) one inserting this page into filecache would hit the swap
entry occupying that slot.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove mem_cgroup_shmem_charge_fallback(): it was only required when we
had to move swappage to filecache with GFP_NOWAIT.
Remove the GFP_NOWAIT special case from mem_cgroup_cache_charge(), by
moving its call out from shmem_add_to_page_cache() to two of thats three
callers. But leave it doing mem_cgroup_uncharge_cache_page() on error:
although asymmetrical, it's easier for all 3 callers to handle.
These two changes would also be appropriate if anyone were to start
using shmem_read_mapping_page_gfp() with GFP_NOWAIT.
Remove mem_cgroup_get_shmem_target(): mc_handle_file_pte() can test
radix_tree_exceptional_entry() to get what it needs for itself.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert shmem_getpage_gfp(), the engine-room of shmem, to expect page or
swap entry returned from radix tree by find_lock_page().
Whereas the repetitive old method proceeded mainly under info->lock,
dropping and repeating whenever one of the conditions needed was not
met, now we can proceed without it, leaving shmem_add_to_page_cache() to
check for a race.
This way there is no need to preallocate a page, no need for an early
radix_tree_preload(), no need for mem_cgroup_shmem_charge_fallback().
Move the error unwinding down to the bottom instead of repeating it
throughout. ENOSPC handling is a little different from before: there is
no longer any race between find_lock_page() and finding swap, but we can
arrive at ENOSPC before calling shmem_recalc_inode(), which might
occasionally discover freed space.
Be stricter to check i_size before returning. info->lock is used for
little but alloced, swapped, i_blocks updates. Move i_blocks updates
out from under the max_blocks check, so even an unlimited size=0 mount
can show accurate du.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert shmem_unuse_inode() to use a lockless gang lookup of the radix
tree, searching for matching swap.
This is somewhat slower than the old method: because of repeated radix
tree descents, because of copying entries up, but probably most because
the old method noted and skipped once a vector page was cleared of swap.
Perhaps we can devise a use of radix tree tagging to achieve that later.
shmem_add_to_page_cache() uses shmem_radix_tree_replace() to compensate
for the lockless lookup by checking that the expected entry is in place,
under lock. It is not very satisfactory to be copying this much from
add_to_page_cache_locked(), but I think easier to sell than insisting
that every caller of add_to_page_cache*() go through the extras.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Disable the toy swapping implementation in shmem_writepage() - it's hard
to support two schemes at once - and convert shmem_truncate_range() to a
lockless gang lookup of swap entries along with pages, freeing both.
Since the second loop tightens its noose until all entries of either
kind have been squeezed out (and we shall make sure that there's not an
instant when neither is visible), there is no longer a need for yet
another pass below.
shmem_radix_tree_replace() compensates for the lockless lookup by
checking that the expected entry is in place, under lock, before
replacing it. Here it just deletes, but will be used in later patches
to substitute swap entry for page or page for swap entry.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bring truncate.c's code for truncate_inode_pages_range() inline into
shmem_truncate_range(), replacing its first call (there's a followup
call below, but leave that one, it will disappear next).
Don't play with it yet, apart from leaving out the cleancache flush, and
(importantly) the nrpages == 0 skip, and moving shmem_setattr()'s
partial page preparation into its partial page handling.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While it's at its least, make a number of boring nitpicky cleanups to
shmem.c, mostly for consistency of variable naming. Things like "swap"
instead of "entry", "pgoff_t index" instead of "unsigned long idx".
And since everything else here is prefixed "shmem_", better change
init_tmpfs() to shmem_init().
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The maximum size of a shmem/tmpfs file has been limited by the maximum
size of its triple-indirect swap vector. With 4kB page size, maximum
filesize was just over 2TB on a 32-bit kernel, but sadly one eighth of
that on a 64-bit kernel. (With 8kB page size, maximum filesize was just
over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
MAX_LFS_FILESIZE being then more restrictive than swap vector layout.)
It's a shame that tmpfs should be more restrictive than ramfs, and this
limitation has now been noticed. Add another level to the swap vector?
No, it became obscure and hard to maintain, once I complicated it to
make use of highmem pages nine years ago: better choose another way.
Surely, if 2.4 had had the radix tree pagecache introduced in 2.5, then
tmpfs would never have invented its own peculiar radix tree: we would
have fitted swap entries into the common radix tree instead, in much the
same way as we fit swap entries into page tables.
And why should each file have a separate radix tree for its pages and
for its swap entries? The swap entries are required precisely where and
when the pages are not. We want to put them together in a single radix
tree: which can then avoid much of the locking which was needed to
prevent them from being exchanged underneath us.
This also avoids the waste of memory devoted to swap vectors, first in
the shmem_inode itself, then at least two more pages once a file grew
beyond 16 data pages (pages accounted by df and du, but not by memcg).
Allocated upfront, to avoid allocation when under swapping pressure, but
pure waste when CONFIG_SWAP is not set - I have never spattered around
the ifdefs to prevent that, preferring this move to sharing the common
radix tree instead.
There are three downsides to sharing the radix tree. One, that it binds
tmpfs more tightly to the rest of mm, either requiring knowledge of swap
entries in radix tree there, or duplication of its code here in shmem.c.
I believe that the simplications and memory savings (and probable higher
performance, not yet measured) justify that.
Two, that on HIGHMEM systems with SWAP enabled, it's the lowmem radix
nodes that cannot be freed under memory pressure - whereas before it was
the less precious highmem swap vector pages that could not be freed.
I'm hoping that 64-bit has now been accessible for long enough, that the
highmem argument has grown much less persuasive.
Three, that swapoff is slower than it used to be on tmpfs files, since
it's using a simple generic mechanism not tailored to it: I find this
noticeable, and shall want to improve, but maybe nobody else will
notice.
So... now remove most of the old swap vector code from shmem.c. But,
for the moment, keep the simple i_direct vector of 16 pages, with simple
accessors shmem_put_swap() and shmem_get_swap(), as a toy implementation
to help mark where swap needs to be handled in subsequent patches.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If swap entries are to be stored along with struct page pointers in a
radix tree, they need to be distinguished as exceptional entries.
Most of the handling of swap entries in radix tree will be contained in
shmem.c, but a few functions in filemap.c's common code need to check
for their appearance: find_get_page(), find_lock_page(),
find_get_pages() and find_get_pages_contig().
So as not to slow their fast paths, tuck those checks inside the
existing checks for unlikely radix_tree_deref_slot(); except for
find_lock_page(), where it is an added test. And make it a BUG in
find_get_pages_tag(), which is not applied to tmpfs files.
A part of the reason for eliminating shmem_readpage() earlier, was to
minimize the places where common code would need to allow for swap
entries.
The swp_entry_t known to swapfile.c must be massaged into a slightly
different form when stored in the radix tree, just as it gets massaged
into a pte_t when stored in page tables.
In an i386 kernel this limits its information (type and page offset) to
30 bits: given 32 "types" of swapfile and 4kB pagesize, that's a maximum
swapfile size of 128GB. Which is less than the 512GB we previously
allowed with X86_PAE (where the swap entry can occupy the entire upper
32 bits of a pte_t), but not a new limitation on 32-bit without PAE; and
there's not a new limitation on 64-bit (where swap filesize is already
limited to 16TB by a 32-bit page offset). Thirty areas of 128GB is
probably still enough swap for a 64GB 32-bit machine.
Provide swp_to_radix_entry() and radix_to_swp_entry() conversions, and
enforce filesize limit in read_swap_header(), just as for ptes.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A patchset to extend tmpfs to MAX_LFS_FILESIZE by abandoning its
peculiar swap vector, instead keeping a file's swap entries in the same
radix tree as its struct page pointers: thus saving memory, and
simplifying its code and locking.
This patch:
The radix_tree is used by several subsystems for different purposes. A
major use is to store the struct page pointers of a file's pagecache for
memory management. But what if mm wanted to store something other than
page pointers there too?
The low bit of a radix_tree entry is already used to denote an indirect
pointer, for internal use, and the unlikely radix_tree_deref_retry()
case.
Define the next bit as denoting an exceptional entry, and supply inline
functions radix_tree_exception() to return non-0 in either unlikely
case, and radix_tree_exceptional_entry() to return non-0 in the second
case.
If a subsystem already uses radix_tree with that bit set, no problem: it
does not affect internal workings at all, but is defined for the
convenience of those storing well-aligned pointers in the radix_tree.
The radix_tree_gang_lookups have an implicit assumption that the caller
can deduce the offset of each entry returned e.g. by the page->index of
a struct page. But that may not be feasible for some kinds of item to
be stored there.
radix_tree_gang_lookup_slot() allow for an optional indices argument,
output array in which to return those offsets. The same could be added
to other radix_tree_gang_lookups, but for now keep it to the only one
for which we need it.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
init_fault_attr_dentries() is used to export fault_attr via debugfs.
But it can only export it in debugfs root directory.
Per Forlin is working on mmc_fail_request which adds support to inject
data errors after a completed host transfer in MMC subsystem.
The fault_attr for mmc_fail_request should be defined per mmc host and
export it in debugfs directory per mmc host like
/sys/kernel/debug/mmc0/mmc_fail_request.
init_fault_attr_dentries() doesn't help for mmc_fail_request. So this
introduces fault_create_debugfs_attr() which is able to create a
directory in the arbitrary directory and replace
init_fault_attr_dentries().
[akpm@linux-foundation.org: extraneous semicolon, per Randy]
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Tested-by: Per Forlin <per.forlin@linaro.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some trivial conflicts due to other various merges
adding to the end of common lists sooner than this one.
arch/ia64/Kconfig
arch/powerpc/Kconfig
arch/x86/Kconfig
lib/Kconfig
lib/Makefile
Signed-off-by: Len Brown <len.brown@intel.com>
memory_failure() is the entry point for HWPoison memory error
recovery. It must be called in process context. But commonly
hardware memory errors are notified via MCE or NMI, so some delayed
execution mechanism must be used. In MCE handler, a work queue + ring
buffer mechanism is used.
In addition to MCE, now APEI (ACPI Platform Error Interface) GHES
(Generic Hardware Error Source) can be used to report memory errors
too. To add support to APEI GHES memory recovery, a mechanism similar
to that of MCE is implemented. memory_failure_queue() is the new
entry point that can be called in IRQ context. The next step is to
make MCE handler uses this interface too.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Len Brown <len.brown@intel.com>
exit_mm() sets ->mm == NULL then it does mmput()->exit_mmap() which
frees the memory.
However select_bad_process() checks ->mm != NULL before TIF_MEMDIE,
so it continues to kill other tasks even if we have the oom-killed
task freeing its memory.
Change select_bad_process() to check ->mm after TIF_MEMDIE, but skip
the tasks which have already passed exit_notify() to ensure a zombie
with TIF_MEMDIE set can't block oom-killer. Alternatively we could
probably clear TIF_MEMDIE after exit_mmap().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the nice enumerated constant.
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
* 'slub/lockless' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6: (21 commits)
slub: When allocating a new slab also prep the first object
slub: disable interrupts in cmpxchg_double_slab when falling back to pagelock
Avoid duplicate _count variables in page_struct
Revert "SLUB: Fix build breakage in linux/mm_types.h"
SLUB: Fix build breakage in linux/mm_types.h
slub: slabinfo update for cmpxchg handling
slub: Not necessary to check for empty slab on load_freelist
slub: fast release on full slab
slub: Add statistics for the case that the current slab does not match the node
slub: Get rid of the another_slab label
slub: Avoid disabling interrupts in free slowpath
slub: Disable interrupts in free_debug processing
slub: Invert locking and avoid slab lock
slub: Rework allocator fastpaths
slub: Pass kmem_cache struct to lock and freeze slab
slub: explicit list_lock taking
slub: Add cmpxchg_double_slab()
mm: Rearrange struct page
slub: Move page->frozen handling near where the page->freelist handling occurs
slub: Do not use frozen page flag but a bit in the page counters
...
Reduce high order allocations in do_tune_cpucache() for some setups.
(NR_CPUS=4096 -> we need 64KB)
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now cleanup_fault_attr_dentries() recursively removes a directory, So we
can simplify the error handling in the initialization code and no need
to hold dentry structs for each debugfs file.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now cleanup_fault_attr_dentries() recursively removes a directory, So we
can simplify the error handling in the initialization code and no need
to hold dentry structs for each debugfs file.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use debugfs_remove_recursive() to simplify initialization and
deinitialization of fault injection debugfs files.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ This patch has already been accepted as commit 0ac0c0d0f837 but later
reverted (commit 35926ff5fba8) because it itroduced arch specific
__node_random which was defined only for x86 code so it broke other
archs. This is a followup without any arch specific code. Other than
that there are no functional changes.]
Some workloads that create a large number of small files tend to assign
too many pages to node 0 (multi-node systems). Part of the reason is
that the rotor (in cpuset_mem_spread_node()) used to assign nodes starts
at node 0 for newly created tasks.
This patch changes the rotor to be initialized to a random node number
of the cpuset.
[akpm@linux-foundation.org: fix layout]
[Lee.Schermerhorn@hp.com: Define stub numa_random() for !NUMA configuration]
[mhocko@suse.cz: Make it arch independent]
[akpm@linux-foundation.org: fix CONFIG_NUMA=y, MAX_NUMNODES>1 build]
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Paul Menage <menage@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Menage <menage@google.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu_charge_mutex protects from multiple simultaneous per-cpu charge
caches draining because we might end up having too many work items. At
least this was the case until commit 26fe61684449 ("memcg: fix percpu
cached charge draining frequency") when we introduced a more targeted
draining for async mode.
Now that also sync draining is targeted we can safely remove mutex
because we will not send more work than the current number of CPUs.
FLUSHING_CACHED_CHARGE protects from sending the same work multiple
times and stock->nr_pages == 0 protects from pointless sending a work if
there is obviously nothing to be done. This is of course racy but we
can live with it as the race window is really small (we would have to
see FLUSHING_CACHED_CHARGE cleared while nr_pages would be still
non-zero).
The only remaining place where we can race is synchronous mode when we
rely on FLUSHING_CACHED_CHARGE test which might have been set by other
drainer on the same group but we should wait in that case as well.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are checking whether a given two groups are same or at least in the
same subtree of a hierarchy at several places. Let's make a helper for
it to make code easier to read.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have two ways how to drain per-CPU caches for charges.
drain_all_stock_sync will synchronously drain all caches while
drain_all_stock_async will asynchronously drain only those that refer to
a given memory cgroup or its subtree in hierarchy. Targeted async
draining has been introduced by 26fe6168 (memcg: fix percpu cached
charge draining frequency) to reduce the cpu workers number.
sync draining is currently triggered only from mem_cgroup_force_empty
which is triggered only by userspace (mem_cgroup_force_empty_write) or
when a cgroup is removed (mem_cgroup_pre_destroy). Although these are
not usually frequent operations it still makes some sense to do targeted
draining as well, especially if the box has many CPUs.
This patch unifies both methods to use the single code (drain_all_stock)
which relies on the original async implementation and just adds
flush_work to wait on all caches that are still under work for the sync
mode. We are using FLUSHING_CACHED_CHARGE bit check to prevent from
waiting on a work that we haven't triggered. Please note that both sync
and async functions are currently protected by percpu_charge_mutex so we
cannot race with other drainers.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
drain_all_stock_async tries to optimize a work to be done on the work
queue by excluding any work for the current CPU because it assumes that
the context we are called from already tried to charge from that cache
and it's failed so it must be empty already.
While the assumption is correct we can optimize it even more by checking
the current number of pages in the cache. This will also reduce a work
on other CPUs with an empty stock.
For the current CPU we can simply call drain_local_stock rather than
deferring it to the work queue.
[kamezawa.hiroyu@jp.fujitsu.com: use drain_local_stock for current CPU optimization]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The commit log of 0ae5e89c60c9 ("memcg: count the soft_limit reclaim
in...") says it adds scanning stats to memory.stat file. But it doesn't
because we considered we needed to make a concensus for such new APIs.
This patch is a trial to add memory.scan_stat. This shows
- the number of scanned pages(total, anon, file)
- the number of rotated pages(total, anon, file)
- the number of freed pages(total, anon, file)
- the number of elaplsed time (including sleep/pause time)
for both of direct/soft reclaim.
The biggest difference with oringinal Ying's one is that this file
can be reset by some write, as
# echo 0 ...../memory.scan_stat
Example of output is here. This is a result after make -j 6 kernel
under 300M limit.
[kamezawa@bluextal ~]$ cat /cgroup/memory/A/memory.scan_stat
[kamezawa@bluextal ~]$ cat /cgroup/memory/A/memory.vmscan_stat
scanned_pages_by_limit 9471864
scanned_anon_pages_by_limit 6640629
scanned_file_pages_by_limit 2831235
rotated_pages_by_limit 4243974
rotated_anon_pages_by_limit 3971968
rotated_file_pages_by_limit 272006
freed_pages_by_limit 2318492
freed_anon_pages_by_limit 962052
freed_file_pages_by_limit 1356440
elapsed_ns_by_limit 351386416101
scanned_pages_by_system 0
scanned_anon_pages_by_system 0
scanned_file_pages_by_system 0
rotated_pages_by_system 0
rotated_anon_pages_by_system 0
rotated_file_pages_by_system 0
freed_pages_by_system 0
freed_anon_pages_by_system 0
freed_file_pages_by_system 0
elapsed_ns_by_system 0
scanned_pages_by_limit_under_hierarchy 9471864
scanned_anon_pages_by_limit_under_hierarchy 6640629
scanned_file_pages_by_limit_under_hierarchy 2831235
rotated_pages_by_limit_under_hierarchy 4243974
rotated_anon_pages_by_limit_under_hierarchy 3971968
rotated_file_pages_by_limit_under_hierarchy 272006
freed_pages_by_limit_under_hierarchy 2318492
freed_anon_pages_by_limit_under_hierarchy 962052
freed_file_pages_by_limit_under_hierarchy 1356440
elapsed_ns_by_limit_under_hierarchy 351386416101
scanned_pages_by_system_under_hierarchy 0
scanned_anon_pages_by_system_under_hierarchy 0
scanned_file_pages_by_system_under_hierarchy 0
rotated_pages_by_system_under_hierarchy 0
rotated_anon_pages_by_system_under_hierarchy 0
rotated_file_pages_by_system_under_hierarchy 0
freed_pages_by_system_under_hierarchy 0
freed_anon_pages_by_system_under_hierarchy 0
freed_file_pages_by_system_under_hierarchy 0
elapsed_ns_by_system_under_hierarchy 0
total_xxxx is for hierarchy management.
This will be useful for further memcg developments and need to be
developped before we do some complicated rework on LRU/softlimit
management.
This patch adds a new struct memcg_scanrecord into scan_control struct.
sc->nr_scanned at el is not designed for exporting information. For
example, nr_scanned is reset frequentrly and incremented +2 at scanning
mapped pages.
To avoid complexity, I added a new param in scan_control which is for
exporting scanning score.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: Andrew Bresticker <abrestic@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 22a668d7c3ef ("memcg: fix behavior under memory.limit equals to
memsw.limit") introduced "memsw_is_minimum" flag, which becomes true
when mem_limit == memsw_limit. The flag is checked at the beginning of
reclaim, and "noswap" is set if the flag is true, because using swap is
meaningless in this case.
This works well in most cases, but when we try to shrink mem_limit,
which is the same as memsw_limit now, we might fail to shrink mem_limit
because swap doesn't used.
This patch fixes this behavior by:
- check MEM_CGROUP_RECLAIM_SHRINK at the begining of reclaim
- If it is set, don't set "noswap" flag even if memsw_is_minimum is true.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 246e87a93934 ("memcg: fix get_scan_count() for small targets")
fixes the memcg/kswapd behavior against small targets and prevent vmscan
priority too high.
But the implementation is too naive and adds another problem to small
memcg. It always force scan to 32 pages of file/anon and doesn't handle
swappiness and other rotate_info. It makes vmscan to scan anon LRU
regardless of swappiness and make reclaim bad. This patch fixes it by
adjusting scanning count with regard to swappiness at el.
At a test "cat 1G file under 300M limit." (swappiness=20)
before patch
scanned_pages_by_limit 360919
scanned_anon_pages_by_limit 180469
scanned_file_pages_by_limit 180450
rotated_pages_by_limit 31
rotated_anon_pages_by_limit 25
rotated_file_pages_by_limit 6
freed_pages_by_limit 180458
freed_anon_pages_by_limit 19
freed_file_pages_by_limit 180439
elapsed_ns_by_limit 429758872
after patch
scanned_pages_by_limit 180674
scanned_anon_pages_by_limit 24
scanned_file_pages_by_limit 180650
rotated_pages_by_limit 35
rotated_anon_pages_by_limit 24
rotated_file_pages_by_limit 11
freed_pages_by_limit 180634
freed_anon_pages_by_limit 0
freed_file_pages_by_limit 180634
elapsed_ns_by_limit 367119089
scanned_pages_by_system 0
the numbers of scanning anon are decreased(as expected), and elapsed time
reduced. By this patch, small memcgs will work better.
(*) Because the amount of file-cache is much bigger than anon,
recalaim_stat's rotate-scan counter make scanning files more.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg_oom_mutex is used to protect memcg OOM path and eventfd interface
for oom_control. None of the critical sections which it protects sleep
(eventfd_signal works from atomic context and the rest are simple linked
list resp. oom_lock atomic operations).
Mutex is also too heavyweight for those code paths because it triggers a
lot of scheduling. It also makes makes convoying effects more visible
when we have a big number of oom killing because we take the lock
mutliple times during mem_cgroup_handle_oom so we have multiple places
where many processes can sleep.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 867578cb ("memcg: fix oom kill behavior") introduced a oom_lock
counter which is incremented by mem_cgroup_oom_lock when we are about to
handle memcg OOM situation. mem_cgroup_handle_oom falls back to a sleep
if oom_lock > 1 to prevent from multiple oom kills at the same time.
The counter is then decremented by mem_cgroup_oom_unlock called from the
same function.
This works correctly but it can lead to serious starvations when we have
many processes triggering OOM and many CPUs available for them (I have
tested with 16 CPUs).
Consider a process (call it A) which gets the oom_lock (the first one
that got to mem_cgroup_handle_oom and grabbed memcg_oom_mutex) and other
processes that are blocked on the mutex. While A releases the mutex and
calls mem_cgroup_out_of_memory others will wake up (one after another)
and increase the counter and fall into sleep (memcg_oom_waitq).
Once A finishes mem_cgroup_out_of_memory it takes the mutex again and
decreases oom_lock and wakes other tasks (if releasing memory by
somebody else - e.g. killed process - hasn't done it yet).
A testcase would look like:
Assume malloc XXX is a program allocating XXX Megabytes of memory
which touches all allocated pages in a tight loop
# swapoff SWAP_DEVICE
# cgcreate -g memory:A
# cgset -r memory.oom_control=0 A
# cgset -r memory.limit_in_bytes= 200M
# for i in `seq 100`
# do
# cgexec -g memory:A malloc 10 &
# done
The main problem here is that all processes still race for the mutex and
there is no guarantee that we will get counter back to 0 for those that
got back to mem_cgroup_handle_oom. In the end the whole convoy
in/decreases the counter but we do not get to 1 that would enable
killing so nothing useful can be done. The time is basically unbounded
because it highly depends on scheduling and ordering on mutex (I have
seen this taking hours...).
This patch replaces the counter by a simple {un}lock semantic. As
mem_cgroup_oom_{un}lock works on the a subtree of a hierarchy we have to
make sure that nobody else races with us which is guaranteed by the
memcg_oom_mutex.
We have to be careful while locking subtrees because we can encounter a
subtree which is already locked: hierarchy:
A
/ \
B \
/\ \
C D E
B - C - D tree might be already locked. While we want to enable locking
E subtree because OOM situations cannot influence each other we
definitely do not want to allow locking A.
Therefore we have to refuse lock if any subtree is already locked and
clear up the lock for all nodes that have been set up to the failure
point.
On the other hand we have to make sure that the rest of the world will
recognize that a group is under OOM even though it doesn't have a lock.
Therefore we have to introduce under_oom variable which is incremented
and decremented for the whole subtree when we enter resp. leave
mem_cgroup_handle_oom. under_oom, unlike oom_lock, doesn't need be
updated under memcg_oom_mutex because its users only check a single
group and they use atomic operations for that.
This can be checked easily by the following test case:
# cgcreate -g memory:A
# cgset -r memory.use_hierarchy=1 A
# cgset -r memory.oom_control=1 A
# cgset -r memory.limit_in_bytes= 100M
# cgset -r memory.memsw.limit_in_bytes= 100M
# cgcreate -g memory:A/B
# cgset -r memory.oom_control=1 A/B
# cgset -r memory.limit_in_bytes=20M
# cgset -r memory.memsw.limit_in_bytes=20M
# cgexec -g memory:A/B malloc 30 & #->this will be blocked by OOM of group B
# cgexec -g memory:A malloc 80 & #->this will be blocked by OOM of group A
While B gets oom_lock A will not get it. Both of them go into sleep and
wait for an external action. We can make the limit higher for A to
enforce waking it up
# cgset -r memory.memsw.limit_in_bytes=300M A
# cgset -r memory.limit_in_bytes=300M A
malloc in A has to wake up even though it doesn't have oom_lock.
Finally, the unlock path is very easy because we always unlock only the
subtree we have locked previously while we always decrement under_oom.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In mm/memcontrol.c, there are many lru stat functions as..
mem_cgroup_zone_nr_lru_pages
mem_cgroup_node_nr_file_lru_pages
mem_cgroup_nr_file_lru_pages
mem_cgroup_node_nr_anon_lru_pages
mem_cgroup_nr_anon_lru_pages
mem_cgroup_node_nr_unevictable_lru_pages
mem_cgroup_nr_unevictable_lru_pages
mem_cgroup_node_nr_lru_pages
mem_cgroup_nr_lru_pages
mem_cgroup_get_local_zonestat
Some of them are under #ifdef MAX_NUMNODES >1 and others are not.
This seems bad. This patch consolidates all functions into
mem_cgroup_zone_nr_lru_pages()
mem_cgroup_node_nr_lru_pages()
mem_cgroup_nr_lru_pages()
For these functions, "which LRU?" information is passed by a mask.
example:
mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON))
And I added some macro as ALL_LRU, ALL_LRU_FILE, ALL_LRU_ANON.
example:
mem_cgroup_nr_lru_pages(mem, ALL_LRU)
BTW, considering layout of NUMA memory placement of counters, this patch seems
to be better.
Now, when we gather all LRU information, we scan in following orer
for_each_lru -> for_each_node -> for_each_zone.
This means we'll touch cache lines in different node in turn.
After patch, we'll scan
for_each_node -> for_each_zone -> for_each_lru(mask)
Then, we'll gather information in the same cacheline at once.
[akpm@linux-foundation.org: fix warnigns, build error]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each memory cgroup has a 'swappiness' value which can be accessed by
get_swappiness(memcg). The major user is try_to_free_mem_cgroup_pages()
and swappiness is passed by argument. It's propagated by scan_control.
get_swappiness() is a static function but some planned updates will need
to get swappiness from files other than memcontrol.c This patch exports
get_swappiness() as mem_cgroup_swappiness(). With this, we can remove the
argument of swapiness from try_to_free... and drop swappiness from
scan_control. only memcg uses it.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge akpm patch series: (122 commits)
drivers/connector/cn_proc.c: remove unused local
Documentation/SubmitChecklist: add RCU debug config options
reiserfs: use hweight_long()
reiserfs: use proper little-endian bitops
pnpacpi: register disabled resources
drivers/rtc/rtc-tegra.c: properly initialize spinlock
drivers/rtc/rtc-twl.c: check return value of twl_rtc_write_u8() in twl_rtc_set_time()
drivers/rtc: add support for Qualcomm PMIC8xxx RTC
drivers/rtc/rtc-s3c.c: support clock gating
drivers/rtc/rtc-mpc5121.c: add support for RTC on MPC5200
init: skip calibration delay if previously done
misc/eeprom: add eeprom access driver for digsy_mtc board
misc/eeprom: add driver for microwire 93xx46 EEPROMs
checkpatch.pl: update $logFunctions
checkpatch: make utf-8 test --strict
checkpatch.pl: add ability to ignore various messages
checkpatch: add a "prefer __aligned" check
checkpatch: validate signature styles and To: and Cc: lines
checkpatch: add __rcu as a sparse modifier
checkpatch: suggest using min_t or max_t
...
Did this as a merge because of (trivial) conflicts in
- Documentation/feature-removal-schedule.txt
- arch/xtensa/include/asm/uaccess.h
that were just easier to fix up in the merge than in the patch series.
devres uses the pointer value as key after it's freed, which is safe but
triggers spurious use-after-free warnings on some static analysis tools.
Rearrange code to avoid such warnings.
Signed-off-by: Maxin B. John <maxin.john@gmail.com>
Reviewed-by: Rolf Eike Beer <eike-kernel@sf-tec.de>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>