When the fsync callback (btrfs_sync_file) starts, it first waits for
the writeback of any dirty pages to start and finish without holding
the inode's mutex (to reduce contention). After this it acquires the
inode's mutex and repeats that process via btrfs_wait_ordered_range
only if we're doing a full sync (BTRFS_INODE_NEEDS_FULL_SYNC flag
is set on the inode).
This is not safe for a non full sync - we need to start and wait for
writeback to finish for any pages that might have been made dirty
before acquiring the inode's mutex and after that first step mentioned
before. Why this is needed is explained by the following comment added
to btrfs_sync_file:
"Right before acquiring the inode's mutex, we might have new
writes dirtying pages, which won't immediately start the
respective ordered operations - that is done through the
fill_delalloc callbacks invoked from the writepage and
writepages address space operations. So make sure we start
all ordered operations before starting to log our inode. Not
doing this means that while logging the inode, writeback
could start and invoke writepage/writepages, which would call
the fill_delalloc callbacks (cow_file_range,
submit_compressed_extents). These callbacks add first an
extent map to the modified list of extents and then create
the respective ordered operation, which means in
tree-log.c:btrfs_log_inode() we might capture all existing
ordered operations (with btrfs_get_logged_extents()) before
the fill_delalloc callback adds its ordered operation, and by
the time we visit the modified list of extent maps (with
btrfs_log_changed_extents()), we see and process the extent
map they created. We then use the extent map to construct a
file extent item for logging without waiting for the
respective ordered operation to finish - this file extent
item points to a disk location that might not have yet been
written to, containing random data - so after a crash a log
replay will make our inode have file extent items that point
to disk locations containing invalid data, as we returned
success to userspace without waiting for the respective
ordered operation to finish, because it wasn't captured by
btrfs_get_logged_extents()."
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
An user reported this, it is because that lseek's SEEK_SET/SEEK_CUR/SEEK_END
allow a negative value for @offset, but btrfs's SEEK_DATA/SEEK_HOLE don't
prepare for that and convert the negative @offset into unsigned type,
so we get (end < start) warning.
[ 1269.835374] ------------[ cut here ]------------
[ 1269.836809] WARNING: CPU: 0 PID: 1241 at fs/btrfs/extent_io.c:430 insert_state+0x11d/0x140()
[ 1269.838816] BTRFS: end < start 4094 18446744073709551615
[ 1269.840334] CPU: 0 PID: 1241 Comm: a.out Tainted: G W 3.16.0+ #306
[ 1269.858229] Call Trace:
[ 1269.858612] [<ffffffff81801a69>] dump_stack+0x4e/0x68
[ 1269.858952] [<ffffffff8107894c>] warn_slowpath_common+0x8c/0xc0
[ 1269.859416] [<ffffffff81078a36>] warn_slowpath_fmt+0x46/0x50
[ 1269.859929] [<ffffffff813b0fbd>] insert_state+0x11d/0x140
[ 1269.860409] [<ffffffff813b1396>] __set_extent_bit+0x3b6/0x4e0
[ 1269.860805] [<ffffffff813b21c7>] lock_extent_bits+0x87/0x200
[ 1269.861697] [<ffffffff813a5b28>] btrfs_file_llseek+0x148/0x2a0
[ 1269.862168] [<ffffffff811f201e>] SyS_lseek+0xae/0xc0
[ 1269.862620] [<ffffffff8180b212>] system_call_fastpath+0x16/0x1b
[ 1269.862970] ---[ end trace 4d33ea885832054b ]---
This assumes that btrfs starts finding DATA/HOLE from the beginning of file
if the assigned @offset is negative.
Also we add alignment for lock_extent_bits 's range.
Reported-by: Toralf Förster <toralf.foerster@gmx.de>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
The form
(value + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT
is equivalent to
(value + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE
The rest is a simple subsitution, no difference in the generated
assembly code.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The nodesize and leafsize were never of different values. Unify the
usage and make nodesize the one. Cleanup the redundant checks and
helpers.
Shaves a few bytes from .text:
text data bss dec hex filename
852418 24560 23112 900090 dbbfa btrfs.ko.before
851074 24584 23112 898770 db6d2 btrfs.ko.after
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_set_key_type and btrfs_key_type are used inconsistently along with
open coded variants. Other members of btrfs_key are accessed directly
without any helpers anyway.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
While we're doing a full fsync (when the inode has the flag
BTRFS_INODE_NEEDS_FULL_SYNC set) that is ranged too (covers only a
portion of the file), we might have ordered operations that are started
before or while we're logging the inode and that fall outside the fsync
range.
Therefore when a full ranged fsync finishes don't remove every extent
map from the list of modified extent maps - as for some of them, that
fall outside our fsync range, their respective ordered operation hasn't
finished yet, meaning the corresponding file extent item wasn't inserted
into the fs/subvol tree yet and therefore we didn't log it, and we must
let the next fast fsync (one that checks only the modified list) see this
extent map and log a matching file extent item to the log btree and wait
for its ordered operation to finish (if it's still ongoing).
A test case for xfstests follows.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We should only be flushing on close if the file was flagged as needing
it during truncate. I broke this with my ordered data vs transaction
commit deadlock fix.
Thanks to Miao Xie for catching this.
Signed-off-by: Chris Mason <clm@fb.com>
Reported-by: Miao Xie <miaox@cn.fujitsu.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
When current btrfs finds that a new extent map is going to be insereted
but failed with -EEXIST, it will try again to insert the extent map
but with the length of sectorsize.
This is OK if we don't enable 'no-holes' feature since all extent space
is continuous, we will not go into the not found->insert routine.
But if we enable 'no-holes' feature, it will make things out of control.
e.g. in 4K sectorsize, we pass the following args to btrfs_get_extent():
btrfs_get_extent() args: start: 27874 len 4100
28672 27874 28672 27874+4100 32768
|-----------------------|
|---------hole--------------------|---------data----------|
1) not found and insert
Since no extent map containing the range, btrfs_get_extent() will go
into the not_found and insert routine, which will try to insert the
extent map (27874, 27847 + 4100).
2) first overlap
But it overlaps with (28672, 32768) extent, so -EEXIST will be returned
by add_extent_mapping().
3) retry but still overlap
After catching the -EEXIST, then btrfs_get_extent() will try insert it
again but with 4K length, which still overlaps, so -EEXIST will be
returned.
This makes the following patch fail to punch hole.
d77815461f btrfs: Avoid trucating page or punching hole in a already existed hole.
This patch will use the right length, which is the (exsisting->start -
em->start) to insert, making the above patch works in 'no-holes' mode.
Also, some small code style problems in above patch is fixed too.
Reported-by: Filipe David Manana <fdmanana@gmail.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Filipe David Manana <fdmanana@suse.com>
Tested-by: Filipe David Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
For a non-existent key, btrfs_search_slot() sets path->slots[0] to the slot
where the key could have been present, which in this case would be the slot
containing the extent item which would be the next neighbor of the file range
being punched. The current code passes an incremented path->slots[0] and we
skip to the wrong file extent item. This would mean that we would fail to
merge the "yet to be created" hole with the next neighboring hole (if one
exists). Fix this.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Truncates and renames are often used to replace old versions of a file
with new versions. Applications often expect this to be an atomic
replacement, even if they haven't done anything to make sure the new
version is fully on disk.
Btrfs has strict flushing in place to make sure that renaming over an
old file with a new file will fully flush out the new file before
allowing the transaction commit with the rename to complete.
This ordering means the commit code needs to be able to lock file pages,
and there are a few paths in the filesystem where we will try to end a
transaction with the page lock held. It's rare, but these things can
deadlock.
This patch removes the ordered flushes and switches to a best effort
filemap_flush like ext4 uses. It's not perfect, but it should fix the
deadlocks.
Signed-off-by: Chris Mason <clm@fb.com>
Pull vfs updates from Al Viro:
"This the bunch that sat in -next + lock_parent() fix. This is the
minimal set; there's more pending stuff.
In particular, I really hope to get acct.c fixes merged this cycle -
we need that to deal sanely with delayed-mntput stuff. In the next
pile, hopefully - that series is fairly short and localized
(kernel/acct.c, fs/super.c and fs/namespace.c). In this pile: more
iov_iter work. Most of prereqs for ->splice_write with sane locking
order are there and Kent's dio rewrite would also fit nicely on top of
this pile"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (70 commits)
lock_parent: don't step on stale ->d_parent of all-but-freed one
kill generic_file_splice_write()
ceph: switch to iter_file_splice_write()
shmem: switch to iter_file_splice_write()
nfs: switch to iter_splice_write_file()
fs/splice.c: remove unneeded exports
ocfs2: switch to iter_file_splice_write()
->splice_write() via ->write_iter()
bio_vec-backed iov_iter
optimize copy_page_{to,from}_iter()
bury generic_file_aio_{read,write}
lustre: get rid of messing with iovecs
ceph: switch to ->write_iter()
ceph_sync_direct_write: stop poking into iov_iter guts
ceph_sync_read: stop poking into iov_iter guts
new helper: copy_page_from_iter()
fuse: switch to ->write_iter()
btrfs: switch to ->write_iter()
ocfs2: switch to ->write_iter()
xfs: switch to ->write_iter()
...
Pull btrfs updates from Chris Mason:
"The biggest change here is Josef's rework of the btrfs quota
accounting, which improves the in-memory tracking of delayed extent
operations.
I had been working on Btrfs stack usage for a while, mostly because it
had become impossible to do long stress runs with slab, lockdep and
pagealloc debugging turned on without blowing the stack. Even though
you upgraded us to a nice king sized stack, I kept most of the
patches.
We also have some very hard to find corruption fixes, an awesome sysfs
use after free, and the usual assortment of optimizations, cleanups
and other fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (80 commits)
Btrfs: convert smp_mb__{before,after}_clear_bit
Btrfs: fix scrub_print_warning to handle skinny metadata extents
Btrfs: make fsync work after cloning into a file
Btrfs: use right type to get real comparison
Btrfs: don't check nodes for extent items
Btrfs: don't release invalid page in btrfs_page_exists_in_range()
Btrfs: make sure we retry if page is a retriable exception
Btrfs: make sure we retry if we couldn't get the page
btrfs: replace EINVAL with EOPNOTSUPP for dev_replace raid56
trivial: fs/btrfs/ioctl.c: fix typo s/substract/subtract/
Btrfs: fix leaf corruption after __btrfs_drop_extents
Btrfs: ensure btrfs_prev_leaf doesn't miss 1 item
Btrfs: fix clone to deal with holes when NO_HOLES feature is enabled
btrfs: free delayed node outside of root->inode_lock
btrfs: replace EINVAL with ERANGE for resize when ULLONG_MAX
Btrfs: fix transaction leak during fsync call
btrfs: Avoid trucating page or punching hole in a already existed hole.
Btrfs: update commit root on snapshot creation after orphan cleanup
Btrfs: ioctl, don't re-lock extent range when not necessary
Btrfs: avoid visiting all extent items when cloning a range
...
If btrfs_log_dentry_safe() returns an error, we set ret to 1 and
fall through with the goal of committing the transaction. However,
in the case where the inode doesn't need a full sync, we would call
btrfs_wait_ordered_range() against the target range for our inode,
and if it returned an error, we would return without commiting or
ending the transaction.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_punch_hole() will truncate unaligned pages or punch hole on a
already existed hole.
This will cause unneeded zero page or holes splitting the original huge
hole.
This patch will skip already existed holes before any page truncating or
hole punching.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
In these instances, we are trying to determine if a page has been accessed
since we began the operation for the sake of retry. This is easily
accomplished by doing a gang lookup in the page mapping radix tree, and it
saves us the dependency on the flag (so that we might eventually delete
it).
btrfs_page_exists_in_range borrows heavily from find_get_page, replacing
the radix tree look up with a gang lookup of 1, so that we can find the
next highest page >= index and see if it falls into our lock range.
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Alex Gartrell <agartrell@fb.com>
Currently qgroups account for space by intercepting delayed ref updates to fs
trees. It does this by adding sequence numbers to delayed ref updates so that
it can figure out how the tree looked before the update so we can adjust the
counters properly. The problem with this is that it does not allow delayed refs
to be merged, so if you say are defragging an extent with 5k snapshots pointing
to it we will thrash the delayed ref lock because we need to go back and
manually merge these things together. Instead we want to process quota changes
when we know they are going to happen, like when we first allocate an extent, we
free a reference for an extent, we add new references etc. This patch
accomplishes this by only adding qgroup operations for real ref changes. We
only modify the sequence number when we need to lookup roots for bytenrs, this
reduces the amount of churn on the sequence number and allows us to merge
delayed refs as we add them most of the time. This patch encompasses a bunch of
architectural changes
1) qgroup ref operations: instead of tracking qgroup operations through the
delayed refs we simply add new ref operations whenever we notice that we need to
when we've modified the refs themselves.
2) tree mod seq: we no longer have this separation of major/minor counters.
this makes the sequence number stuff much more sane and we can remove some
locking that was needed to protect the counter.
3) delayed ref seq: we now read the tree mod seq number and use that as our
sequence. This means each new delayed ref doesn't have it's own unique sequence
number, rather whenever we go to lookup backrefs we inc the sequence number so
we can make sure to keep any new operations from screwing up our world view at
that given point. This allows us to merge delayed refs during runtime.
With all of these changes the delayed ref stuff is a little saner and the qgroup
accounting stuff no longer goes negative in some cases like it was before.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
While running a stress test with multiple threads writing to the same btrfs
file system, I ended up with a situation where a leaf was corrupted in that
it had 2 file extent item keys that had the same exact key. I was able to
detect this quickly thanks to the following patch which triggers an assertion
as soon as a leaf is marked dirty if there are duplicated keys or out of order
keys:
Btrfs: check if items are ordered when a leaf is marked dirty
(https://patchwork.kernel.org/patch/3955431/)
Basically while running the test, I got the following in dmesg:
[28877.415877] WARNING: CPU: 2 PID: 10706 at fs/btrfs/file.c:553 btrfs_drop_extent_cache+0x435/0x440 [btrfs]()
(...)
[28877.415917] Call Trace:
[28877.415922] [<ffffffff816f1189>] dump_stack+0x4e/0x68
[28877.415926] [<ffffffff8104a32c>] warn_slowpath_common+0x8c/0xc0
[28877.415929] [<ffffffff8104a37a>] warn_slowpath_null+0x1a/0x20
[28877.415944] [<ffffffffa03775a5>] btrfs_drop_extent_cache+0x435/0x440 [btrfs]
[28877.415949] [<ffffffff8118e7be>] ? kmem_cache_alloc+0xfe/0x1c0
[28877.415962] [<ffffffffa03777d9>] fill_holes+0x229/0x3e0 [btrfs]
[28877.415972] [<ffffffffa0345865>] ? block_rsv_add_bytes+0x55/0x80 [btrfs]
[28877.415984] [<ffffffffa03792cb>] btrfs_fallocate+0xb6b/0xc20 [btrfs]
(...)
[29854.132560] BTRFS critical (device sdc): corrupt leaf, bad key order: block=955232256,root=1, slot=24
[29854.132565] BTRFS info (device sdc): leaf 955232256 total ptrs 40 free space 778
(...)
[29854.132637] item 23 key (3486 108 667648) itemoff 2694 itemsize 53
[29854.132638] extent data disk bytenr 14574411776 nr 286720
[29854.132639] extent data offset 0 nr 286720 ram 286720
[29854.132640] item 24 key (3486 108 954368) itemoff 2641 itemsize 53
[29854.132641] extent data disk bytenr 0 nr 0
[29854.132643] extent data offset 0 nr 0 ram 0
[29854.132644] item 25 key (3486 108 954368) itemoff 2588 itemsize 53
[29854.132645] extent data disk bytenr 8699670528 nr 77824
[29854.132646] extent data offset 0 nr 77824 ram 77824
[29854.132647] item 26 key (3486 108 1146880) itemoff 2535 itemsize 53
[29854.132648] extent data disk bytenr 8699670528 nr 77824
[29854.132649] extent data offset 0 nr 77824 ram 77824
(...)
[29854.132707] kernel BUG at fs/btrfs/ctree.h:3901!
(...)
[29854.132771] Call Trace:
[29854.132779] [<ffffffffa0342b5c>] setup_items_for_insert+0x2dc/0x400 [btrfs]
[29854.132791] [<ffffffffa0378537>] __btrfs_drop_extents+0xba7/0xdd0 [btrfs]
[29854.132794] [<ffffffff8109c0d6>] ? trace_hardirqs_on_caller+0x16/0x1d0
[29854.132797] [<ffffffff8109c29d>] ? trace_hardirqs_on+0xd/0x10
[29854.132800] [<ffffffff8118e7be>] ? kmem_cache_alloc+0xfe/0x1c0
[29854.132810] [<ffffffffa036783b>] insert_reserved_file_extent.constprop.66+0xab/0x310 [btrfs]
[29854.132820] [<ffffffffa036a6c6>] __btrfs_prealloc_file_range+0x116/0x340 [btrfs]
[29854.132830] [<ffffffffa0374d53>] btrfs_prealloc_file_range+0x23/0x30 [btrfs]
(...)
So this is caused by getting an -ENOSPC error while punching a file hole, more
specifically, we get -ENOSPC error from __btrfs_drop_extents in the while loop
of file.c:btrfs_punch_hole() when it's unable to modify the btree to delete one
or more file extent items due to lack of enough free space. When this happens,
in btrfs_punch_hole(), we attempt to reclaim free space by switching our transaction
block reservation object to root->fs_info->trans_block_rsv, end our transaction and
start a new transaction basically - and, we keep increasing our current offset
(cur_offset) as long as it's smaller than the end of the target range (lockend) -
this makes use leave the loop with cur_offset == drop_end which in turn makes us
call fill_holes() for inserting a file extent item that represents a 0 bytes range
hole (and this insertion succeeds, as in the meanwhile more space became available).
This 0 bytes file hole extent item is a problem because any subsequent caller of
__btrfs_drop_extents (regular file writes, or fallocate calls for e.g.), with a
start file offset that is equal to the offset of the hole, will not remove this
extent item due to the following conditional in the while loop of
__btrfs_drop_extents:
if (extent_end <= search_start) {
path->slots[0]++;
goto next_slot;
}
This later makes the call to setup_items_for_insert() (at the very end of
__btrfs_drop_extents), insert a new file extent item with the same offset as
the 0 bytes file hole extent item that follows it. Needless is to say that this
causes chaos, either when reading the leaf from disk (btree_readpage_end_io_hook),
where we perform leaf sanity checks or in subsequent operations that manipulate
file extent items, as in the fallocate call as shown by the dmesg trace above.
Without my other patch to perform the leaf sanity checks once a leaf is marked
as dirty (if the integrity checker is enabled), it would have been much harder
to debug this issue.
This change might fix a few similar issues reported by users in the mailing
list regarding assertion failures in btrfs_set_item_key_safe calls performed
by __btrfs_drop_extents, such as the following report:
http://comments.gmane.org/gmane.comp.file-systems.btrfs/32938
Asking fill_holes() to create a 0 bytes wide file hole item also produced the
first warning in the trace above, as we passed a range to btrfs_drop_extent_cache
that has an end smaller (by -1) than its start.
On 3.14 kernels this issue manifests itself through leaf corruption, as we get
duplicated file extent item keys in a leaf when calling setup_items_for_insert(),
but on older kernels, setup_items_for_insert() isn't called by __btrfs_drop_extents(),
instead we have callers of __btrfs_drop_extents(), namely the functions
inode.c:insert_inline_extent() and inode.c:insert_reserved_file_extent(), calling
btrfs_insert_empty_item() to insert the new file extent item, which would fail with
error -EEXIST, instead of inserting a duplicated key - which is still a serious
issue as it would make all similar file extent item replace operations keep
failing if they target the same file range.
Cc: stable@vger.kernel.org
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
In a previous change, commit 12870f1c9b,
I accidentally moved the roundup of inode->i_size to outside of the
critical section delimited by the inode mutex, which is not atomic and
not correct since the size can be changed by other task before we acquire
the mutex. Therefore fix it.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
aops->write_begin may allocate a new page and make it visible only to have
mark_page_accessed called almost immediately after. Once the page is
visible the atomic operations are necessary which is noticable overhead
when writing to an in-memory filesystem like tmpfs but should also be
noticable with fast storage. The objective of the patch is to initialse
the accessed information with non-atomic operations before the page is
visible.
The bulk of filesystems directly or indirectly use
grab_cache_page_write_begin or find_or_create_page for the initial
allocation of a page cache page. This patch adds an init_page_accessed()
helper which behaves like the first call to mark_page_accessed() but may
called before the page is visible and can be done non-atomically.
The primary APIs of concern in this care are the following and are used
by most filesystems.
find_get_page
find_lock_page
find_or_create_page
grab_cache_page_nowait
grab_cache_page_write_begin
All of them are very similar in detail to the patch creates a core helper
pagecache_get_page() which takes a flags parameter that affects its
behavior such as whether the page should be marked accessed or not. Then
old API is preserved but is basically a thin wrapper around this core
function.
Each of the filesystems are then updated to avoid calling
mark_page_accessed when it is known that the VM interfaces have already
done the job. There is a slight snag in that the timing of the
mark_page_accessed() has now changed so in rare cases it's possible a page
gets to the end of the LRU as PageReferenced where as previously it might
have been repromoted. This is expected to be rare but it's worth the
filesystem people thinking about it in case they see a problem with the
timing change. It is also the case that some filesystems may be marking
pages accessed that previously did not but it makes sense that filesystems
have consistent behaviour in this regard.
The test case used to evaulate this is a simple dd of a large file done
multiple times with the file deleted on each iterations. The size of the
file is 1/10th physical memory to avoid dirty page balancing. In the
async case it will be possible that the workload completes without even
hitting the disk and will have variable results but highlight the impact
of mark_page_accessed for async IO. The sync results are expected to be
more stable. The exception is tmpfs where the normal case is for the "IO"
to not hit the disk.
The test machine was single socket and UMA to avoid any scheduling or NUMA
artifacts. Throughput and wall times are presented for sync IO, only wall
times are shown for async as the granularity reported by dd and the
variability is unsuitable for comparison. As async results were variable
do to writback timings, I'm only reporting the maximum figures. The sync
results were stable enough to make the mean and stddev uninteresting.
The performance results are reported based on a run with no profiling.
Profile data is based on a separate run with oprofile running.
async dd
3.15.0-rc3 3.15.0-rc3
vanilla accessed-v2
ext3 Max elapsed 13.9900 ( 0.00%) 11.5900 ( 17.16%)
tmpfs Max elapsed 0.5100 ( 0.00%) 0.4900 ( 3.92%)
btrfs Max elapsed 12.8100 ( 0.00%) 12.7800 ( 0.23%)
ext4 Max elapsed 18.6000 ( 0.00%) 13.3400 ( 28.28%)
xfs Max elapsed 12.5600 ( 0.00%) 2.0900 ( 83.36%)
The XFS figure is a bit strange as it managed to avoid a worst case by
sheer luck but the average figures looked reasonable.
samples percentage
ext3 86107 0.9783 vmlinux-3.15.0-rc4-vanilla mark_page_accessed
ext3 23833 0.2710 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
ext3 5036 0.0573 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
ext4 64566 0.8961 vmlinux-3.15.0-rc4-vanilla mark_page_accessed
ext4 5322 0.0713 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
ext4 2869 0.0384 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
xfs 62126 1.7675 vmlinux-3.15.0-rc4-vanilla mark_page_accessed
xfs 1904 0.0554 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
xfs 103 0.0030 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
btrfs 10655 0.1338 vmlinux-3.15.0-rc4-vanilla mark_page_accessed
btrfs 2020 0.0273 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
btrfs 587 0.0079 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
tmpfs 59562 3.2628 vmlinux-3.15.0-rc4-vanilla mark_page_accessed
tmpfs 1210 0.0696 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
tmpfs 94 0.0054 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
[akpm@linux-foundation.org: don't run init_page_accessed() against an uninitialised pointer]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Tested-by: Prabhakar Lad <prabhakar.csengg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now It Can Be Done(tm) - we don't need to do iov_shorten() in
generic_file_direct_write() anymore, now that all ->direct_IO()
instances are converted to proper iov_iter methods and honour
iter->count and iter->iov_offset properly.
Get rid of count/ocount arguments of generic_file_direct_write(),
while we are at it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For now, just use the same thing we pass to ->direct_IO() - it's all
iovec-based at the moment. Pass it explicitly to iov_iter_init() and
account for kvec vs. iovec in there, by the same kludge NFS ->direct_IO()
uses.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
all callers of ->aio_read() and ->aio_write() have iov/nr_segs already
checked - generic_segment_checks() done after that is just an odd way
to spell iov_length().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull btrfs fixes from Chris Mason.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: limit the path size in send to PATH_MAX
Btrfs: correctly set profile flags on seqlock retry
Btrfs: use correct key when repeating search for extent item
Btrfs: fix inode caching vs tree log
Btrfs: fix possible memory leaks in open_ctree()
Btrfs: avoid triggering bug_on() when we fail to start inode caching task
Btrfs: move btrfs_{set,clear}_and_info() to ctree.h
btrfs: replace error code from btrfs_drop_extents
btrfs: Change the hole range to a more accurate value.
btrfs: fix use-after-free in mount_subvol()
There's a case which clone does not handle and used to BUG_ON instead,
(testcase xfstests/btrfs/035), now returns EINVAL. This error code is
confusing to the ioctl caller, as it normally signifies errorneous
arguments.
Change it to ENOPNOTSUPP which allows a fall back to copy instead of
clone. This does not affect the common reflink operation.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Commit 3ac0d7b96a fixed the btrfs expanding
write problem but the hole punched is sometimes too large for some
iovec, which has unmapped data ranges.
This patch will change to hole range to a more accurate value using the
counts checked by the write check routines.
Reported-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull vfs updates from Al Viro:
"The first vfs pile, with deep apologies for being very late in this
window.
Assorted cleanups and fixes, plus a large preparatory part of iov_iter
work. There's a lot more of that, but it'll probably go into the next
merge window - it *does* shape up nicely, removes a lot of
boilerplate, gets rid of locking inconsistencie between aio_write and
splice_write and I hope to get Kent's direct-io rewrite merged into
the same queue, but some of the stuff after this point is having
(mostly trivial) conflicts with the things already merged into
mainline and with some I want more testing.
This one passes LTP and xfstests without regressions, in addition to
usual beating. BTW, readahead02 in ltp syscalls testsuite has started
giving failures since "mm/readahead.c: fix readahead failure for
memoryless NUMA nodes and limit readahead pages" - might be a false
positive, might be a real regression..."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
missing bits of "splice: fix racy pipe->buffers uses"
cifs: fix the race in cifs_writev()
ceph_sync_{,direct_}write: fix an oops on ceph_osdc_new_request() failure
kill generic_file_buffered_write()
ocfs2_file_aio_write(): switch to generic_perform_write()
ceph_aio_write(): switch to generic_perform_write()
xfs_file_buffered_aio_write(): switch to generic_perform_write()
export generic_perform_write(), start getting rid of generic_file_buffer_write()
generic_file_direct_write(): get rid of ppos argument
btrfs_file_aio_write(): get rid of ppos
kill the 5th argument of generic_file_buffered_write()
kill the 4th argument of __generic_file_aio_write()
lustre: don't open-code kernel_recvmsg()
ocfs2: don't open-code kernel_recvmsg()
drbd: don't open-code kernel_recvmsg()
constify blk_rq_map_user_iov() and friends
lustre: switch to kernel_sendmsg()
ocfs2: don't open-code kernel_sendmsg()
take iov_iter stuff to mm/iov_iter.c
process_vm_access: tidy up a bit
...
Pull second set of btrfs updates from Chris Mason:
"The most important changes here are from Josef, fixing a btrfs
regression in 3.14 that can cause corruptions in the extent allocation
tree when snapshots are in use.
Josef also fixed some deadlocks in send/recv and other assorted races
when balance is running"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (23 commits)
Btrfs: fix compile warnings on on avr32 platform
btrfs: allow mounting btrfs subvolumes with different ro/rw options
btrfs: export global block reserve size as space_info
btrfs: fix crash in remount(thread_pool=) case
Btrfs: abort the transaction when we don't find our extent ref
Btrfs: fix EINVAL checks in btrfs_clone
Btrfs: fix unlock in __start_delalloc_inodes()
Btrfs: scrub raid56 stripes in the right way
Btrfs: don't compress for a small write
Btrfs: more efficient io tree navigation on wait_extent_bit
Btrfs: send, build path string only once in send_hole
btrfs: filter invalid arg for btrfs resize
Btrfs: send, fix data corruption due to incorrect hole detection
Btrfs: kmalloc() doesn't return an ERR_PTR
Btrfs: fix snapshot vs nocow writting
btrfs: Change the expanding write sequence to fix snapshot related bug.
btrfs: make device scan less noisy
btrfs: fix lockdep warning with reclaim lock inversion
Btrfs: hold the commit_root_sem when getting the commit root during send
Btrfs: remove transaction from send
...
filemap_map_pages() is generic implementation of ->map_pages() for
filesystems who uses page cache.
It should be safe to use filemap_map_pages() for ->map_pages() if
filesystem use filemap_fault() for ->fault().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When testing fsstress with snapshot making background, some snapshot
following problem.
Snapshot 270:
inode 323: size 0
Snapshot 271:
inode 323: size 349145
|-------Hole---|---------Empty gap-------|-------Hole-----|
0 122880 172032 349145
Snapshot 272:
inode 323: size 349145
|-------Hole---|------------Data---------|-------Hole-----|
0 122880 172032 349145
The fsstress operation on inode 323 is the following:
write: offset 126832 len 43124
truncate: size 349145
Since the write with offset is consist of 2 operations:
1. punch hole
2. write data
Hole punching is faster than data write, so hole punching in write
and truncate is done first and then buffered write, so the snapshot 271 got
empty gap, which will not pass btrfsck.
To fix the bug, this patch will change the write sequence which will
first punch a hole covering the write end if a hole is needed.
Reported-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs changes from Chris Mason:
"This is a pretty long stream of bug fixes and performance fixes.
Qu Wenruo has replaced the btrfs async threads with regular kernel
workqueues. We'll keep an eye out for performance differences, but
it's nice to be using more generic code for this.
We still have some corruption fixes and other patches coming in for
the merge window, but this batch is tested and ready to go"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (108 commits)
Btrfs: fix a crash of clone with inline extents's split
btrfs: fix uninit variable warning
Btrfs: take into account total references when doing backref lookup
Btrfs: part 2, fix incremental send's decision to delay a dir move/rename
Btrfs: fix incremental send's decision to delay a dir move/rename
Btrfs: remove unnecessary inode generation lookup in send
Btrfs: fix race when updating existing ref head
btrfs: Add trace for btrfs_workqueue alloc/destroy
Btrfs: less fs tree lock contention when using autodefrag
Btrfs: return EPERM when deleting a default subvolume
Btrfs: add missing kfree in btrfs_destroy_workqueue
Btrfs: cache extent states in defrag code path
Btrfs: fix deadlock with nested trans handles
Btrfs: fix possible empty list access when flushing the delalloc inodes
Btrfs: split the global ordered extents mutex
Btrfs: don't flush all delalloc inodes when we doesn't get s_umount lock
Btrfs: reclaim delalloc metadata more aggressively
Btrfs: remove unnecessary lock in may_commit_transaction()
Btrfs: remove the unnecessary flush when preparing the pages
Btrfs: just do dirty page flush for the inode with compression before direct IO
...
We know that "ret > 0" is true here. These tests were left over from
commit 02afc27fae ('direct-io: Handle O_(D)SYNC AIO') and aren't
needed any more.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
xfstests's btrfs/035 triggers a BUG_ON, which we use to detect the split
of inline extents in __btrfs_drop_extents().
For inline extents, we cannot duplicate another EXTENT_DATA item, because
it breaks the rule of inline extents, that is, 'start offset' needs to be 0.
We have set limitations for the source inode's compressed inline extents,
because it needs to decompress and recompress. Now the destination inode's
inline extents also need similar limitations.
With this, xfstests btrfs/035 doesn't run into panic.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the snapshot creation happened after the nocow write but before the dirty
data flush, we would fail to flush the dirty data because of no space.
So we must keep track of when those nocow write operations start and when they
end, if there are nocow writers, the snapshot creators must wait. In order
to implement this function, I introduce btrfs_{start, end}_nocow_write(),
which is similar to mnt_{want,drop}_write().
These two functions are only used for nocow file write operations.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We can not release the reserved metadata space for the first write if we
find the write position is pre-allocated. Because the kernel might write
the data on the disk before we do the second write but after the can-nocow
check, if we release the space for the first write, we might fail to update
the metadata because of no space.
Fix this problem by end nocow write if there is dirty data in the range whose
space is pre-allocated.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The write range may not be sector-aligned, for example:
|--------|--------| <- write range, sector-unaligned, size: 2blocks
|--------|--------|--------| <- correct lock range, size: 3blocks
But according to the old code, we used the size of write range to calculate
the lock range directly, not considered the offset, we would get a wrong lock
range:
|--------|--------| <- write range, sector-unaligned, size: 2blocks
|--------|--------| <- wrong lock range, size: 2blocks
And besides that, the old code also had the same problem when calculating
the real write size. Correct them.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
While droping extent map structures from the extent cache that cover our
target range, we would remove each extent map structure from the red black
tree and then add either 1 or 2 new extent map structures if the former
extent map covered sections outside our target range.
This change simply attempts to replace the existing extent map structure
with a new one that covers the subsection we're not interested in, instead
of doing a red black remove operation followed by an insertion operation.
The number of elements in an inode's extent map tree can get very high for large
files under random writes. For example, while running the following test:
sysbench --test=fileio --file-num=1 --file-total-size=10G \
--file-test-mode=rndrw --num-threads=32 --file-block-size=32768 \
--max-requests=500000 --file-rw-ratio=2 [prepare|run]
I captured the following histogram capturing the number of extent_map items
in the red black tree while that test was running:
Count: 122462
Range: 1.000 - 172231.000; Mean: 96415.831; Median: 101855.000; Stddev: 49700.981
Percentiles: 90th: 160120.000; 95th: 166335.000; 99th: 171070.000
1.000 - 5.231: 452 |
5.231 - 187.392: 87 |
187.392 - 585.911: 206 |
585.911 - 1827.438: 623 |
1827.438 - 5695.245: 1962 #
5695.245 - 17744.861: 6204 ####
17744.861 - 55283.764: 21115 ############
55283.764 - 172231.000: 91813 #####################################################
Benchmark:
sysbench --test=fileio --file-num=1 --file-total-size=10G --file-test-mode=rndwr \
--num-threads=64 --file-block-size=32768 --max-requests=0 --max-time=60 \
--file-io-mode=sync --file-fsync-freq=0 [prepare|run]
Before this change: 122.1Mb/sec
After this change: 125.07Mb/sec
(averages of 5 test runs)
Test machine: quad core intel i5-3570K, 32Gb of ram, SSD
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If we punch beyond the size of an inode, we'll correctly remove any prealloc extents,
but we'll also insert file extent items representing holes (disk bytenr == 0) that start
with a key offset that lies beyond the inode's size and are not contiguous with the last
file extent item.
Example:
$XFS_IO_PROG -f -c "truncate 118811" $SCRATCH_MNT/foo
$XFS_IO_PROG -c "fpunch 582007 864596" $SCRATCH_MNT/foo
$XFS_IO_PROG -c "pwrite -S 0x0d -b 39987 92267 39987" $SCRATCH_MNT/foo
btrfs-debug-tree output:
item 4 key (257 INODE_ITEM 0) itemoff 15885 itemsize 160
inode generation 6 transid 6 size 132254 block group 0 mode 100600 links 1
item 5 key (257 INODE_REF 256) itemoff 15872 itemsize 13
inode ref index 2 namelen 3 name: foo
item 6 key (257 EXTENT_DATA 0) itemoff 15819 itemsize 53
extent data disk byte 0 nr 0 gen 6
extent data offset 0 nr 90112 ram 122880
extent compression 0
item 7 key (257 EXTENT_DATA 90112) itemoff 15766 itemsize 53
extent data disk byte 12845056 nr 4096 gen 6
extent data offset 0 nr 45056 ram 45056
extent compression 2
item 8 key (257 EXTENT_DATA 585728) itemoff 15713 itemsize 53
extent data disk byte 0 nr 0 gen 6
extent data offset 0 nr 860160 ram 860160
extent compression 0
The last extent item, which represents a hole, is useless as it lies beyond the inode's
size.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
It is possible that many tasks sync the log tree at the same time, but
only one task can do the sync work, the others will wait for it. But those
wait tasks didn't get the result of the log sync, and returned 0 when they
ended the wait. It caused those tasks skipped the error handle, and the
serious problem was they told the users the file sync succeeded but in
fact they failed.
This patch fixes this problem by introducing a log context structure,
we insert it into the a global list. When the sync fails, we will set
the error number of every log context in the list, then the waiting tasks
get the error number of the log context and handle the error if need.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
This is an extension to my previous commit titled:
"Btrfs: faster file extent item replace operations"
(hash 1acae57b16)
Instead of inserting the new file extent item if we deleted existing
file extent items covering our target file range, also allow to insert
the new file extent item if we didn't find any existing items to delete
and replace_extent != 0, since in this case our caller would do another
tree search to insert the new file extent item anyway, therefore just
combine the two tree searches into a single one, saving cpu time, reducing
lock contention and reducing btree node/leaf COW operations.
This covers the case where applications keep doing tail append writes to
files, which for example is the case of Apache CouchDB (its database and
view index files are always open with O_APPEND).
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If we truncate an uncompressed inline item, ram_bytes isn't updated to reflect
the new size. The fixe uses the size directly from the item header when
reading uncompressed inlines, and also fixes truncate to update the
size as it goes.
Reported-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
CC: stable@vger.kernel.org
When we ran the 274th case of xfstests with nodatacow mount option,
We met the following warning message:
WARNING: CPU: 1 PID: 14185 at fs/btrfs/extent-tree.c:3734 btrfs_free_reserved_data_space+0xa6/0xd0
It is caused by the race between the write back and nocow buffered
write:
Task1 Task2
__btrfs_buffered_write()
skip data reservation
reserve the metadata space
copy the data
dirty the pages
unlock the pages
write back the pages
release the data space
becasue there is no
noreserve flag
set the noreserve flag
This patch fixes this problem by unlocking the pages after
the noreserve flag is set.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Looking into some performance related issues with large amounts of metadata
revealed that we can have some pretty huge swings in fsync() performance. If we
have a lot of delayed refs backed up (as you will tend to do with lots of
metadata) fsync() will wander off and try to run some of those delayed refs
which can result in reading from disk and such. Since the actual act of fsync()
doesn't create any delayed refs there is no need to make it throttle on delayed
ref stuff, that will be handled by other people. With this patch we get much
smoother fsync performance with large amounts of metadata. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When writing to a file we drop existing file extent items that cover the
write range and then add a new file extent item that represents that write
range.
Before this change we were doing a tree lookup to remove the file extent
items, and then after we did another tree lookup to insert the new file
extent item.
Most of the time all the file extent items we need to drop are located
within a single leaf - this is the leaf where our new file extent item ends
up at. Therefore, in this common case just combine these 2 operations into
a single one.
By avoiding the second btree navigation for insertion of the new file extent
item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf
COW operations, CPU time on btree node/leaf key binary searches, etc.
Besides for file writes, this is an operation that happens for file fsync's
as well. However log btrees are much less likely to big as big as regular
fs btrees, therefore the impact of this change is smaller.
The following benchmark was performed against an SSD drive and a
HDD drive, both for random and sequential writes:
sysbench --test=fileio --file-num=4096 --file-total-size=8G \
--file-test-mode=[rndwr|seqwr] --num-threads=512 \
--file-block-size=8192 \ --max-requests=1000000 \
--file-fsync-freq=0 --file-io-mode=sync [prepare|run]
All results below are averages of 10 runs of the respective test.
** SSD sequential writes
Before this change: 225.88 Mb/sec
After this change: 277.26 Mb/sec
** SSD random writes
Before this change: 49.91 Mb/sec
After this change: 56.39 Mb/sec
** HDD sequential writes
Before this change: 68.53 Mb/sec
After this change: 69.87 Mb/sec
** HDD random writes
Before this change: 13.04 Mb/sec
After this change: 14.39 Mb/sec
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
fs/btrfs/file.c: In function ‘prepare_pages.isra.18’:
fs/btrfs/file.c:1265:6: warning: ‘err’ may be used uninitialized in this function [-Wuninitialized]
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the ordered extent's last byte was 1 less than our region's
start byte, we would unnecessarily wait for the completion of
that ordered extent, because it doesn't intersect our target
range.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we ran sysbench on the fs with compression, the following WARN_ONs were
triggered:
fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents);
fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents);
fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes);
Steps to reproduce:
# mkfs.btrfs -f <dev>
# mount -o compress <dev> <mnt>
# cd <mnt>
# sysbench --test=fileio --num-threads=8 --file-total-size=8G \
> --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \
> --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \
> --file-test-mode=sync prepare
# cd -
# umount <mnt>
# mount -o compress <dev> <mnt>
# cd <mnt>
# sysbench --test=fileio --num-threads=8 --file-total-size=8G \
> --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \
> --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \
> --file-test-mode=sync run
# cd -
# umount <mnt>
The reason of this problem is:
Task0 Task1
btrfs_direct_IO
unlock(&inode->i_mutex)
lock(&inode->i_mutex)
reserve_space()
prepare_pages()
lock_extent()
clear_extent()
unlock_extent()
lock_extent()
test_extent(uptodate)
return false
copy_data()
set_delalloc_extent()
extent need compress
go back to buffered write
clear_extent(DELALLOC | DIRTY)
unlock_extent()
Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which
was set by task1, it made the dirty pages in that extents couldn't be flushed
into the disk, so the reserved space for that extent was not released at
the end.
This patch fixes the above bug by unlocking the extent after the delalloc.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
- the caller has gotten the inode object, needn't pass the file object.
And if so, we needn't define a inode pointer variant.
- the position should be aligned by the page size not sector size, so
we also needn't pass the root object into prepare_pages().
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs has always had these filler extent data items for holes in inodes. This
has made somethings very easy, like logging hole punches and sending hole
punches. However for large holey files these extent data items are pure
overhead. So add an incompatible feature to no longer add hole extents to
reduce the amount of metadata used by these sort of files. This has a few
changes for logging and send obviously since they will need to detect holes and
log/send the holes if there are any. I've tested this thoroughly with xfstests
and it doesn't cause any issues with and without the incompat format set.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Fix spacing issues detected via checkpatch.pl in accordance with the
kernel style guidelines.
Signed-off-by: Dulshani Gunawardhana <dulshani.gunawardhana89@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I noticed that if the free space cache has an error writing out it's data it
won't actually error out, it will just carry on. This is because it doesn't
check the return value of btrfs_wait_ordered_range, which didn't actually return
anything. So fix this in order to keep us from making free space cache look
valid when it really isnt. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
fs/btrfs/compat.h only contained trivial macro wrappers of drop_nlink()
and inc_nlink(). This doesn't belong in mainline.
Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Whoever wrote this was braindead. Also it doesn't work right if you have
VACANCY's since we assumed you would only have that at the end of the file,
which won't be the case in the near future. I tested this with generic/285 and
generic/286 as well as the btrfs tests that use fssum since it uses
seek_hole/seek_data to verify things are ok. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs fixes from Chris Mason:
"These are mostly bug fixes and a two small performance fixes. The
most important of the bunch are Josef's fix for a snapshotting
regression and Mark's update to fix compile problems on arm"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (25 commits)
Btrfs: create the uuid tree on remount rw
btrfs: change extent-same to copy entire argument struct
Btrfs: dir_inode_operations should use btrfs_update_time also
btrfs: Add btrfs: prefix to kernel log output
btrfs: refuse to remount read-write after abort
Btrfs: btrfs_ioctl_default_subvol: Revert back to toplevel subvolume when arg is 0
Btrfs: don't leak transaction in btrfs_sync_file()
Btrfs: add the missing mutex unlock in write_all_supers()
Btrfs: iput inode on allocation failure
Btrfs: remove space_info->reservation_progress
Btrfs: kill delay_iput arg to the wait_ordered functions
Btrfs: fix worst case calculator for space usage
Revert "Btrfs: rework the overcommit logic to be based on the total size"
Btrfs: improve replacing nocow extents
Btrfs: drop dir i_size when adding new names on replay
Btrfs: replay dir_index items before other items
Btrfs: check roots last log commit when checking if an inode has been logged
Btrfs: actually log directory we are fsync()'ing
Btrfs: actually limit the size of delalloc range
Btrfs: allocate the free space by the existed max extent size when ENOSPC
...
In btrfs_sync_file(), if the call to btrfs_log_dentry_safe() returns
a negative error (for e.g. -ENOMEM via btrfs_log_inode()), we would
return without ending/freeing the transaction.
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs updates from Chris Mason:
"This is against 3.11-rc7, but was pulled and tested against your tree
as of yesterday. We do have two small incrementals queued up, but I
wanted to get this bunch out the door before I hop on an airplane.
This is a fairly large batch of fixes, performance improvements, and
cleanups from the usual Btrfs suspects.
We've included Stefan Behren's work to index subvolume UUIDs, which is
targeted at speeding up send/receive with many subvolumes or snapshots
in place. It closes a long standing performance issue that was built
in to the disk format.
Mark Fasheh's offline dedup work is also here. In this case offline
means the FS is mounted and active, but the dedup work is not done
inline during file IO. This is a building block where utilities are
able to ask the FS to dedup a series of extents. The kernel takes
care of verifying the data involved really is the same. Today this
involves reading both extents, but we'll continue to evolve the
patches"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (118 commits)
Btrfs: optimize key searches in btrfs_search_slot
Btrfs: don't use an async starter for most of our workers
Btrfs: only update disk_i_size as we remove extents
Btrfs: fix deadlock in uuid scan kthread
Btrfs: stop refusing the relocation of chunk 0
Btrfs: fix memory leak of uuid_root in free_fs_info
btrfs: reuse kbasename helper
btrfs: return btrfs error code for dev excl ops err
Btrfs: allow partial ordered extent completion
Btrfs: convert all bug_ons in free-space-cache.c
Btrfs: add support for asserts
Btrfs: adjust the fs_devices->missing count on unmount
Btrf: cleanup: don't check for root_refs == 0 twice
Btrfs: fix for patch "cleanup: don't check the same thing twice"
Btrfs: get rid of one BUG() in write_all_supers()
Btrfs: allocate prelim_ref with a slab allocater
Btrfs: pass gfp_t to __add_prelim_ref() to avoid always using GFP_ATOMIC
Btrfs: fix race conditions in BTRFS_IOC_FS_INFO ioctl
Btrfs: fix race between removing a dev and writing sbs
Btrfs: remove ourselves from the cluster list under lock
...
Call generic_write_sync() from the deferred I/O completion handler if
O_DSYNC is set for a write request. Also make sure various callers
don't call generic_write_sync if the direct I/O code returns
-EIOCBQUEUED.
Based on an earlier patch from Jan Kara <jack@suse.cz> with updates from
Jeff Moyer <jmoyer@redhat.com> and Darrick J. Wong <darrick.wong@oracle.com>.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
btrfs_read_fs_root_no_name() already checks if btrfs_root_refs()
is zero and returns ENOENT in this case. There is no need to do
it again in three more places.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I noticed while looking at a deadlock that we are always starting a transaction
in cow_file_range(). This isn't really needed since we only need a transaction
if we are doing an inline extent, or if the allocator needs to allocate a chunk.
So push down all the transaction start stuff to be closer to where we actually
need a transaction in all of these cases. This will hopefully reduce our write
latency when we are committing often. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We can end up with inodes on the auto defrag list that exist on roots that are
going to be deleted. This is extra work we don't need to do, so just bail if
our root has 0 root refs. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I noticed while running multi-threaded fsync tests that sometimes fsck would
complain about an improper gap. This happens because we fail to add a hole
extent to the file, which was happening when we'd split a hole EM because
btrfs_drop_extent_cache was just discarding the whole em instead of splitting
it. So this patch fixes this by allowing us to split a hole em properly, which
means that added holes actually get logged properly and we no longer see this
fsck error. Thankfully we're tolerant of these sort of problems so a user would
not see any adverse effects of this bug, other than fsck complaining. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs update from Chris Mason:
"These are the usual mixture of bugs, cleanups and performance fixes.
Miao has some really nice tuning of our crc code as well as our
transaction commits.
Josef is peeling off more and more problems related to early enospc,
and has a number of important bug fixes in here too"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (81 commits)
Btrfs: wait ordered range before doing direct io
Btrfs: only do the tree_mod_log_free_eb if this is our last ref
Btrfs: hold the tree mod lock in __tree_mod_log_rewind
Btrfs: make backref walking code handle skinny metadata
Btrfs: fix crash regarding to ulist_add_merge
Btrfs: fix several potential problems in copy_nocow_pages_for_inode
Btrfs: cleanup the code of copy_nocow_pages_for_inode()
Btrfs: fix oops when recovering the file data by scrub function
Btrfs: make the chunk allocator completely tree lockless
Btrfs: cleanup orphaned root orphan item
Btrfs: fix wrong mirror number tuning
Btrfs: cleanup redundant code in btrfs_submit_direct()
Btrfs: remove btrfs_sector_sum structure
Btrfs: check if we can nocow if we don't have data space
Btrfs: stop using try_to_writeback_inodes_sb_nr to flush delalloc
Btrfs: use a percpu to keep track of possibly pinned bytes
Btrfs: check for actual acls rather than just xattrs when caching no acl
Btrfs: move btrfs_truncate_page to btrfs_cont_expand instead of btrfs_truncate
Btrfs: optimize reada_for_balance
Btrfs: optimize read_block_for_search
...
For those file systems(btrfs/ext4/ocfs2/tmpfs) that support
SEEK_DATA/SEEK_HOLE functions, we end up handling the similar
matter in lseek_execute() to update the current file offset
to the desired offset if it is valid, ceph also does the
simliar things at ceph_llseek().
To reduce the duplications, this patch make lseek_execute()
public accessible so that we can call it directly from the
underlying file systems.
Thanks Dave Chinner for this suggestion.
[AV: call it vfs_setpos(), don't bring the removed 'inode' argument back]
v2->v1:
- Add kernel-doc comments for lseek_execute()
- Call lseek_execute() in ceph->llseek()
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chris Mason <chris.mason@fusionio.com>
Cc: Josef Bacik <jbacik@fusionio.com>
Cc: Ben Myers <bpm@sgi.com>
Cc: Ted Tso <tytso@mit.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Sage Weil <sage@inktank.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We always just try and reserve data space when we write, but if we are out of
space but have prealloc'ed extents we should still successfully write. This
patch will try and see if we can write to prealloc'ed space and if we can go
ahead and allow the write to continue. With this patch we now pass xfstests
generic/274. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
This has plagued us forever and I'm so over working around it. When we truncate
down to a non-page aligned offset we will call btrfs_truncate_page to zero out
the end of the page and write it back to disk, this will keep us from exposing
stale data if we truncate back up from that point. The problem with this is it
requires data space to do this, and people don't really expect to get ENOSPC
from truncate() for these sort of things. This also tends to bite the orphan
cleanup stuff too which keeps people from mounting. To get around this we can
just move this into btrfs_cont_expand() to make sure if we are truncating up
from a non-page size aligned i_size we will zero out the rest of this page so
that we don't expose stale data. This will give ENOSPC if you try to truncate()
up or if you try to write past the end of isize, which is much more reasonable.
This fixes xfstests generic/083 failing to mount because of the orphan cleanup
failing. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
btrfs_read_fs_root_no_name() already checks if btrfs_root_refs()
is zero and returns ENOENT in this case. There is no need to do
it again in six places.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull btrfs update from Chris Mason:
"These are mostly fixes. The biggest exceptions are Josef's skinny
extents and Jan Schmidt's code to rebuild our quota indexes if they
get out of sync (or you enable quotas on an existing filesystem).
The skinny extents are off by default because they are a new variation
on the extent allocation tree format. btrfstune -x enables them, and
the new format makes the extent allocation tree about 30% smaller.
I rebased this a few days ago to rework Dave Sterba's crc checks on
the super block, but almost all of these go back to rc6, since I
though 3.9 was due any minute.
The biggest missing fix is the tracepoint bug that was hit late in
3.9. I ran into problems with that in overnight testing and I'm still
tracking it down. I'll definitely have that fixed for rc2."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (101 commits)
Btrfs: allow superblock mismatch from older mkfs
btrfs: enhance superblock checks
btrfs: fix misleading variable name for flags
btrfs: use unsigned long type for extent state bits
Btrfs: improve the loop of scrub_stripe
btrfs: read entire device info under lock
btrfs: remove unused gfp mask parameter from release_extent_buffer callchain
btrfs: handle errors returned from get_tree_block_key
btrfs: make static code static & remove dead code
Btrfs: deal with errors in write_dev_supers
Btrfs: remove almost all of the BUG()'s from tree-log.c
Btrfs: deal with free space cache errors while replaying log
Btrfs: automatic rescan after "quota enable" command
Btrfs: rescan for qgroups
Btrfs: split btrfs_qgroup_account_ref into four functions
Btrfs: allocate new chunks if the space is not enough for global rsv
Btrfs: separate sequence numbers for delayed ref tracking and tree mod log
btrfs: move leak debug code to functions
Btrfs: return free space in cow error path
Btrfs: set UUID in root_item for created trees
...
Big patch, but all it does is add statics to functions which
are in fact static, then remove the associated dead-code fallout.
removed functions:
btrfs_iref_to_path()
__btrfs_lookup_delayed_deletion_item()
__btrfs_search_delayed_insertion_item()
__btrfs_search_delayed_deletion_item()
find_eb_for_page()
btrfs_find_block_group()
range_straddles_pages()
extent_range_uptodate()
btrfs_file_extent_length()
btrfs_scrub_cancel_devid()
btrfs_start_transaction_lflush()
btrfs_print_tree() is left because it is used for debugging.
btrfs_start_transaction_lflush() and btrfs_reada_detach() are
left for symmetry.
ulist.c functions are left, another patch will take care of those.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If argument 'trans' is unnecessary in the function where
fixup_low_keys() is called, 'trans' is deleted.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
A user sent me a btrfs-image of a file system that was panicing on mount during
the log recovery. I had originally thought these problems were from a bug in
the free space cache code, but that was just a symptom of the problem. The
problem is if your application does something like this
[prealloc][prealloc][prealloc]
the internal extent maps will merge those all together into one extent map, even
though on disk they are 3 separate extents. So if you go to write into one of
these ranges the extent map will be right since we use the physical extent when
doing the write, but when we log the extents they will use the wrong sizes for
the remainder prealloc space. If this doesn't happen to trip up the free space
cache (which it won't in a lot of cases) then you will get bogus entries in your
extent tree which will screw stuff up later. The data and such will still work,
but everything else is broken. This patch fixes this by not allowing extents
that are on the modified list to be merged. This has the side effect that we
are no longer adding everything to the modified list all the time, which means
we now have to call btrfs_drop_extents every time we log an extent into the
tree. So this allows me to drop all this speciality code I was using to get
around calling btrfs_drop_extents. With this patch the testcase I've created no
longer creates a bogus file system after replaying the log. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When logging changed extents I was logging ram_bytes as the current length,
which isn't correct, it's supposed to be the ram bytes of the original extent.
This is for compression where even if we split the extent we need to know the
ram bytes so when we uncompress the extent we know how big it will be. This was
still working out right with compression for some reason but I think we were
getting lucky. It was definitely off for prealloc which is why I noticed it,
btrfsck was complaining about it. With this patch btrfsck no longer complains
after a log replay. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull VFS updates from Al Viro,
Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).
7kloc removed.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
don't bother with deferred freeing of fdtables
proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
proc: Make the PROC_I() and PDE() macros internal to procfs
proc: Supply a function to remove a proc entry by PDE
take cgroup_open() and cpuset_open() to fs/proc/base.c
ppc: Clean up scanlog
ppc: Clean up rtas_flash driver somewhat
hostap: proc: Use remove_proc_subtree()
drm: proc: Use remove_proc_subtree()
drm: proc: Use minor->index to label things, not PDE->name
drm: Constify drm_proc_list[]
zoran: Don't print proc_dir_entry data in debug
reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
proc: Supply an accessor for getting the data from a PDE's parent
airo: Use remove_proc_subtree()
rtl8192u: Don't need to save device proc dir PDE
rtl8187se: Use a dir under /proc/net/r8180/
proc: Add proc_mkdir_data()
proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
proc: Move PDE_NET() to fs/proc/proc_net.c
...
Pull btrfs fixes from Chris Mason:
"We've had a busy two weeks of bug fixing. The biggest patches in here
are some long standing early-enospc problems (Josef) and a very old
race where compression and mmap combine forces to lose writes (me).
I'm fairly sure the mmap bug goes all the way back to the introduction
of the compression code, which is proof that fsx doesn't trigger every
possible mmap corner after all.
I'm sure you'll notice one of these is from this morning, it's a small
and isolated use-after-free fix in our scrub error reporting. I
double checked it here."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: don't drop path when printing out tree errors in scrub
Btrfs: fix wrong return value of btrfs_lookup_csum()
Btrfs: fix wrong reservation of csums
Btrfs: fix double free in the btrfs_qgroup_account_ref()
Btrfs: limit the global reserve to 512mb
Btrfs: hold the ordered operations mutex when waiting on ordered extents
Btrfs: fix space accounting for unlink and rename
Btrfs: fix space leak when we fail to reserve metadata space
Btrfs: fix EIO from btrfs send in is_extent_unchanged for punched holes
Btrfs: fix race between mmap writes and compression
Btrfs: fix memory leak in btrfs_create_tree()
Btrfs: fix locking on ROOT_REPLACE operations in tree mod log
Btrfs: fix missing qgroup reservation before fallocating
Btrfs: handle a bogus chunk tree nicely
Btrfs: update to use fs_state bit
Steps to reproduce:
mkfs.btrfs <disk>
mount <disk> <mnt>
btrfs quota enable <mnt>
btrfs sub create <mnt>/subv
btrfs qgroup limit 10M <mnt>/subv
fallocate --length 20M <mnt>/subv/data
For the above example, fallocating will return successfully which
is not expected, we try to fix it by doing qgroup reservation before
fallocating.
Signed-off-by: Wang Shilong <wangsl-fnst@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs fixes from Chris Mason:
"Eric's rcu barrier patch fixes a long standing problem with our
unmount code hanging on to devices in workqueue helpers. Liu Bo
nailed down a difficult assertion for in-memory extent mappings."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix warning of free_extent_map
Btrfs: fix warning when creating snapshots
Btrfs: return as soon as possible when edquot happens
Btrfs: return EIO if we have extent tree corruption
btrfs: use rcu_barrier() to wait for bdev puts at unmount
Btrfs: remove btrfs_try_spin_lock
Btrfs: get better concurrency for snapshot-aware defrag work
Users report that an extent map's list is still linked when it's actually
going to be freed from cache.
The story is that
a) when we're going to drop an extent map and may split this large one into
smaller ems, and if this large one is flagged as EXTENT_FLAG_LOGGING which means
that it's on the list to be logged, then the smaller ems split from it will also
be flagged as EXTENT_FLAG_LOGGING, and this is _not_ expected.
b) we'll keep ems from unlinking the list and freeing when they are flagged with
EXTENT_FLAG_LOGGING, because the log code holds one reference.
The end result is the warning, but the truth is that we set the flag
EXTENT_FLAG_LOGGING only during fsync.
So clear flag EXTENT_FLAG_LOGGING for extent maps split from a large one.
Reported-by: Johannes Hirte <johannes.hirte@fem.tu-ilmenau.de>
Reported-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs update from Chris Mason:
"The biggest feature in the pull is the new (and still experimental)
raid56 code that David Woodhouse started long ago. I'm still working
on the parity logging setup that will avoid inconsistent parity after
a crash, so this is only for testing right now. But, I'd really like
to get it out to a broader audience to hammer out any performance
issues or other problems.
scrub does not yet correct errors on raid5/6 either.
Josef has another pass at fsync performance. The big change here is
to combine waiting for metadata with waiting for data, which is a big
latency win. It is also step one toward using atomics from the
hardware during a commit.
Mark Fasheh has a new way to use btrfs send/receive to send only the
metadata changes. SUSE is using this to make snapper more efficient
at finding changes between snapshosts.
Snapshot-aware defrag is also included.
Otherwise we have a large number of fixes and cleanups. Eric Sandeen
wins the award for removing the most lines, and I'm hoping we steal
this idea from XFS over and over again."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (118 commits)
btrfs: fixup/remove module.h usage as required
Btrfs: delete inline extents when we find them during logging
btrfs: try harder to allocate raid56 stripe cache
Btrfs: cleanup to make the function btrfs_delalloc_reserve_metadata more logic
Btrfs: don't call btrfs_qgroup_free if just btrfs_qgroup_reserve fails
Btrfs: remove reduplicate check about root in the function btrfs_clean_quota_tree
Btrfs: return ENOMEM rather than use BUG_ON when btrfs_alloc_path fails
Btrfs: fix missing deleted items in btrfs_clean_quota_tree
btrfs: use only inline_pages from extent buffer
Btrfs: fix wrong reserved space when deleting a snapshot/subvolume
Btrfs: fix wrong reserved space in qgroup during snap/subv creation
Btrfs: remove unnecessary dget_parent/dput when creating the pending snapshot
btrfs: remove a printk from scan_one_device
Btrfs: fix NULL pointer after aborting a transaction
Btrfs: fix memory leak of log roots
Btrfs: copy everything if we've created an inline extent
btrfs: cleanup for open-coded alignment
Btrfs: do not change inode flags in rename
Btrfs: use reserved space for creating a snapshot
clear chunk_alloc flag on retryable failure
...
Pull vfs pile (part one) from Al Viro:
"Assorted stuff - cleaning namei.c up a bit, fixing ->d_name/->d_parent
locking violations, etc.
The most visible changes here are death of FS_REVAL_DOT (replaced with
"has ->d_weak_revalidate()") and a new helper getting from struct file
to inode. Some bits of preparation to xattr method interface changes.
Misc patches by various people sent this cycle *and* ocfs2 fixes from
several cycles ago that should've been upstream right then.
PS: the next vfs pile will be xattr stuff."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits)
saner proc_get_inode() calling conventions
proc: avoid extra pde_put() in proc_fill_super()
fs: change return values from -EACCES to -EPERM
fs/exec.c: make bprm_mm_init() static
ocfs2/dlm: use GFP_ATOMIC inside a spin_lock
ocfs2: fix possible use-after-free with AIO
ocfs2: Fix oops in ocfs2_fast_symlink_readpage() code path
get_empty_filp()/alloc_file() leave both ->f_pos and ->f_version zero
target: writev() on single-element vector is pointless
export kernel_write(), convert open-coded instances
fs: encode_fh: return FILEID_INVALID if invalid fid_type
kill f_vfsmnt
vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op
nfsd: handle vfs_getattr errors in acl protocol
switch vfs_getattr() to struct path
default SET_PERSONALITY() in linux/elf.h
ceph: prepopulate inodes only when request is aborted
d_hash_and_lookup(): export, switch open-coded instances
9p: switch v9fs_set_create_acl() to inode+fid, do it before d_instantiate()
9p: split dropping the acls from v9fs_set_create_acl()
...
Though most of the btrfs codes are using ALIGN macro for page alignment,
there are still some codes using open-coded alignment like the
following:
------
u64 mask = ((u64)root->stripesize - 1);
u64 ret = (val + mask) & ~mask;
------
Or even hidden one:
------
num_bytes = (end - start + blocksize) & ~(blocksize - 1);
------
Sometimes these open-coded alignment is not so easy to understand for
newbie like me.
This commit changes the open-coded alignment to the ALIGN macro for a
better readability.
Also there is a previous patch from David Sterba with similar changes,
but the patch is for 3.2 kernel and seems not merged.
http://www.spinics.net/lists/linux-btrfs/msg12747.html
Cc: David Sterba <dave@jikos.cz>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If we remount the fs to close the auto defragment or make the fs R/O,
we should stop the auto defragment.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Miao made the ordered operations stuff run async, which introduced a
deadlock where we could get somebody (sync) racing in and committing the
transaction while a commit was already happening. The new committer would
try and flush ordered operations which would hang waiting for the commit to
finish because it is done asynchronously and no longer inherits the callers
trans handle. To fix this we need to make the ordered operations list a per
transaction list. We can get new inodes added to the ordered operation list
by truncating them and then having another process writing to them, so this
makes it so that anybody trying to add an ordered operation _must_ start a
transaction in order to add itself to the list, which will keep new inodes
from getting added to the ordered operations list after we start committing.
This should fix the deadlock and also keeps us from doing a lot more work
than we need to during commit. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
There is no lock to protect fs_info->fs_state, it will introduce
some problems, such as the value may be covered by the other task
when several tasks modify it. For example:
Task0 - CPU0 Task1 - CPU1
mov %fs_state rax
or $0x1 rax
mov %fs_state rax
or $0x2 rax
mov rax %fs_state
mov rax %fs_state
The expected value is 3, but in fact, it is 2.
Though this problem doesn't happen now (because there is only one
flag currently), the code is error prone, if we add other flags,
the above problem will happen to a certainty.
Now we use bit operation for it to fix the above problem.
In this way, we can make the code more robust and be easy to
add new flags.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The header file will then be installed under /usr/include/linux so that
userspace applications can refer to Btrfs ioctls by name and use the same
structs used internally in the kernel.
Signed-off-by: Filipe Brandenburger <filbranden@google.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Since we don't actually copy the extent information from the source tree in
the fast case we don't need to wait for ordered io to be completed in order
to fsync, we just need to wait for the io to be completed. So when we're
logging our file just attach all of the ordered extents to the log, and then
when the log syncs just wait for IO_DONE on the ordered extents and then
write the super. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull btrfs fixes from Chris Mason:
"We've got corner cases for updating i_size that ceph was hitting,
error handling for quotas when we run out of space, a very subtle
snapshot deletion race, a crash while removing devices, and one
deadlock between subvolume creation and the sb_internal code (thanks
lockdep)."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: move d_instantiate outside the transaction during mksubvol
Btrfs: fix EDQUOT handling in btrfs_delalloc_reserve_metadata
Btrfs: fix possible stale data exposure
Btrfs: fix missing i_size update
Btrfs: fix race between snapshot deletion and getting inode
Btrfs: fix missing release of the space/qgroup reservation in start_transaction()
Btrfs: fix wrong sync_writers decrement in btrfs_file_aio_write()
Btrfs: do not merge logged extents if we've removed them from the tree
btrfs: don't try to notify udev about missing devices
While running snapshot testscript created by Mitch and David,
the race between autodefrag and snapshot deletion can lead to
corruption of dead_root list so that we can get crash on
btrfs_clean_old_snapshots().
And besides autodefrag, scrub also does the same thing, ie. read
root first and get inode.
Here is the story(take autodefrag as an example):
(1) when we delete a snapshot or subvolume, it will set its root's
refs to zero and do a iput() on its own inode, and if this inode happens
to be the only active in-meory one in root's inode rbtree, it will add
itself to the global dead_roots list for later cleanup.
(2) after (1), the autodefrag thread may read another inode for defrag
and the inode is just in the deleted snapshot/subvolume, but all of these
are without checking if the root is still valid(refs > 0). So the end up
result is adding the deleted snapshot/subvolume's root to the global
dead_roots list AGAIN.
Fortunately, we already have a srcu lock to avoid the race, ie. subvol_srcu.
So all we need to do is to take the lock to protect 'read root and get inode',
since we synchronize to wait for the rcu grace period before adding something
to the global dead_roots list.
Reported-by: Mitch Harder <mitch.harder@sabayonlinux.org>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If the checks at the beginning of btrfs_file_aio_write() fail, we needn't
decrease ->sync_writers, because we have not increased it. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull btrfs fixes from Chris Mason:
"It turns out that we had two crc bugs when running fsx-linux in a
loop. Many thanks to Josef, Miao Xie, and Dave Sterba for nailing it
all down. Miao also has a new OOM fix in this v2 pull as well.
Ilya fixed a regression Liu Bo found in the balance ioctls for pausing
and resuming a running balance across drives.
Josef's orphan truncate patch fixes an obscure corruption we'd see
during xfstests.
Arne's patches address problems with subvolume quotas. If the user
destroys quota groups incorrectly the FS will refuse to mount.
The rest are smaller fixes and plugs for memory leaks."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (30 commits)
Btrfs: fix repeated delalloc work allocation
Btrfs: fix wrong max device number for single profile
Btrfs: fix missed transaction->aborted check
Btrfs: Add ACCESS_ONCE() to transaction->abort accesses
Btrfs: put csums on the right ordered extent
Btrfs: use right range to find checksum for compressed extents
Btrfs: fix panic when recovering tree log
Btrfs: do not allow logged extents to be merged or removed
Btrfs: fix a regression in balance usage filter
Btrfs: prevent qgroup destroy when there are still relations
Btrfs: ignore orphan qgroup relations
Btrfs: reorder locks and sanity checks in btrfs_ioctl_defrag
Btrfs: fix unlock order in btrfs_ioctl_rm_dev
Btrfs: fix unlock order in btrfs_ioctl_resize
Btrfs: fix "mutually exclusive op is running" error code
Btrfs: bring back balance pause/resume logic
btrfs: update timestamps on truncate()
btrfs: fix btrfs_cont_expand() freeing IS_ERR em
Btrfs: fix a bug when llseek for delalloc bytes behind prealloc extents
Btrfs: fix off-by-one in lseek
...