Verify that kmem_create_cache flags are not allocator specific. It is
done before removing flags that are not available with the current
configuration.
The current kmem_cache_create removes incorrect flags but do not
validate the callers are using them right. This change will ensure that
callers are not trying to create caches with flags that won't be used
because allocator specific.
Link: http://lkml.kernel.org/r/1478553075-120242-2-git-send-email-thgarnie@google.com
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The slub allocator gives us some incorrect warnings when
CONFIG_PROFILE_ANNOTATED_BRANCHES is set, as the unlikely() macro
prevents it from seeing that the return code matches what it was before:
mm/slub.c: In function `kmem_cache_free_bulk':
mm/slub.c:262:23: error: `df.s' may be used uninitialized in this function [-Werror=maybe-uninitialized]
mm/slub.c:2943:3: error: `df.cnt' may be used uninitialized in this function [-Werror=maybe-uninitialized]
mm/slub.c:2933:4470: error: `df.freelist' may be used uninitialized in this function [-Werror=maybe-uninitialized]
mm/slub.c:2943:3: error: `df.tail' may be used uninitialized in this function [-Werror=maybe-uninitialized]
I have not been able to come up with a perfect way for dealing with
this, the three options I see are:
- add a bogus initialization, which would increase the runtime overhead
- replace unlikely() with unlikely_notrace()
- remove the unlikely() annotation completely
I checked the object code for a typical x86 configuration and the last
two cases produce the same result, so I went for the last one, which is
the simplest.
Link: http://lkml.kernel.org/r/20161024155704.3114445-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
synchronize_sched() is a heavy operation and calling it per each cache
owned by a memory cgroup being destroyed may take quite some time. What
is worse, it's currently called under the slab_mutex, stalling all works
doing cache creation/destruction.
Actually, there isn't much point in calling synchronize_sched() for each
cache - it's enough to call it just once - after setting cpu_partial for
all caches and before shrinking them. This way, we can also move it out
of the slab_mutex, which we have to hold for iterating over the slab
cache list.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=172991
Link: http://lkml.kernel.org/r/0a10d71ecae3db00fb4421bcd3f82bcc911f4be4.1475329751.git.vdavydov.dev@gmail.com
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reported-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Creating a lot of cgroups at the same time might stall all worker
threads with kmem cache creation works, because kmem cache creation is
done with the slab_mutex held. The problem was amplified by commits
801faf0db8 ("mm/slab: lockless decision to grow cache") in case of
SLAB and 81ae6d0395 ("mm/slub.c: replace kick_all_cpus_sync() with
synchronize_sched() in kmem_cache_shrink()") in case of SLUB, which
increased the maximal time the slab_mutex can be held.
To prevent that from happening, let's use a special ordered single
threaded workqueue for kmem cache creation. This shouldn't introduce
any functional changes regarding how kmem caches are created, as the
work function holds the global slab_mutex during its whole runtime
anyway, making it impossible to run more than one work at a time. By
using a single threaded workqueue, we just avoid creating a thread per
each work. Ordering is required to avoid a situation when a cgroup's
work is put off indefinitely because there are other cgroups to serve,
in other words to guarantee fairness.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=172981
Link: http://lkml.kernel.org/r/20161004131417.GC1862@esperanza
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reported-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull mm/PAT cleanup from Ingo Molnar:
"A single cleanup for a generic interface that was originally
introduced for PAT"
* 'mm-pat-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pat, mm: Make track_pfn_insert() return void
The shmem hole punching with fallocate(FALLOC_FL_PUNCH_HOLE) does not
want to race with generating new pages by faulting them in.
However, the wait-queue used to delay the page faulting has a serious
problem: the wait queue head (in shmem_fallocate()) is allocated on the
stack, and the code expects that "wake_up_all()" will make sure that all
the queue entries are gone before the stack frame is de-allocated.
And that is not at all necessarily the case.
Yes, a normal wake-up sequence will remove the wait-queue entry that
caused the wakeup (see "autoremove_wake_function()"), but the key
wording there is "that caused the wakeup". When there are multiple
possible wakeup sources, the wait queue entry may well stay around.
And _particularly_ in a page fault path, we may be faulting in new pages
from user space while we also have other things going on, and there may
well be other pending wakeups.
So despite the "wake_up_all()", it's not at all guaranteed that all list
entries are removed from the wait queue head on the stack.
Fix this by introducing a new wakeup function that removes the list
entry unconditionally, even if the target process had already woken up
for other reasons. Use that "synchronous" function to set up the
waiters in shmem_fault().
This problem has never been seen in the wild afaik, but Dave Jones has
reported it on and off while running trinity. We thought we fixed the
stack corruption with the blk-mq rq_list locking fix (commit
7fe311302f: "blk-mq: update hardware and software queues for sleeping
alloc"), but it turns out there was _another_ stack corruptor hiding
in the trinity runs.
Vegard Nossum (also running trinity) was able to trigger this one fairly
consistently, and made us look once again at the shmem code due to the
faults often being in that area.
Reported-and-tested-by: Vegard Nossum <vegard.nossum@oracle.com>.
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Boris Zhmurov has reported RCU stalls during the kswapd reclaim:
INFO: rcu_sched detected stalls on CPUs/tasks:
23-...: (22 ticks this GP) idle=92f/140000000000000/0 softirq=2638404/2638404 fqs=23
(detected by 4, t=6389 jiffies, g=786259, c=786258, q=42115)
Task dump for CPU 23:
kswapd1 R running task 0 148 2 0x00000008
Call Trace:
shrink_node+0xd2/0x2f0
kswapd+0x2cb/0x6a0
mem_cgroup_shrink_node+0x160/0x160
kthread+0xbd/0xe0
__switch_to+0x1fa/0x5c0
ret_from_fork+0x1f/0x40
kthread_create_on_node+0x180/0x180
a closer code inspection has shown that we might indeed miss all the
scheduling points in the reclaim path if no pages can be isolated from
the LRU list. This is a pathological case but other reports from Donald
Buczek have shown that we might indeed hit such a path:
clusterd-989 [009] .... 118023.654491: mm_vmscan_direct_reclaim_end: nr_reclaimed=193
kswapd1-86 [001] dN.. 118023.987475: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239830 nr_taken=0 file=1
kswapd1-86 [001] dN.. 118024.320968: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239844 nr_taken=0 file=1
kswapd1-86 [001] dN.. 118024.654375: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239858 nr_taken=0 file=1
kswapd1-86 [001] dN.. 118024.987036: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239872 nr_taken=0 file=1
kswapd1-86 [001] dN.. 118025.319651: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239886 nr_taken=0 file=1
kswapd1-86 [001] dN.. 118025.652248: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239900 nr_taken=0 file=1
kswapd1-86 [001] dN.. 118025.984870: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239914 nr_taken=0 file=1
[...]
kswapd1-86 [001] dN.. 118084.274403: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4241133 nr_taken=0 file=1
this is minute long snapshot which didn't take a single page from the
LRU. It is not entirely clear why only 1303 pages have been scanned
during that time (maybe there was a heavy IRQ activity interfering).
In any case it looks like we can really hit long periods without
scheduling on non preemptive kernels so an explicit cond_resched() in
shrink_node_memcg which is independent on the reclaim operation is due.
Link: http://lkml.kernel.org/r/20161202095841.16648-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Boris Zhmurov <bb@kernelpanic.ru>
Tested-by: Boris Zhmurov <bb@kernelpanic.ru>
Reported-by: Donald Buczek <buczek@molgen.mpg.de>
Reported-by: "Christopher S. Aker" <caker@theshore.net>
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugetlb pages have ->index in size of the huge pages (PMD_SIZE or
PUD_SIZE), not in PAGE_SIZE as other types of pages. This means we
cannot user page_to_pgoff() to check whether we've got the right page
for the radix-tree index.
Let's introduce page_to_index() which would return radix-tree index for
given page.
We will be able to get rid of this once hugetlb will be switched to
multi-order entries.
Fixes: fc127da085 ("truncate: handle file thp")
Link: http://lkml.kernel.org/r/20161123093053.mjbnvn5zwxw5e6lk@black.fi.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Doug Nelson <doug.nelson@intel.com>
Tested-by: Doug Nelson <doug.nelson@intel.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Gcc revision 241896 implements use-after-scope detection. Will be
available in gcc 7. Support it in KASAN.
Gcc emits 2 new callbacks to poison/unpoison large stack objects when
they go in/out of scope. Implement the callbacks and add a test.
[dvyukov@google.com: v3]
Link: http://lkml.kernel.org/r/1479998292-144502-1-git-send-email-dvyukov@google.com
Link: http://lkml.kernel.org/r/1479226045-145148-1-git-send-email-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kasan_global struct is part of compiler/runtime ABI. gcc revision
241983 has added a new field to kasan_global struct. Update kernel
definition of kasan_global struct to include the new field.
Without this patch KASAN is broken with gcc 7.
Link: http://lkml.kernel.org/r/1479219743-28682-1-git-send-email-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following program triggers BUG() in munlock_vma_pages_range():
// autogenerated by syzkaller (http://github.com/google/syzkaller)
#include <sys/mman.h>
int main()
{
mmap((void*)0x20105000ul, 0xc00000ul, 0x2ul, 0x2172ul, -1, 0);
mremap((void*)0x201fd000ul, 0x4000ul, 0xc00000ul, 0x3ul, 0x203f0000ul);
return 0;
}
The test-case constructs the situation when munlock_vma_pages_range()
finds PTE-mapped THP-head in the middle of page table and, by mistake,
skips HPAGE_PMD_NR pages after that.
As result, on the next iteration it hits the middle of PMD-mapped THP
and gets upset seeing mlocked tail page.
The solution is only skip HPAGE_PMD_NR pages if the THP was mlocked
during munlock_vma_page(). It would guarantee that the page is
PMD-mapped as we never mlock PTE-mapeed THPs.
Fixes: e90309c9f7 ("thp: allow mlocked THP again")
Link: http://lkml.kernel.org/r/20161115132703.7s7rrgmwttegcdh4@black.fi.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit b46e756f5e ("thp: extract khugepaged from mm/huge_memory.c")
moved code from huge_memory.c to khugepaged.c. Some of this code should
be compiled only when CONFIG_SYSFS is enabled but the condition around
this code was not moved into khugepaged.c.
The result is a compilation error when CONFIG_SYSFS is disabled:
mm/built-in.o: In function `khugepaged_defrag_store': khugepaged.c:(.text+0x2d095): undefined reference to `single_hugepage_flag_store'
mm/built-in.o: In function `khugepaged_defrag_show': khugepaged.c:(.text+0x2d0ab): undefined reference to `single_hugepage_flag_show'
This commit adds the #ifdef CONFIG_SYSFS around the code related to
sysfs.
Link: http://lkml.kernel.org/r/20161114203448.24197-1-jeremy.lefaure@lse.epita.fr
Signed-off-by: Jérémy Lefaure <jeremy.lefaure@lse.epita.fr>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linus found there still is a race in mremap after commit 5d1904204c
("mremap: fix race between mremap() and page cleanning").
As described by Linus:
"the issue is that another thread might make the pte be dirty (in the
hardware walker, so no locking of ours will make any difference)
*after* we checked whether it was dirty, but *before* we removed it
from the page tables"
Fix it by moving the check after we removed it from the page table.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Prior to 3.15, there was a race between zap_pte_range() and
page_mkclean() where writes to a page could be lost. Dave Hansen
discovered by inspection that there is a similar race between
move_ptes() and page_mkclean().
We've been able to reproduce the issue by enlarging the race window with
a msleep(), but have not been able to hit it without modifying the code.
So, we think it's a real issue, but is difficult or impossible to hit in
practice.
The zap_pte_range() issue is fixed by commit 1cf35d47712d("mm: split
'tlb_flush_mmu()' into tlb flushing and memory freeing parts"). And
this patch is to fix the race between page_mkclean() and mremap().
Here is one possible way to hit the race: suppose a process mmapped a
file with READ | WRITE and SHARED, it has two threads and they are bound
to 2 different CPUs, e.g. CPU1 and CPU2. mmap returned X, then thread
1 did a write to addr X so that CPU1 now has a writable TLB for addr X
on it. Thread 2 starts mremaping from addr X to Y while thread 1
cleaned the page and then did another write to the old addr X again.
The 2nd write from thread 1 could succeed but the value will get lost.
thread 1 thread 2
(bound to CPU1) (bound to CPU2)
1: write 1 to addr X to get a
writeable TLB on this CPU
2: mremap starts
3: move_ptes emptied PTE for addr X
and setup new PTE for addr Y and
then dropped PTL for X and Y
4: page laundering for N by doing
fadvise FADV_DONTNEED. When done,
pageframe N is deemed clean.
5: *write 2 to addr X
6: tlb flush for addr X
7: munmap (Y, pagesize) to make the
page unmapped
8: fadvise with FADV_DONTNEED again
to kick the page off the pagecache
9: pread the page from file to verify
the value. If 1 is there, it means
we have lost the written 2.
*the write may or may not cause segmentation fault, it depends on
if the TLB is still on the CPU.
Please note that this is only one specific way of how the race could
occur, it didn't mean that the race could only occur in exact the above
config, e.g. more than 2 threads could be involved and fadvise() could
be done in another thread, etc.
For anonymous pages, they could race between mremap() and page reclaim:
THP: a huge PMD is moved by mremap to a new huge PMD, then the new huge
PMD gets unmapped/splitted/pagedout before the flush tlb happened for
the old huge PMD in move_page_tables() and we could still write data to
it. The normal anonymous page has similar situation.
To fix this, check for any dirty PTE in move_ptes()/move_huge_pmd() and
if any, did the flush before dropping the PTL. If we did the flush for
every move_ptes()/move_huge_pmd() call then we do not need to do the
flush in move_pages_tables() for the whole range. But if we didn't, we
still need to do the whole range flush.
Alternatively, we can track which part of the range is flushed in
move_ptes()/move_huge_pmd() and which didn't to avoid flushing the whole
range in move_page_tables(). But that would require multiple tlb
flushes for the different sub-ranges and should be less efficient than
the single whole range flush.
KBuild test on my Sandybridge desktop doesn't show any noticeable change.
v4.9-rc4:
real 5m14.048s
user 32m19.800s
sys 4m50.320s
With this commit:
real 5m13.888s
user 32m19.330s
sys 4m51.200s
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Limit the number of kmemleak false positives by including
.data.ro_after_init in memory scanning. To achieve this we need to add
symbols for start and end of the section to the linker scripts.
The problem was been uncovered by commit 56989f6d85 ("genetlink: mark
families as __ro_after_init").
Link: http://lkml.kernel.org/r/1478274173-15218-1-git-send-email-jakub.kicinski@netronome.com
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While testing OBJFREELIST_SLAB integration with pagealloc, we found a
bug where kmem_cache(sys) would be created with both CFLGS_OFF_SLAB &
CFLGS_OBJFREELIST_SLAB. When it happened, critical allocations needed
for loading drivers or creating new caches will fail.
The original kmem_cache is created early making OFF_SLAB not possible.
When kmem_cache(sys) is created, OFF_SLAB is possible and if pagealloc
is enabled it will try to enable it first under certain conditions.
Given kmem_cache(sys) reuses the original flag, you can have both flags
at the same time resulting in allocation failures and odd behaviors.
This fix discards allocator specific flags from memcg before calling
create_cache.
The bug exists since 4.6-rc1 and affects testing debug pagealloc
configurations.
Fixes: b03a017beb ("mm/slab: introduce new slab management type, OBJFREELIST_SLAB")
Link: http://lkml.kernel.org/r/1478553075-120242-1-git-send-email-thgarnie@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Tested-by: Thomas Garnier <thgarnie@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Starting from 4.9-rc1 kernel, I started noticing some test failures of
sendfile(2) and splice(2) (sendfile0N and splice01 from LTP) when
testing on sub-page block size filesystems (tested both XFS and ext4),
these syscalls start to return EIO in the tests. e.g.
sendfile02 1 TFAIL : sendfile02.c:133: sendfile(2) failed to return expected value, expected: 26, got: -1
sendfile02 2 TFAIL : sendfile02.c:133: sendfile(2) failed to return expected value, expected: 24, got: -1
sendfile02 3 TFAIL : sendfile02.c:133: sendfile(2) failed to return expected value, expected: 22, got: -1
sendfile02 4 TFAIL : sendfile02.c:133: sendfile(2) failed to return expected value, expected: 20, got: -1
This is because that in sub-page block size cases, we don't need the
whole page to be uptodate, only the part we care about is uptodate is OK
(if fs has ->is_partially_uptodate defined).
But page_cache_pipe_buf_confirm() doesn't have the ability to check the
partially-uptodate case, it needs the whole page to be uptodate. So it
returns EIO in this case.
This is a regression introduced by commit 82c156f853 ("switch
generic_file_splice_read() to use of ->read_iter()"). Prior to the
change, generic_file_splice_read() doesn't allow partially-uptodate page
either, so it worked fine.
Fix it by skipping the partially-uptodate check if we're working on a
pipe in do_generic_file_read(), so we read the whole page from disk as
long as the page is not uptodate.
I think the other way to fix it is to add the ability to check & allow
partially-uptodate page to page_cache_pipe_buf_confirm(), but that is
much harder to do and seems gain little.
Link: http://lkml.kernel.org/r/1477986187-12717-1-git-send-email-guaneryu@gmail.com
Signed-off-by: Eryu Guan <guaneryu@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Error paths in hugetlb_cow() and hugetlb_no_page() may free a newly
allocated huge page.
If a reservation was associated with the huge page, alloc_huge_page()
consumed the reservation while allocating. When the newly allocated
page is freed in free_huge_page(), it will increment the global
reservation count. However, the reservation entry in the reserve map
will remain.
This is not an issue for shared mappings as the entry in the reserve map
indicates a reservation exists. But, an entry in a private mapping
reserve map indicates the reservation was consumed and no longer exists.
This results in an inconsistency between the reserve map and the global
reservation count. This 'leaks' a reserved huge page.
Create a new routine restore_reserve_on_error() to restore the reserve
entry in these specific error paths. This routine makes use of a new
function vma_add_reservation() which will add a reserve entry for a
specific address/page.
In general, these error paths were rarely (if ever) taken on most
architectures. However, powerpc contained arch specific code that that
resulted in an extra fault and execution of these error paths on all
private mappings.
Fixes: 67961f9db8 ("mm/hugetlb: fix huge page reserve accounting for private mappings)
Link: http://lkml.kernel.org/r/1476933077-23091-2-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Tested-by: Jan Stancek <jstancek@redhat.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kirill A . Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When memory_failure() runs on a thp tail page after pmd is split, we
trigger the following VM_BUG_ON_PAGE():
page:ffffd7cd819b0040 count:0 mapcount:0 mapping: (null) index:0x1
flags: 0x1fffc000400000(hwpoison)
page dumped because: VM_BUG_ON_PAGE(!page_count(p))
------------[ cut here ]------------
kernel BUG at /src/linux-dev/mm/memory-failure.c:1132!
memory_failure() passed refcount and page lock from tail page to head
page, which is not needed because we can pass any subpage to
split_huge_page().
Fixes: 61f5d698cc ("mm: re-enable THP")
Link: http://lkml.kernel.org/r/1477961577-7183-1-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When root activates a swap partition whose header has the wrong
endianness, nr_badpages elements of badpages are swabbed before
nr_badpages has been checked, leading to a buffer overrun of up to 8GB.
This normally is not a security issue because it can only be exploited
by root (more specifically, a process with CAP_SYS_ADMIN or the ability
to modify a swap file/partition), and such a process can already e.g.
modify swapped-out memory of any other userspace process on the system.
Link: http://lkml.kernel.org/r/1477949533-2509-1-git-send-email-jann@thejh.net
Signed-off-by: Jann Horn <jann@thejh.net>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CMA allocation request size is represented by size_t that gets truncated
when same is passed as int to bitmap_find_next_zero_area_off.
We observe that during fuzz testing when cma allocation request is too
high, bitmap_find_next_zero_area_off still returns success due to the
truncation. This leads to kernel crash, as subsequent code assumes that
requested memory is available.
Fail cma allocation in case the request breaches the corresponding cma
region size.
Link: http://lkml.kernel.org/r/1478189211-3467-1-git-send-email-shashim@codeaurora.org
Signed-off-by: Shiraz Hashim <shashim@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If shmem_alloc_page() does not set PageLocked and PageSwapBacked, then
shmem_replace_page() needs to do so for itself. Without this, it puts
newpage on the wrong lru, re-unlocks the unlocked newpage, and system
descends into "Bad page" reports and freeze; or if CONFIG_DEBUG_VM=y, it
hits an earlier VM_BUG_ON_PAGE(!PageLocked), depending on config.
But shmem_replace_page() is not a common path: it's only called when
swapin (or swapoff) finds the page was already read into an unsuitable
zone: usually all zones are suitable, but gem objects for a few drm
devices (gma500, omapdrm, crestline, broadwater) require zone DMA32 if
there's more than 4GB of ram.
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1611062003510.11253@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org> [4.8.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The stack frame size could grow too large when the plugin used long long
on 32-bit architectures when the given function had too many basic blocks.
The gcc warning was:
drivers/pci/hotplug/ibmphp_ebda.c: In function 'ibmphp_access_ebda':
drivers/pci/hotplug/ibmphp_ebda.c:409:1: warning: the frame size of 1108 bytes is larger than 1024 bytes [-Wframe-larger-than=]
This switches latent_entropy from u64 to unsigned long.
Thanks to PaX Team and Emese Revfy for the patch.
Signed-off-by: Kees Cook <keescook@chromium.org>
Merge misc fixes from Andrew Morton:
"20 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
drivers/misc/sgi-gru/grumain.c: remove bogus 0x prefix from printk
cris/arch-v32: cryptocop: print a hex number after a 0x prefix
ipack: print a hex number after a 0x prefix
block: DAC960: print a hex number after a 0x prefix
fs: exofs: print a hex number after a 0x prefix
lib/genalloc.c: start search from start of chunk
mm: memcontrol: do not recurse in direct reclaim
CREDITS: update credit information for Martin Kepplinger
proc: fix NULL dereference when reading /proc/<pid>/auxv
mm: kmemleak: ensure that the task stack is not freed during scanning
lib/stackdepot.c: bump stackdepot capacity from 16MB to 128MB
latent_entropy: raise CONFIG_FRAME_WARN by default
kconfig.h: remove config_enabled() macro
ipc: account for kmem usage on mqueue and msg
mm/slab: improve performance of gathering slabinfo stats
mm: page_alloc: use KERN_CONT where appropriate
mm/list_lru.c: avoid error-path NULL pointer deref
h8300: fix syscall restarting
kcov: properly check if we are in an interrupt
mm/slab: fix kmemcg cache creation delayed issue
On 4.0, we saw a stack corruption from a page fault entering direct
memory cgroup reclaim, calling into btrfs_releasepage(), which then
tried to allocate an extent and recursed back into a kmem charge ad
nauseam:
[...]
btrfs_releasepage+0x2c/0x30
try_to_release_page+0x32/0x50
shrink_page_list+0x6da/0x7a0
shrink_inactive_list+0x1e5/0x510
shrink_lruvec+0x605/0x7f0
shrink_zone+0xee/0x320
do_try_to_free_pages+0x174/0x440
try_to_free_mem_cgroup_pages+0xa7/0x130
try_charge+0x17b/0x830
memcg_charge_kmem+0x40/0x80
new_slab+0x2d9/0x5a0
__slab_alloc+0x2fd/0x44f
kmem_cache_alloc+0x193/0x1e0
alloc_extent_state+0x21/0xc0
__clear_extent_bit+0x2b5/0x400
try_release_extent_mapping+0x1a3/0x220
__btrfs_releasepage+0x31/0x70
btrfs_releasepage+0x2c/0x30
try_to_release_page+0x32/0x50
shrink_page_list+0x6da/0x7a0
shrink_inactive_list+0x1e5/0x510
shrink_lruvec+0x605/0x7f0
shrink_zone+0xee/0x320
do_try_to_free_pages+0x174/0x440
try_to_free_mem_cgroup_pages+0xa7/0x130
try_charge+0x17b/0x830
mem_cgroup_try_charge+0x65/0x1c0
handle_mm_fault+0x117f/0x1510
__do_page_fault+0x177/0x420
do_page_fault+0xc/0x10
page_fault+0x22/0x30
On later kernels, kmem charging is opt-in rather than opt-out, and that
particular kmem allocation in btrfs_releasepage() is no longer being
charged and won't recurse and overrun the stack anymore.
But it's not impossible for an accounted allocation to happen from the
memcg direct reclaim context, and we needed to reproduce this crash many
times before we even got a useful stack trace out of it.
Like other direct reclaimers, mark tasks in memcg reclaim PF_MEMALLOC to
avoid recursing into any other form of direct reclaim. Then let
recursive charges from PF_MEMALLOC contexts bypass the cgroup limit.
Link: http://lkml.kernel.org/r/20161025141050.GA13019@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 68f24b08ee ("sched/core: Free the stack early if
CONFIG_THREAD_INFO_IN_TASK") may cause the task->stack to be freed
during kmemleak_scan() execution, leading to either a NULL pointer fault
(if task->stack is NULL) or kmemleak accessing already freed memory.
This patch uses the new try_get_task_stack() API to ensure that the task
stack is not freed during kmemleak stack scanning.
Addresses https://bugzilla.kernel.org/show_bug.cgi?id=173901.
Fixes: 68f24b08ee ("sched/core: Free the stack early if CONFIG_THREAD_INFO_IN_TASK")
Link: http://lkml.kernel.org/r/1476266223-14325-1-git-send-email-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: CAI Qian <caiqian@redhat.com>
Tested-by: CAI Qian <caiqian@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: CAI Qian <caiqian@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On large systems, when some slab caches grow to millions of objects (and
many gigabytes), running 'cat /proc/slabinfo' can take up to 1-2
seconds. During this time, interrupts are disabled while walking the
slab lists (slabs_full, slabs_partial, and slabs_free) for each node,
and this sometimes causes timeouts in other drivers (for instance,
Infiniband).
This patch optimizes 'cat /proc/slabinfo' by maintaining a counter for
total number of allocated slabs per node, per cache. This counter is
updated when a slab is created or destroyed. This enables us to skip
traversing the slabs_full list while gathering slabinfo statistics, and
since slabs_full tends to be the biggest list when the cache is large,
it results in a dramatic performance improvement. Getting slabinfo
statistics now only requires walking the slabs_free and slabs_partial
lists, and those lists are usually much smaller than slabs_full.
We tested this after growing the dentry cache to 70GB, and the
performance improved from 2s to 5ms.
Link: http://lkml.kernel.org/r/1472517876-26814-1-git-send-email-aruna.ramakrishna@oracle.com
Signed-off-by: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As described in https://bugzilla.kernel.org/show_bug.cgi?id=177821:
After some analysis it seems to be that the problem is in alloc_super().
In case list_lru_init_memcg() fails it goes into destroy_super(), which
calls list_lru_destroy().
And in list_lru_init() we see that in case memcg_init_list_lru() fails,
lru->node is freed, but not set NULL, which then leads list_lru_destroy()
to believe it is initialized and call memcg_destroy_list_lru().
memcg_destroy_list_lru() in turn can access lru->node[i].memcg_lrus,
which is NULL.
[akpm@linux-foundation.org: add comment]
Signed-off-by: Alexander Polakov <apolyakov@beget.ru>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a bug report that SLAB makes extreme load average due to over
2000 kworker thread.
https://bugzilla.kernel.org/show_bug.cgi?id=172981
This issue is caused by kmemcg feature that try to create new set of
kmem_caches for each memcg. Recently, kmem_cache creation is slowed by
synchronize_sched() and futher kmem_cache creation is also delayed since
kmem_cache creation is synchronized by a global slab_mutex lock. So,
the number of kworker that try to create kmem_cache increases quietly.
synchronize_sched() is for lockless access to node's shared array but
it's not needed when a new kmem_cache is created. So, this patch rules
out that case.
Fixes: 801faf0db8 ("mm/slab: lockless decision to grow cache")
Link: http://lkml.kernel.org/r/1475734855-4837-1-git-send-email-iamjoonsoo.kim@lge.com
Reported-by: Doug Smythies <dsmythies@telus.net>
Tested-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No, KASAN may not be able to co-exist with HOTPLUG_MEMORY at runtime,
but for build testing there is no reason not to allow them together.
This hopefully means better build coverage and fewer embarrasing silly
problems like the one fixed by commit 9db4f36e82 ("mm: remove unused
variable in memory hotplug") in the future.
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I removed the per-zone bitlock hashed waitqueues in commit
9dcb8b685f ("mm: remove per-zone hashtable of bitlock waitqueues"), I
removed all the magic hotplug memory initialization of said waitqueues
too.
But when I actually _tested_ the resulting build, I stupidly assumed
that "allmodconfig" would enable memory hotplug. And it doesn't,
because it enables KASAN instead, which then disables hotplug memory
support.
As a result, my build test of the per-zone waitqueues was totally
broken, and I didn't notice that the compiler warns about the now unused
iterator variable 'i'.
I guess I should be happy that that seems to be the worst breakage from
my clearly horribly failed test coverage.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The per-zone waitqueues exist because of a scalability issue with the
page waitqueues on some NUMA machines, but it turns out that they hurt
normal loads, and now with the vmalloced stacks they also end up
breaking gfs2 that uses a bit_wait on a stack object:
wait_on_bit(&gh->gh_iflags, HIF_WAIT, TASK_UNINTERRUPTIBLE)
where 'gh' can be a reference to the local variable 'mount_gh' on the
stack of fill_super().
The reason the per-zone hash table breaks for this case is that there is
no "zone" for virtual allocations, and trying to look up the physical
page to get at it will fail (with a BUG_ON()).
It turns out that I actually complained to the mm people about the
per-zone hash table for another reason just a month ago: the zone lookup
also hurts the regular use of "unlock_page()" a lot, because the zone
lookup ends up forcing several unnecessary cache misses and generates
horrible code.
As part of that earlier discussion, we had a much better solution for
the NUMA scalability issue - by just making the page lock have a
separate contention bit, the waitqueue doesn't even have to be looked at
for the normal case.
Peter Zijlstra already has a patch for that, but let's see if anybody
even notices. In the meantime, let's fix the actual gfs2 breakage by
simplifying the bitlock waitqueues and removing the per-zone issue.
Reported-by: Andreas Gruenbacher <agruenba@redhat.com>
Tested-by: Bob Peterson <rpeterso@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch unexports the low-level __get_user_pages() function.
Recent refactoring of the get_user_pages* functions allow flags to be
passed through get_user_pages() which eliminates the need for access to
this function from its one user, kvm.
We can see that the two calls to get_user_pages() which replace
__get_user_pages() in kvm_main.c are equivalent by examining their call
stacks:
get_user_page_nowait():
get_user_pages(start, 1, flags, page, NULL)
__get_user_pages_locked(current, current->mm, start, 1, page, NULL, NULL,
false, flags | FOLL_TOUCH)
__get_user_pages(current, current->mm, start, 1,
flags | FOLL_TOUCH | FOLL_GET, page, NULL, NULL)
check_user_page_hwpoison():
get_user_pages(addr, 1, flags, NULL, NULL)
__get_user_pages_locked(current, current->mm, addr, 1, NULL, NULL, NULL,
false, flags | FOLL_TOUCH)
__get_user_pages(current, current->mm, addr, 1, flags | FOLL_TOUCH, NULL,
NULL, NULL)
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vmap stack fixes from Ingo Molnar:
"This is fallout from CONFIG_HAVE_ARCH_VMAP_STACK=y on x86: stack
accesses that used to be just somewhat questionable are now totally
buggy.
These changes try to do it without breaking the ABI: the fields are
left there, they are just reporting zero, or reporting narrower
information (the maps file change)"
* 'mm-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
mm: Change vm_is_stack_for_task() to vm_is_stack_for_current()
fs/proc: Stop trying to report thread stacks
fs/proc: Stop reporting eip and esp in /proc/PID/stat
mm/numa: Remove duplicated include from mprotect.c
Asking for a non-current task's stack can't be done without races
unless the task is frozen in kernel mode. As far as I know,
vm_is_stack_for_task() never had a safe non-current use case.
The __unused annotation is because some KSTK_ESP implementations
ignore their parameter, which IMO is further justification for this
patch.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux API <linux-api@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tycho Andersen <tycho.andersen@canonical.com>
Link: http://lkml.kernel.org/r/4c3f68f426e6c061ca98b4fc7ef85ffbb0a25b0c.1475257877.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge the gup_flags cleanups from Lorenzo Stoakes:
"This patch series adjusts functions in the get_user_pages* family such
that desired FOLL_* flags are passed as an argument rather than
implied by flags.
The purpose of this change is to make the use of FOLL_FORCE explicit
so it is easier to grep for and clearer to callers that this flag is
being used. The use of FOLL_FORCE is an issue as it overrides missing
VM_READ/VM_WRITE flags for the VMA whose pages we are reading
from/writing to, which can result in surprising behaviour.
The patch series came out of the discussion around commit 38e0885465
("mm: check VMA flags to avoid invalid PROT_NONE NUMA balancing"),
which addressed a BUG_ON() being triggered when a page was faulted in
with PROT_NONE set but having been overridden by FOLL_FORCE.
do_numa_page() was run on the assumption the page _must_ be one marked
for NUMA node migration as an actual PROT_NONE page would have been
dealt with prior to this code path, however FOLL_FORCE introduced a
situation where this assumption did not hold.
See
https://marc.info/?l=linux-mm&m=147585445805166
for the patch proposal"
Additionally, there's a fix for an ancient bug related to FOLL_FORCE and
FOLL_WRITE by me.
[ This branch was rebased recently to add a few more acked-by's and
reviewed-by's ]
* gup_flag-cleanups:
mm: replace access_process_vm() write parameter with gup_flags
mm: replace access_remote_vm() write parameter with gup_flags
mm: replace __access_remote_vm() write parameter with gup_flags
mm: replace get_user_pages_remote() write/force parameters with gup_flags
mm: replace get_user_pages() write/force parameters with gup_flags
mm: replace get_vaddr_frames() write/force parameters with gup_flags
mm: replace get_user_pages_locked() write/force parameters with gup_flags
mm: replace get_user_pages_unlocked() write/force parameters with gup_flags
mm: remove write/force parameters from __get_user_pages_unlocked()
mm: remove write/force parameters from __get_user_pages_locked()
mm: remove gup_flags FOLL_WRITE games from __get_user_pages()
This removes the 'write' argument from access_process_vm() and replaces
it with 'gup_flags' as use of this function previously silently implied
FOLL_FORCE, whereas after this patch callers explicitly pass this flag.
We make this explicit as use of FOLL_FORCE can result in surprising
behaviour (and hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the 'write' argument from access_remote_vm() and replaces
it with 'gup_flags' as use of this function previously silently implied
FOLL_FORCE, whereas after this patch callers explicitly pass this flag.
We make this explicit as use of FOLL_FORCE can result in surprising
behaviour (and hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the 'write' argument from __access_remote_vm() and replaces
it with 'gup_flags' as use of this function previously silently implied
FOLL_FORCE, whereas after this patch callers explicitly pass this flag.
We make this explicit as use of FOLL_FORCE can result in surprising
behaviour (and hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the 'write' and 'force' from get_user_pages_remote() and
replaces them with 'gup_flags' to make the use of FOLL_FORCE explicit in
callers as use of this flag can result in surprising behaviour (and
hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the 'write' and 'force' from get_user_pages() and replaces
them with 'gup_flags' to make the use of FOLL_FORCE explicit in callers
as use of this flag can result in surprising behaviour (and hence bugs)
within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the 'write' and 'force' from get_vaddr_frames() and
replaces them with 'gup_flags' to make the use of FOLL_FORCE explicit in
callers as use of this flag can result in surprising behaviour (and
hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the 'write' and 'force' use from get_user_pages_locked()
and replaces them with 'gup_flags' to make the use of FOLL_FORCE
explicit in callers as use of this flag can result in surprising
behaviour (and hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the 'write' and 'force' use from get_user_pages_unlocked()
and replaces them with 'gup_flags' to make the use of FOLL_FORCE
explicit in callers as use of this flag can result in surprising
behaviour (and hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>