mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-01 14:52:32 +00:00
e2ecc8a79e
1162 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Mel Gorman
|
16709d1de1 |
mm: vmstat: replace __count_zone_vm_events with a zone id equivalent
This is partially a preparation patch for more vmstat work but it also has the slight advantage that __count_zid_vm_events is cheaper to calculate than __count_zone_vm_events(). Link: http://lkml.kernel.org/r/1467970510-21195-32-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
3b8c0be43c |
mm: page_alloc: cache the last node whose dirty limit is reached
If a page is about to be dirtied then the page allocator attempts to limit the total number of dirty pages that exists in any given zone. The call to node_dirty_ok is expensive so this patch records if the last pgdat examined hit the dirty limits. In some cases, this reduces the number of calls to node_dirty_ok(). Link: http://lkml.kernel.org/r/1467970510-21195-31-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
e6cbd7f2ef |
mm, page_alloc: remove fair zone allocation policy
The fair zone allocation policy interleaves allocation requests between zones to avoid an age inversion problem whereby new pages are reclaimed to balance a zone. Reclaim is now node-based so this should no longer be an issue and the fair zone allocation policy is not free. This patch removes it. Link: http://lkml.kernel.org/r/1467970510-21195-30-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
a5f5f91da6 |
mm: convert zone_reclaim to node_reclaim
As reclaim is now per-node based, convert zone_reclaim to be node_reclaim. It is possible that a node will be reclaimed multiple times if it has multiple zones but this is unavoidable without caching all nodes traversed so far. The documentation and interface to userspace is the same from a configuration perspective and will will be similar in behaviour unless the node-local allocation requests were also limited to lower zones. Link: http://lkml.kernel.org/r/1467970510-21195-24-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
52e9f87ae8 |
mm, page_alloc: wake kswapd based on the highest eligible zone
The ac_classzone_idx is used as the basis for waking kswapd and that is based on the preferred zoneref. If the preferred zoneref's first zone is lower than what is available on other nodes, it's possible that kswapd is woken on a zone with only higher, but still eligible, zones. As classzone_idx is strictly adhered to now, it causes a problem because eligible pages are skipped. For example, node 0 has only DMA32 and node 1 has only NORMAL. An allocating context running on node 0 may wake kswapd on node 1 telling it to skip all NORMAL pages. Link: http://lkml.kernel.org/r/1467970510-21195-23-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
e1a556374a |
mm, vmscan: only wakeup kswapd once per node for the requested classzone
kswapd is woken when zones are below the low watermark but the wakeup decision is not taking the classzone into account. Now that reclaim is node-based, it is only required to wake kswapd once per node and only if all zones are unbalanced for the requested classzone. Note that one node might be checked multiple times if the zonelist is ordered by node because there is no cheap way of tracking what nodes have already been visited. For zone-ordering, each node should be checked only once. Link: http://lkml.kernel.org/r/1467970510-21195-22-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
11fb998986 |
mm: move most file-based accounting to the node
There are now a number of accounting oddities such as mapped file pages being accounted for on the node while the total number of file pages are accounted on the zone. This can be coped with to some extent but it's confusing so this patch moves the relevant file-based accounted. Due to throttling logic in the page allocator for reliable OOM detection, it is still necessary to track dirty and writeback pages on a per-zone basis. [mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting] Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
50658e2e04 |
mm: move page mapped accounting to the node
Reclaim makes decisions based on the number of pages that are mapped but it's mixing node and zone information. Account NR_FILE_MAPPED and NR_ANON_PAGES pages on the node. Link: http://lkml.kernel.org/r/1467970510-21195-18-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
281e37265f |
mm, page_alloc: consider dirtyable memory in terms of nodes
Historically dirty pages were spread among zones but now that LRUs are per-node it is more appropriate to consider dirty pages in a node. Link: http://lkml.kernel.org/r/1467970510-21195-17-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
a9dd0a8310 |
mm, vmscan: make shrink_node decisions more node-centric
Earlier patches focused on having direct reclaim and kswapd use data that is node-centric for reclaiming but shrink_node() itself still uses too much zone information. This patch removes unnecessary zone-based information with the most important decision being whether to continue reclaim or not. Some memcg APIs are adjusted as a result even though memcg itself still uses some zone information. [mgorman@techsingularity.net: optimization] Link: http://lkml.kernel.org/r/1468588165-12461-2-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-14-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
38087d9b03 |
mm, vmscan: simplify the logic deciding whether kswapd sleeps
kswapd goes through some complex steps trying to figure out if it should stay awake based on the classzone_idx and the requested order. It is unnecessarily complex and passes in an invalid classzone_idx to balance_pgdat(). What matters most of all is whether a larger order has been requsted and whether kswapd successfully reclaimed at the previous order. This patch irons out the logic to check just that and the end result is less headache inducing. Link: http://lkml.kernel.org/r/1467970510-21195-10-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
a52633d8e9 |
mm, vmscan: move lru_lock to the node
Node-based reclaim requires node-based LRUs and locking. This is a preparation patch that just moves the lru_lock to the node so later patches are easier to review. It is a mechanical change but note this patch makes contention worse because the LRU lock is hotter and direct reclaim and kswapd can contend on the same lock even when reclaiming from different zones. Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
75ef718405 |
mm, vmstat: add infrastructure for per-node vmstats
Patchset: "Move LRU page reclaim from zones to nodes v9" This series moves LRUs from the zones to the node. While this is a current rebase, the test results were based on mmotm as of June 23rd. Conceptually, this series is simple but there are a lot of details. Some of the broad motivations for this are; 1. The residency of a page partially depends on what zone the page was allocated from. This is partially combatted by the fair zone allocation policy but that is a partial solution that introduces overhead in the page allocator paths. 2. Currently, reclaim on node 0 behaves slightly different to node 1. For example, direct reclaim scans in zonelist order and reclaims even if the zone is over the high watermark regardless of the age of pages in that LRU. Kswapd on the other hand starts reclaim on the highest unbalanced zone. A difference in distribution of file/anon pages due to when they were allocated results can result in a difference in again. While the fair zone allocation policy mitigates some of the problems here, the page reclaim results on a multi-zone node will always be different to a single-zone node. it was scheduled on as a result. 3. kswapd and the page allocator scan zones in the opposite order to avoid interfering with each other but it's sensitive to timing. This mitigates the page allocator using pages that were allocated very recently in the ideal case but it's sensitive to timing. When kswapd is allocating from lower zones then it's great but during the rebalancing of the highest zone, the page allocator and kswapd interfere with each other. It's worse if the highest zone is small and difficult to balance. 4. slab shrinkers are node-based which makes it harder to identify the exact relationship between slab reclaim and LRU reclaim. The reason we have zone-based reclaim is that we used to have large highmem zones in common configurations and it was necessary to quickly find ZONE_NORMAL pages for reclaim. Today, this is much less of a concern as machines with lots of memory will (or should) use 64-bit kernels. Combinations of 32-bit hardware and 64-bit hardware are rare. Machines that do use highmem should have relatively low highmem:lowmem ratios than we worried about in the past. Conceptually, moving to node LRUs should be easier to understand. The page allocator plays fewer tricks to game reclaim and reclaim behaves similarly on all nodes. The series has been tested on a 16 core UMA machine and a 2-socket 48 core NUMA machine. The UMA results are presented in most cases as the NUMA machine behaved similarly. pagealloc --------- This is a microbenchmark that shows the benefit of removing the fair zone allocation policy. It was tested uip to order-4 but only orders 0 and 1 are shown as the other orders were comparable. 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 Min total-odr0-1 490.00 ( 0.00%) 457.00 ( 6.73%) Min total-odr0-2 347.00 ( 0.00%) 329.00 ( 5.19%) Min total-odr0-4 288.00 ( 0.00%) 273.00 ( 5.21%) Min total-odr0-8 251.00 ( 0.00%) 239.00 ( 4.78%) Min total-odr0-16 234.00 ( 0.00%) 222.00 ( 5.13%) Min total-odr0-32 223.00 ( 0.00%) 211.00 ( 5.38%) Min total-odr0-64 217.00 ( 0.00%) 208.00 ( 4.15%) Min total-odr0-128 214.00 ( 0.00%) 204.00 ( 4.67%) Min total-odr0-256 250.00 ( 0.00%) 230.00 ( 8.00%) Min total-odr0-512 271.00 ( 0.00%) 269.00 ( 0.74%) Min total-odr0-1024 291.00 ( 0.00%) 282.00 ( 3.09%) Min total-odr0-2048 303.00 ( 0.00%) 296.00 ( 2.31%) Min total-odr0-4096 311.00 ( 0.00%) 309.00 ( 0.64%) Min total-odr0-8192 316.00 ( 0.00%) 314.00 ( 0.63%) Min total-odr0-16384 317.00 ( 0.00%) 315.00 ( 0.63%) Min total-odr1-1 742.00 ( 0.00%) 712.00 ( 4.04%) Min total-odr1-2 562.00 ( 0.00%) 530.00 ( 5.69%) Min total-odr1-4 457.00 ( 0.00%) 433.00 ( 5.25%) Min total-odr1-8 411.00 ( 0.00%) 381.00 ( 7.30%) Min total-odr1-16 381.00 ( 0.00%) 356.00 ( 6.56%) Min total-odr1-32 372.00 ( 0.00%) 346.00 ( 6.99%) Min total-odr1-64 372.00 ( 0.00%) 343.00 ( 7.80%) Min total-odr1-128 375.00 ( 0.00%) 351.00 ( 6.40%) Min total-odr1-256 379.00 ( 0.00%) 351.00 ( 7.39%) Min total-odr1-512 385.00 ( 0.00%) 355.00 ( 7.79%) Min total-odr1-1024 386.00 ( 0.00%) 358.00 ( 7.25%) Min total-odr1-2048 390.00 ( 0.00%) 362.00 ( 7.18%) Min total-odr1-4096 390.00 ( 0.00%) 362.00 ( 7.18%) Min total-odr1-8192 388.00 ( 0.00%) 363.00 ( 6.44%) This shows a steady improvement throughout. The primary benefit is from reduced system CPU usage which is obvious from the overall times; 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 User 189.19 191.80 System 2604.45 2533.56 Elapsed 2855.30 2786.39 The vmstats also showed that the fair zone allocation policy was definitely removed as can be seen here; 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v8 DMA32 allocs 28794729769 0 Normal allocs 48432501431 77227309877 Movable allocs 0 0 tiobench on ext4 ---------------- tiobench is a benchmark that artifically benefits if old pages remain resident while new pages get reclaimed. The fair zone allocation policy mitigates this problem so pages age fairly. While the benchmark has problems, it is important that tiobench performance remains constant as it implies that page aging problems that the fair zone allocation policy fixes are not re-introduced. 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 Min PotentialReadSpeed 89.65 ( 0.00%) 90.21 ( 0.62%) Min SeqRead-MB/sec-1 82.68 ( 0.00%) 82.01 ( -0.81%) Min SeqRead-MB/sec-2 72.76 ( 0.00%) 72.07 ( -0.95%) Min SeqRead-MB/sec-4 75.13 ( 0.00%) 74.92 ( -0.28%) Min SeqRead-MB/sec-8 64.91 ( 0.00%) 65.19 ( 0.43%) Min SeqRead-MB/sec-16 62.24 ( 0.00%) 62.22 ( -0.03%) Min RandRead-MB/sec-1 0.88 ( 0.00%) 0.88 ( 0.00%) Min RandRead-MB/sec-2 0.95 ( 0.00%) 0.92 ( -3.16%) Min RandRead-MB/sec-4 1.43 ( 0.00%) 1.34 ( -6.29%) Min RandRead-MB/sec-8 1.61 ( 0.00%) 1.60 ( -0.62%) Min RandRead-MB/sec-16 1.80 ( 0.00%) 1.90 ( 5.56%) Min SeqWrite-MB/sec-1 76.41 ( 0.00%) 76.85 ( 0.58%) Min SeqWrite-MB/sec-2 74.11 ( 0.00%) 73.54 ( -0.77%) Min SeqWrite-MB/sec-4 80.05 ( 0.00%) 80.13 ( 0.10%) Min SeqWrite-MB/sec-8 72.88 ( 0.00%) 73.20 ( 0.44%) Min SeqWrite-MB/sec-16 75.91 ( 0.00%) 76.44 ( 0.70%) Min RandWrite-MB/sec-1 1.18 ( 0.00%) 1.14 ( -3.39%) Min RandWrite-MB/sec-2 1.02 ( 0.00%) 1.03 ( 0.98%) Min RandWrite-MB/sec-4 1.05 ( 0.00%) 0.98 ( -6.67%) Min RandWrite-MB/sec-8 0.89 ( 0.00%) 0.92 ( 3.37%) Min RandWrite-MB/sec-16 0.92 ( 0.00%) 0.93 ( 1.09%) 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 approx-v9 User 645.72 525.90 System 403.85 331.75 Elapsed 6795.36 6783.67 This shows that the series has little or not impact on tiobench which is desirable and a reduction in system CPU usage. It indicates that the fair zone allocation policy was removed in a manner that didn't reintroduce one class of page aging bug. There were only minor differences in overall reclaim activity 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 Minor Faults 645838 647465 Major Faults 573 640 Swap Ins 0 0 Swap Outs 0 0 DMA allocs 0 0 DMA32 allocs 46041453 44190646 Normal allocs 78053072 79887245 Movable allocs 0 0 Allocation stalls 24 67 Stall zone DMA 0 0 Stall zone DMA32 0 0 Stall zone Normal 0 2 Stall zone HighMem 0 0 Stall zone Movable 0 65 Direct pages scanned 10969 30609 Kswapd pages scanned 93375144 93492094 Kswapd pages reclaimed 93372243 93489370 Direct pages reclaimed 10969 30609 Kswapd efficiency 99% 99% Kswapd velocity 13741.015 13781.934 Direct efficiency 100% 100% Direct velocity 1.614 4.512 Percentage direct scans 0% 0% kswapd activity was roughly comparable. There were differences in direct reclaim activity but negligible in the context of the overall workload (velocity of 4 pages per second with the patches applied, 1.6 pages per second in the baseline kernel). pgbench read-only large configuration on ext4 --------------------------------------------- pgbench is a database benchmark that can be sensitive to page reclaim decisions. This also checks if removing the fair zone allocation policy is safe pgbench Transactions 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v8 Hmean 1 188.26 ( 0.00%) 189.78 ( 0.81%) Hmean 5 330.66 ( 0.00%) 328.69 ( -0.59%) Hmean 12 370.32 ( 0.00%) 380.72 ( 2.81%) Hmean 21 368.89 ( 0.00%) 369.00 ( 0.03%) Hmean 30 382.14 ( 0.00%) 360.89 ( -5.56%) Hmean 32 428.87 ( 0.00%) 432.96 ( 0.95%) Negligible differences again. As with tiobench, overall reclaim activity was comparable. bonnie++ on ext4 ---------------- No interesting performance difference, negligible differences on reclaim stats. paralleldd on ext4 ------------------ This workload uses varying numbers of dd instances to read large amounts of data from disk. 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v9 Amean Elapsd-1 186.04 ( 0.00%) 189.41 ( -1.82%) Amean Elapsd-3 192.27 ( 0.00%) 191.38 ( 0.46%) Amean Elapsd-5 185.21 ( 0.00%) 182.75 ( 1.33%) Amean Elapsd-7 183.71 ( 0.00%) 182.11 ( 0.87%) Amean Elapsd-12 180.96 ( 0.00%) 181.58 ( -0.35%) Amean Elapsd-16 181.36 ( 0.00%) 183.72 ( -1.30%) 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 User 1548.01 1552.44 System 8609.71 8515.08 Elapsed 3587.10 3594.54 There is little or no change in performance but some drop in system CPU usage. 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v9 Minor Faults 362662 367360 Major Faults 1204 1143 Swap Ins 22 0 Swap Outs 2855 1029 DMA allocs 0 0 DMA32 allocs 31409797 28837521 Normal allocs 46611853 49231282 Movable allocs 0 0 Direct pages scanned 0 0 Kswapd pages scanned 40845270 40869088 Kswapd pages reclaimed 40830976 40855294 Direct pages reclaimed 0 0 Kswapd efficiency 99% 99% Kswapd velocity 11386.711 11369.769 Direct efficiency 100% 100% Direct velocity 0.000 0.000 Percentage direct scans 0% 0% Page writes by reclaim 2855 1029 Page writes file 0 0 Page writes anon 2855 1029 Page reclaim immediate 771 1628 Sector Reads 293312636 293536360 Sector Writes 18213568 18186480 Page rescued immediate 0 0 Slabs scanned 128257 132747 Direct inode steals 181 56 Kswapd inode steals 59 1131 It basically shows that kswapd was active at roughly the same rate in both kernels. There was also comparable slab scanning activity and direct reclaim was avoided in both cases. There appears to be a large difference in numbers of inodes reclaimed but the workload has few active inodes and is likely a timing artifact. stutter ------- stutter simulates a simple workload. One part uses a lot of anonymous memory, a second measures mmap latency and a third copies a large file. The primary metric is checking for mmap latency. stutter 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v8 Min mmap 16.6283 ( 0.00%) 13.4258 ( 19.26%) 1st-qrtle mmap 54.7570 ( 0.00%) 34.9121 ( 36.24%) 2nd-qrtle mmap 57.3163 ( 0.00%) 46.1147 ( 19.54%) 3rd-qrtle mmap 58.9976 ( 0.00%) 47.1882 ( 20.02%) Max-90% mmap 59.7433 ( 0.00%) 47.4453 ( 20.58%) Max-93% mmap 60.1298 ( 0.00%) 47.6037 ( 20.83%) Max-95% mmap 73.4112 ( 0.00%) 82.8719 (-12.89%) Max-99% mmap 92.8542 ( 0.00%) 88.8870 ( 4.27%) Max mmap 1440.6569 ( 0.00%) 121.4201 ( 91.57%) Mean mmap 59.3493 ( 0.00%) 42.2991 ( 28.73%) Best99%Mean mmap 57.2121 ( 0.00%) 41.8207 ( 26.90%) Best95%Mean mmap 55.9113 ( 0.00%) 39.9620 ( 28.53%) Best90%Mean mmap 55.6199 ( 0.00%) 39.3124 ( 29.32%) Best50%Mean mmap 53.2183 ( 0.00%) 33.1307 ( 37.75%) Best10%Mean mmap 45.9842 ( 0.00%) 20.4040 ( 55.63%) Best5%Mean mmap 43.2256 ( 0.00%) 17.9654 ( 58.44%) Best1%Mean mmap 32.9388 ( 0.00%) 16.6875 ( 49.34%) This shows a number of improvements with the worst-case outlier greatly improved. Some of the vmstats are interesting 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 Swap Ins 163 502 Swap Outs 0 0 DMA allocs 0 0 DMA32 allocs 618719206 1381662383 Normal allocs 891235743 564138421 Movable allocs 0 0 Allocation stalls 2603 1 Direct pages scanned 216787 2 Kswapd pages scanned 50719775 41778378 Kswapd pages reclaimed 41541765 41777639 Direct pages reclaimed 209159 0 Kswapd efficiency 81% 99% Kswapd velocity 16859.554 14329.059 Direct efficiency 96% 0% Direct velocity 72.061 0.001 Percentage direct scans 0% 0% Page writes by reclaim 6215049 0 Page writes file 6215049 0 Page writes anon 0 0 Page reclaim immediate 70673 90 Sector Reads 81940800 81680456 Sector Writes 100158984 98816036 Page rescued immediate 0 0 Slabs scanned 1366954 22683 While this is not guaranteed in all cases, this particular test showed a large reduction in direct reclaim activity. It's also worth noting that no page writes were issued from reclaim context. This series is not without its hazards. There are at least three areas that I'm concerned with even though I could not reproduce any problems in that area. 1. Reclaim/compaction is going to be affected because the amount of reclaim is no longer targetted at a specific zone. Compaction works on a per-zone basis so there is no guarantee that reclaiming a few THP's worth page pages will have a positive impact on compaction success rates. 2. The Slab/LRU reclaim ratio is affected because the frequency the shrinkers are called is now different. This may or may not be a problem but if it is, it'll be because shrinkers are not called enough and some balancing is required. 3. The anon/file reclaim ratio may be affected. Pages about to be dirtied are distributed between zones and the fair zone allocation policy used to do something very similar for anon. The distribution is now different but not necessarily in any way that matters but it's still worth bearing in mind. VM statistic counters for reclaim decisions are zone-based. If the kernel is to reclaim on a per-node basis then we need to track per-node statistics but there is no infrastructure for that. The most notable change is that the old node_page_state is renamed to sum_zone_node_page_state. The new node_page_state takes a pglist_data and uses per-node stats but none exist yet. There is some renaming such as vm_stat to vm_zone_stat and the addition of vm_node_stat and the renaming of mod_state to mod_zone_state. Otherwise, this is mostly a mechanical patch with no functional change. There is a lot of similarity between the node and zone helpers which is unfortunate but there was no obvious way of reusing the code and maintaining type safety. Link: http://lkml.kernel.org/r/1467970510-21195-2-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
a621184ac6 |
mm, meminit: remove early_page_nid_uninitialised
The helper early_page_nid_uninitialised() has been dead since commit
|
||
zhong jiang
|
400bc7fd4f |
mm: update the comment in __isolate_free_page
We need to assure the comment is consistent with the code. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/1466171914-21027-1-git-send-email-zhongjiang@huawei.com Signed-off-by: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
65c453778a |
mm, rmap: account shmem thp pages
Let's add ShmemHugePages and ShmemPmdMapped fields into meminfo and smaps. It indicates how many times we allocate and map shmem THP. NR_ANON_TRANSPARENT_HUGEPAGES is renamed to NR_ANON_THPS. Link: http://lkml.kernel.org/r/1466021202-61880-27-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
9a73f61bdb |
thp, mlock: do not mlock PTE-mapped file huge pages
As with anon THP, we only mlock file huge pages if we can prove that the page is not mapped with PTE. This way we can avoid mlock leak into non-mlocked vma on split. We rely on PageDoubleMap() under lock_page() to check if the the page may be PTE mapped. PG_double_map is set by page_add_file_rmap() when the page mapped with PTEs. Link: http://lkml.kernel.org/r/1466021202-61880-21-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
4949148ad4 |
mm: charge/uncharge kmemcg from generic page allocator paths
Currently, to charge a non-slab allocation to kmemcg one has to use alloc_kmem_pages helper with __GFP_ACCOUNT flag. A page allocated with this helper should finally be freed using free_kmem_pages, otherwise it won't be uncharged. This API suits its current users fine, but it turns out to be impossible to use along with page reference counting, i.e. when an allocation is supposed to be freed with put_page, as it is the case with pipe or unix socket buffers. To overcome this limitation, this patch moves charging/uncharging to generic page allocator paths, i.e. to __alloc_pages_nodemask and free_pages_prepare, and zaps alloc/free_kmem_pages helpers. This way, one can use any of the available page allocation functions to get the allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT, just like in case of kmalloc and friends. A charged page will be automatically uncharged on free. To make it possible, we need to mark pages charged to kmemcg somehow. To avoid introducing a new page flag, we make use of page->_mapcount for marking such pages. Since pages charged to kmemcg are not supposed to be mapped to userspace, it should work just fine. There are other (ab)users of page->_mapcount - buddy and balloon pages - but we don't conflict with them. In case kmemcg is compiled out or not used at runtime, this patch introduces no overhead to generic page allocator paths. If kmemcg is used, it will be plus one gfp flags check on alloc and plus one page->_mapcount check on free, which shouldn't hurt performance, because the data accessed are hot. Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
452647784b |
mm: memcontrol: cleanup kmem charge functions
- Handle memcg_kmem_enabled check out to the caller. This reduces the number of function definitions making the code easier to follow. At the same time it doesn't result in code bloat, because all of these functions are used only in one or two places. - Move __GFP_ACCOUNT check to the caller as well so that one wouldn't have to dive deep into memcg implementation to see which allocations are charged and which are not. - Refresh comments. Link: http://lkml.kernel.org/r/52882a28b542c1979fd9a033b4dc8637fc347399.1464079537.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
46f24fd857 |
mm/page_alloc: introduce post allocation processing on page allocator
This patch is motivated from Hugh and Vlastimil's concern [1]. There are two ways to get freepage from the allocator. One is using normal memory allocation API and the other is __isolate_free_page() which is internally used for compaction and pageblock isolation. Later usage is rather tricky since it doesn't do whole post allocation processing done by normal API. One problematic thing I already know is that poisoned page would not be checked if it is allocated by __isolate_free_page(). Perhaps, there would be more. We could add more debug logic for allocated page in the future and this separation would cause more problem. I'd like to fix this situation at this time. Solution is simple. This patch commonize some logic for newly allocated page and uses it on all sites. This will solve the problem. [1] http://marc.info/?i=alpine.LSU.2.11.1604270029350.7066%40eggly.anvils%3E [iamjoonsoo.kim@lge.com: mm-page_alloc-introduce-post-allocation-processing-on-page-allocator-v3] Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-9-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
a9627bc5e3 |
mm/page_owner: introduce split_page_owner and replace manual handling
split_page() calls set_page_owner() to set up page_owner to each pages. But, it has a drawback that head page and the others have different stacktrace because callsite of set_page_owner() is slightly differnt. To avoid this problem, this patch copies head page's page_owner to the others. It needs to introduce new function, split_page_owner() but it also remove the other function, get_page_owner_gfp() so looks good to do. Link: http://lkml.kernel.org/r/1464230275-25791-4-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
83358ece26 |
mm/page_owner: initialize page owner without holding the zone lock
It's not necessary to initialized page_owner with holding the zone lock. It would cause more contention on the zone lock although it's not a big problem since it is just debug feature. But, it is better than before so do it. This is also preparation step to use stackdepot in page owner feature. Stackdepot allocates new pages when there is no reserved space and holding the zone lock in this case will cause deadlock. Link: http://lkml.kernel.org/r/1464230275-25791-2-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
66c64223ad |
mm/compaction: split freepages without holding the zone lock
We don't need to split freepages with holding the zone lock. It will cause more contention on zone lock so not desirable. [rientjes@google.com: if __isolate_free_page() fails, avoid adding to freelist so we don't call map_pages() with it] Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606211447001.43430@chino.kir.corp.google.com Link: http://lkml.kernel.org/r/1464230275-25791-1-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
bda807d444 |
mm: migrate: support non-lru movable page migration
We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
2a966b77ae |
mm: oom: add memcg to oom_control
It's a part of oom context just like allocation order and nodemask, so let's move it to oom_control instead of passing it in the argument list. Link: http://lkml.kernel.org/r/40e03fd7aaf1f55c75d787128d6d17c5a71226c2.1464358556.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Oliver O'Halloran
|
90cae1fe1c |
mm/init: fix zone boundary creation
As a part of memory initialisation the architecture passes an array to
free_area_init_nodes() which specifies the max PFN of each memory zone.
This array is not necessarily monotonic (due to unused zones) so this
array is parsed to build monotonic lists of the min and max PFN for each
zone. ZONE_MOVABLE is special cased here as its limits are managed by
the mm subsystem rather than the architecture. Unfortunately, this
special casing is broken when ZONE_MOVABLE is the not the last zone in
the zone list. The core of the issue is:
if (i == ZONE_MOVABLE)
continue;
arch_zone_lowest_possible_pfn[i] =
arch_zone_highest_possible_pfn[i-1];
As ZONE_MOVABLE is skipped the lowest_possible_pfn of the next zone will
be set to zero. This patch fixes this bug by adding explicitly tracking
where the next zone should start rather than relying on the contents
arch_zone_highest_possible_pfn[].
Thie is low priority. To get bitten by this you need to enable a zone
that appears after ZONE_MOVABLE in the zone_type enum. As far as I can
tell this means running a kernel with ZONE_DEVICE or ZONE_CMA enabled,
so I can't see this affecting too many people.
I only noticed this because I've been fiddling with ZONE_DEVICE on
powerpc and 4.6 broke my test kernel. This bug, in conjunction with the
changes in Taku Izumi's kernelcore=mirror patch (
|
||
Mel Gorman
|
ef70b6f41c |
mm, meminit: ensure node is online before checking whether pages are uninitialised
early_page_uninitialised looks up an arbitrary PFN. While a machine without node 0 will boot with "mm, page_alloc: Always return a valid node from early_pfn_to_nid", it works because it assumes that nodes are always in PFN order. This is not guaranteed so this patch adds robustness by always checking if the node being checked is online. Link: http://lkml.kernel.org/r/1468008031-3848-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
e4568d3803 |
mm, meminit: always return a valid node from early_pfn_to_nid
early_pfn_to_nid can return node 0 if a PFN is invalid on machines that has no node 0. A machine with only node 1 was observed to crash with the following message: BUG: unable to handle kernel paging request at 000000000002a3c8 PGD 0 Modules linked in: Hardware name: Supermicro H8DSP-8/H8DSP-8, BIOS 080011 06/30/2006 task: ffffffff81c0d500 ti: ffffffff81c00000 task.ti: ffffffff81c00000 RIP: reserve_bootmem_region+0x6a/0xef CR2: 000000000002a3c8 CR3: 0000000001c06000 CR4: 00000000000006b0 Call Trace: free_all_bootmem+0x4b/0x12a mem_init+0x70/0xa3 start_kernel+0x25b/0x49b The problem is that early_page_uninitialised uses the early_pfn_to_nid helper which returns node 0 for invalid PFNs. No caller of early_pfn_to_nid cares except early_page_uninitialised. This patch has early_pfn_to_nid always return a valid node. Link: http://lkml.kernel.org/r/1468008031-3848-3-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
e46e7b77c9 |
mm, page_alloc: recalculate the preferred zoneref if the context can ignore memory policies
The optimistic fast path may use cpuset_current_mems_allowed instead of
of a NULL nodemask supplied by the caller for cpuset allocations. The
preferred zone is calculated on this basis for statistic purposes and as
a starting point in the zonelist iterator.
However, if the context can ignore memory policies due to being atomic
or being able to ignore watermarks then the starting point in the
zonelist iterator is no longer correct. This patch resets the zonelist
iterator in the allocator slowpath if the context can ignore memory
policies. This will alter the zone used for statistics but only after
it is known that it makes sense for that context. Resetting it before
entering the slowpath would potentially allow an ALLOC_CPUSET allocation
to be accounted for against the wrong zone. Note that while nodemask is
not explicitly set to the original nodemask, it would only have been
overwritten if cpuset_enabled() and it was reset before the slowpath was
entered.
Link: http://lkml.kernel.org/r/20160602103936.GU2527@techsingularity.net
Fixes:
|
||
Mel Gorman
|
0d0bd89435 |
mm, page_alloc: reset zonelist iterator after resetting fair zone allocation policy
Geert Uytterhoeven reported the following problem that bisected to commit |
||
Vlastimil Babka
|
83b9355bf6 |
mm, page_alloc: prevent infinite loop in buffered_rmqueue()
In DEBUG_VM kernel, we can hit infinite loop for order == 0 in
buffered_rmqueue() when check_new_pcp() returns 1, because the bad page
is never removed from the pcp list. Fix this by removing the page
before retrying. Also we don't need to check if page is non-NULL,
because we simply grab it from the list which was just tested for being
non-empty.
Fixes:
|
||
Yang Shi
|
f86e427197 |
mm: check the return value of lookup_page_ext for all call sites
Per the discussion with Joonsoo Kim [1], we need check the return value of lookup_page_ext() for all call sites since it might return NULL in some cases, although it is unlikely, i.e. memory hotplug. Tested with ltp with "page_owner=0". [1] http://lkml.kernel.org/r/20160519002809.GA10245@js1304-P5Q-DELUXE [akpm@linux-foundation.org: fix build-breaking typos] [arnd@arndb.de: fix build problems from lookup_page_ext] Link: http://lkml.kernel.org/r/6285269.2CksypHdYp@wuerfel [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/1464023768-31025-1-git-send-email-yang.shi@linaro.org Signed-off-by: Yang Shi <yang.shi@linaro.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
e570f56ccc |
mm: check_new_page_bad() directly returns in __PG_HWPOISON case
Currently we check page->flags twice for "HWPoisoned" case of check_new_page_bad(), which can cause a race with unpoisoning. This race unnecessarily taints kernel with "BUG: Bad page state". check_new_page_bad() is the only caller of bad_page() which is interested in __PG_HWPOISON, so let's move the hwpoison related code in bad_page() to it. Link: http://lkml.kernel.org/r/20160518100949.GA17299@hori1.linux.bs1.fc.nec.co.jp Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
seokhoon.yoon
|
29b52de182 |
mm, kasan: fix to call kasan_free_pages() after poisoning page
When CONFIG_PAGE_POISONING and CONFIG_KASAN is enabled, free_pages_prepare()'s codeflow is below. 1)kmemcheck_free_shadow() 2)kasan_free_pages() - set shadow byte of page is freed 3)kernel_poison_pages() 3.1) check access to page is valid or not using kasan ---> error occur, kasan think it is invalid access 3.2) poison page 4)kernel_map_pages() So kasan_free_pages() should be called after poisoning the page. Link: http://lkml.kernel.org/r/1463220405-7455-1-git-send-email-iamyooon@gmail.com Signed-off-by: seokhoon.yoon <iamyooon@gmail.com> Cc: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Laura Abbott <labbott@fedoraproject.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Stefan Bader
|
4b50bcc7ed |
mm: use phys_addr_t for reserve_bootmem_region() arguments
Since commit |
||
Minfei Huang
|
2a138dc7e5 |
mm: use existing helper to convert "on"/"off" to boolean
It's more convenient to use existing function helper to convert string "on/off" to boolean. Link: http://lkml.kernel.org/r/1461908824-16129-1-git-send-email-mnghuan@gmail.com Signed-off-by: Minfei Huang <mnghuan@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
31e49bfda1 |
mm, oom: protect !costly allocations some more for !CONFIG_COMPACTION
Joonsoo has reported that he is able to trigger OOM for !costly high order requests (heavy fork() workload close the OOM) with the new oom detection rework. This is because we rely only on should_reclaim_retry when the compaction is disabled and it only checks watermarks for the requested order and so we might trigger OOM when there is a lot of free memory. It is not very clear what are the usual workloads when the compaction is disabled. Relying on high order allocations heavily without any mechanism to create those orders except for unbound amount of reclaim is certainly not a good idea. To prevent from potential regressions let's help this configuration some. We have to sacrifice the determinsm though because there simply is none here possible. should_compact_retry implementation for !CONFIG_COMPACTION, which was empty so far, will do watermark check for order-0 on all eligible zones. This will cause retrying until either the reclaim cannot make any further progress or all the zones are depleted even for order-0 pages. This means that the number of retries is basically unbounded for !costly orders but that was the case before the rework as well so this shouldn't regress. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/1463051677-29418-3-git-send-email-mhocko@kernel.org Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
86a294a81f |
mm, oom, compaction: prevent from should_compact_retry looping for ever for costly orders
"mm: consider compaction feedback also for costly allocation" has
removed the upper bound for the reclaim/compaction retries based on the
number of reclaimed pages for costly orders. While this is desirable
the patch did miss a mis interaction between reclaim, compaction and the
retry logic. The direct reclaim tries to get zones over min watermark
while compaction backs off and returns COMPACT_SKIPPED when all zones
are below low watermark + 1<<order gap. If we are getting really close
to OOM then __compaction_suitable can keep returning COMPACT_SKIPPED a
high order request (e.g. hugetlb order-9) while the reclaim is not able
to release enough pages to get us over low watermark. The reclaim is
still able to make some progress (usually trashing over few remaining
pages) so we are not able to break out from the loop.
I have seen this happening with the same test described in "mm: consider
compaction feedback also for costly allocation" on a swapless system.
The original problem got resolved by "vmscan: consider classzone_idx in
compaction_ready" but it shows how things might go wrong when we
approach the oom event horizont.
The reason why compaction requires being over low rather than min
watermark is not clear to me. This check was there essentially since
|
||
Michal Hocko
|
7854ea6c28 |
mm: consider compaction feedback also for costly allocation
PAGE_ALLOC_COSTLY_ORDER retry logic is mostly handled inside
should_reclaim_retry currently where we decide to not retry after at
least order worth of pages were reclaimed or the watermark check for at
least one zone would succeed after reclaiming all pages if the reclaim
hasn't made any progress. Compaction feedback is mostly ignored and we
just try to make sure that the compaction did at least something before
giving up.
The first condition was added by
|
||
Michal Hocko
|
33c2d21438 |
mm, oom: protect !costly allocations some more
should_reclaim_retry will give up retries for higher order allocations if none of the eligible zones has any requested or higher order pages available even if we pass the watermak check for order-0. This is done because there is no guarantee that the reclaimable and currently free pages will form the required order. This can, however, lead to situations where the high-order request (e.g. order-2 required for the stack allocation during fork) will trigger OOM too early - e.g. after the first reclaim/compaction round. Such a system would have to be highly fragmented and there is no guarantee further reclaim/compaction attempts would help but at least make sure that the compaction was active before we go OOM and keep retrying even if should_reclaim_retry tells us to oom if - the last compaction round backed off or - we haven't completed at least MAX_COMPACT_RETRIES active compaction rounds. The first rule ensures that the very last attempt for compaction was not ignored while the second guarantees that the compaction has done some work. Multiple retries might be needed to prevent occasional pigggy backing of other contexts to steal the compacted pages before the current context manages to retry to allocate them. compaction_failed() is taken as a final word from the compaction that the retry doesn't make much sense. We have to be careful though because the first compaction round is MIGRATE_ASYNC which is rather weak as it ignores pages under writeback and gives up too easily in other situations. We therefore have to make sure that MIGRATE_SYNC_LIGHT mode has been used before we give up. With this logic in place we do not have to increase the migration mode unconditionally and rather do it only if the compaction failed for the weaker mode. A nice side effect is that the stronger migration mode is used only when really needed so this has a potential of smaller latencies in some cases. Please note that the compaction doesn't tell us much about how successful it was when returning compaction_made_progress so we just have to blindly trust that another retry is worthwhile and cap the number to something reasonable to guarantee a convergence. If the given number of successful retries is not sufficient for a reasonable workloads we should focus on the collected compaction tracepoints data and try to address the issue in the compaction code. If this is not feasible we can increase the retries limit. [mhocko@suse.com: fix warning] Link: http://lkml.kernel.org/r/20160512061636.GA4200@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
ede3771373 |
mm: throttle on IO only when there are too many dirty and writeback pages
wait_iff_congested has been used to throttle allocator before it retried another round of direct reclaim to allow the writeback to make some progress and prevent reclaim from looping over dirty/writeback pages without making any progress. We used to do congestion_wait before commit |
||
Michal Hocko
|
0a0337e0d1 |
mm, oom: rework oom detection
__alloc_pages_slowpath has traditionally relied on the direct reclaim and did_some_progress as an indicator that it makes sense to retry allocation rather than declaring OOM. shrink_zones had to rely on zone_reclaimable if shrink_zone didn't make any progress to prevent from a premature OOM killer invocation - the LRU might be full of dirty or writeback pages and direct reclaim cannot clean those up. zone_reclaimable allows to rescan the reclaimable lists several times and restart if a page is freed. This is really subtle behavior and it might lead to a livelock when a single freed page keeps allocator looping but the current task will not be able to allocate that single page. OOM killer would be more appropriate than looping without any progress for unbounded amount of time. This patch changes OOM detection logic and pulls it out from shrink_zone which is too low to be appropriate for any high level decisions such as OOM which is per zonelist property. It is __alloc_pages_slowpath which knows how many attempts have been done and what was the progress so far therefore it is more appropriate to implement this logic. The new heuristic is implemented in should_reclaim_retry helper called from __alloc_pages_slowpath. It tries to be more deterministic and easier to follow. It builds on an assumption that retrying makes sense only if the currently reclaimable memory + free pages would allow the current allocation request to succeed (as per __zone_watermark_ok) at least for one zone in the usable zonelist. This alone wouldn't be sufficient, though, because the writeback might get stuck and reclaimable pages might be pinned for a really long time or even depend on the current allocation context. Therefore there is a backoff mechanism implemented which reduces the reclaim target after each reclaim round without any progress. This means that we should eventually converge to only NR_FREE_PAGES as the target and fail on the wmark check and proceed to OOM. The backoff is simple and linear with 1/16 of the reclaimable pages for each round without any progress. We are optimistic and reset counter for successful reclaim rounds. Costly high order pages mostly preserve their semantic and those without __GFP_REPEAT fail right away while those which have the flag set will back off after the amount of reclaimable pages reaches equivalent of the requested order. The only difference is that if there was no progress during the reclaim we rely on zone watermark check. This is more logical thing to do than previous 1<<order attempts which were a result of zone_reclaimable faking the progress. [vdavydov@virtuozzo.com: check classzone_idx for shrink_zone] [hannes@cmpxchg.org: separate the heuristic into should_reclaim_retry] [rientjes@google.com: use zone_page_state_snapshot for NR_FREE_PAGES] [rientjes@google.com: shrink_zones doesn't need to return anything] Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
c5d01d0d18 |
mm, compaction: simplify __alloc_pages_direct_compact feedback interface
__alloc_pages_direct_compact communicates potential back off by two variables: - deferred_compaction tells that the compaction returned COMPACT_DEFERRED - contended_compaction is set when there is a contention on zone->lock resp. zone->lru_lock locks __alloc_pages_slowpath then backs of for THP allocation requests to prevent from long stalls. This is rather messy and it would be much cleaner to return a single compact result value and hide all the nasty details into __alloc_pages_direct_compact. This patch shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
ea7ab982b6 |
mm, compaction: change COMPACT_ constants into enum
Compaction code is doing weird dances between COMPACT_FOO -> int -> unsigned long But there doesn't seem to be any reason for that. All functions which return/use one of those constants are not expecting any other value so it really makes sense to define an enum for them and make it clear that no other values are expected. This is a pure cleanup and shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rik van Riel
|
59dc76b0d4 |
mm: vmscan: reduce size of inactive file list
The inactive file list should still be large enough to contain readahead windows and freshly written file data, but it no longer is the only source for detecting multiple accesses to file pages. The workingset refault measurement code causes recently evicted file pages that get accessed again after a shorter interval to be promoted directly to the active list. With that mechanism in place, we can afford to (on a larger system) dedicate more memory to the active file list, so we can actually cache more of the frequently used file pages in memory, and not have them pushed out by streaming writes, once-used streaming file reads, etc. This can help things like database workloads, where only half the page cache can currently be used to cache the database working set. This patch automatically increases that fraction on larger systems, using the same ratio that has already been used for anonymous memory. [hannes@cmpxchg.org: cgroup-awareness] Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Andres Freund <andres@anarazel.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
4741526b83 |
mm, page_alloc: restore the original nodemask if the fast path allocation failed
The page allocator fast path uses either the requested nodemask or cpuset_current_mems_allowed if cpusets are enabled. If the allocation context allows watermarks to be ignored then it can also ignore memory policies. However, on entering the allocator slowpath the nodemask may still be cpuset_current_mems_allowed and the policies are enforced. This patch resets the nodemask appropriately before entering the slowpath. Link: http://lkml.kernel.org/r/20160504143628.GU2858@techsingularity.net Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
4e6118016e |
mm, page_alloc: uninline the bad page part of check_new_page()
Bad pages should be rare so the code handling them doesn't need to be inline for performance reasons. Put it to separate function which returns void. This also assumes that the initial page_expected_state() result will match the result of the thorough check, i.e. the page doesn't become "good" in the meanwhile. This matches the same expectations already in place in free_pages_check(). !DEBUG_VM bloat-o-meter: add/remove: 1/0 grow/shrink: 0/1 up/down: 134/-274 (-140) function old new delta check_new_page_bad - 134 +134 get_page_from_freelist 3468 3194 -274 Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
e2769dbdc5 |
mm, page_alloc: don't duplicate code in free_pcp_prepare
The new free_pcp_prepare() function shares a lot of code with free_pages_prepare(), which makes this a maintenance risk when some future patch modifies only one of them. We should be able to achieve the same effect (skipping free_pages_check() from !DEBUG_VM configs) by adding a parameter to free_pages_prepare() and making it inline, so the checks (and the order != 0 parts) are eliminated from the call from free_pcp_prepare(). !DEBUG_VM: bloat-o-meter reports no difference, as my gcc was already inlining free_pages_prepare() and the elimination seems to work as expected DEBUG_VM bloat-o-meter: add/remove: 0/1 grow/shrink: 2/0 up/down: 1035/-778 (257) function old new delta __free_pages_ok 297 1060 +763 free_hot_cold_page 480 752 +272 free_pages_prepare 778 - -778 Here inlining didn't occur before, and added some code, but it's ok for a debug option. [akpm@linux-foundation.org: fix build] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
479f854a20 |
mm, page_alloc: defer debugging checks of pages allocated from the PCP
Every page allocated checks a number of page fields for validity. This catches corruption bugs of pages that are already freed but it is expensive. This patch weakens the debugging check by checking PCP pages only when the PCP lists are being refilled. All compound pages are checked. This potentially avoids debugging checks entirely if the PCP lists are never emptied and refilled so some corruption issues may be missed. Full checking requires DEBUG_VM. With the two deferred debugging patches applied, the impact to a page allocator microbenchmark is 4.6.0-rc3 4.6.0-rc3 inline-v3r6 deferalloc-v3r7 Min alloc-odr0-1 344.00 ( 0.00%) 317.00 ( 7.85%) Min alloc-odr0-2 248.00 ( 0.00%) 231.00 ( 6.85%) Min alloc-odr0-4 209.00 ( 0.00%) 192.00 ( 8.13%) Min alloc-odr0-8 181.00 ( 0.00%) 166.00 ( 8.29%) Min alloc-odr0-16 168.00 ( 0.00%) 154.00 ( 8.33%) Min alloc-odr0-32 161.00 ( 0.00%) 148.00 ( 8.07%) Min alloc-odr0-64 158.00 ( 0.00%) 145.00 ( 8.23%) Min alloc-odr0-128 156.00 ( 0.00%) 143.00 ( 8.33%) Min alloc-odr0-256 168.00 ( 0.00%) 154.00 ( 8.33%) Min alloc-odr0-512 178.00 ( 0.00%) 167.00 ( 6.18%) Min alloc-odr0-1024 186.00 ( 0.00%) 174.00 ( 6.45%) Min alloc-odr0-2048 192.00 ( 0.00%) 180.00 ( 6.25%) Min alloc-odr0-4096 198.00 ( 0.00%) 184.00 ( 7.07%) Min alloc-odr0-8192 200.00 ( 0.00%) 188.00 ( 6.00%) Min alloc-odr0-16384 201.00 ( 0.00%) 188.00 ( 6.47%) Min free-odr0-1 189.00 ( 0.00%) 180.00 ( 4.76%) Min free-odr0-2 132.00 ( 0.00%) 126.00 ( 4.55%) Min free-odr0-4 104.00 ( 0.00%) 99.00 ( 4.81%) Min free-odr0-8 90.00 ( 0.00%) 85.00 ( 5.56%) Min free-odr0-16 84.00 ( 0.00%) 80.00 ( 4.76%) Min free-odr0-32 80.00 ( 0.00%) 76.00 ( 5.00%) Min free-odr0-64 78.00 ( 0.00%) 74.00 ( 5.13%) Min free-odr0-128 77.00 ( 0.00%) 73.00 ( 5.19%) Min free-odr0-256 94.00 ( 0.00%) 91.00 ( 3.19%) Min free-odr0-512 108.00 ( 0.00%) 112.00 ( -3.70%) Min free-odr0-1024 115.00 ( 0.00%) 118.00 ( -2.61%) Min free-odr0-2048 120.00 ( 0.00%) 125.00 ( -4.17%) Min free-odr0-4096 123.00 ( 0.00%) 129.00 ( -4.88%) Min free-odr0-8192 126.00 ( 0.00%) 130.00 ( -3.17%) Min free-odr0-16384 126.00 ( 0.00%) 131.00 ( -3.97%) Note that the free paths for large numbers of pages is impacted as the debugging cost gets shifted into that path when the page data is no longer necessarily cache-hot. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |