/* * Copyright (C) 2012 ARM Ltd. * Author: Marc Zyngier * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * How the whole thing works (courtesy of Christoffer Dall): * * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if * something is pending on the CPU interface. * - Interrupts that are pending on the distributor are stored on the * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land * ioctls and guest mmio ops, and other in-kernel peripherals such as the * arch. timers). * - Every time the bitmap changes, the irq_pending_on_cpu oracle is * recalculated * - To calculate the oracle, we need info for each cpu from * compute_pending_for_cpu, which considers: * - PPI: dist->irq_pending & dist->irq_enable * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn * registers, stored on each vcpu. We only keep one bit of * information per interrupt, making sure that only one vcpu can * accept the interrupt. * - If any of the above state changes, we must recalculate the oracle. * - The same is true when injecting an interrupt, except that we only * consider a single interrupt at a time. The irq_spi_cpu array * contains the target CPU for each SPI. * * The handling of level interrupts adds some extra complexity. We * need to track when the interrupt has been EOIed, so we can sample * the 'line' again. This is achieved as such: * * - When a level interrupt is moved onto a vcpu, the corresponding * bit in irq_queued is set. As long as this bit is set, the line * will be ignored for further interrupts. The interrupt is injected * into the vcpu with the GICH_LR_EOI bit set (generate a * maintenance interrupt on EOI). * - When the interrupt is EOIed, the maintenance interrupt fires, * and clears the corresponding bit in irq_queued. This allows the * interrupt line to be sampled again. * - Note that level-triggered interrupts can also be set to pending from * writes to GICD_ISPENDRn and lowering the external input line does not * cause the interrupt to become inactive in such a situation. * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become * inactive as long as the external input line is held high. */ #define VGIC_ADDR_UNDEF (-1) #define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF) #define PRODUCT_ID_KVM 0x4b /* ASCII code K */ #define IMPLEMENTER_ARM 0x43b #define GICC_ARCH_VERSION_V2 0x2 #define ACCESS_READ_VALUE (1 << 0) #define ACCESS_READ_RAZ (0 << 0) #define ACCESS_READ_MASK(x) ((x) & (1 << 0)) #define ACCESS_WRITE_IGNORED (0 << 1) #define ACCESS_WRITE_SETBIT (1 << 1) #define ACCESS_WRITE_CLEARBIT (2 << 1) #define ACCESS_WRITE_VALUE (3 << 1) #define ACCESS_WRITE_MASK(x) ((x) & (3 << 1)) static int vgic_init(struct kvm *kvm); static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu); static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu); static void vgic_update_state(struct kvm *kvm); static void vgic_kick_vcpus(struct kvm *kvm); static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi); static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg); static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr); static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc); static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); static const struct vgic_ops *vgic_ops; static const struct vgic_params *vgic; /* * struct vgic_bitmap contains a bitmap made of unsigned longs, but * extracts u32s out of them. * * This does not work on 64-bit BE systems, because the bitmap access * will store two consecutive 32-bit words with the higher-addressed * register's bits at the lower index and the lower-addressed register's * bits at the higher index. * * Therefore, swizzle the register index when accessing the 32-bit word * registers to access the right register's value. */ #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64 #define REG_OFFSET_SWIZZLE 1 #else #define REG_OFFSET_SWIZZLE 0 #endif static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs) { int nr_longs; nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS); b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL); if (!b->private) return -ENOMEM; b->shared = b->private + nr_cpus; return 0; } static void vgic_free_bitmap(struct vgic_bitmap *b) { kfree(b->private); b->private = NULL; b->shared = NULL; } /* * Call this function to convert a u64 value to an unsigned long * bitmask * in a way that works on both 32-bit and 64-bit LE and BE platforms. * * Warning: Calling this function may modify *val. */ static unsigned long *u64_to_bitmask(u64 *val) { #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32 *val = (*val >> 32) | (*val << 32); #endif return (unsigned long *)val; } static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset) { offset >>= 2; if (!offset) return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE; else return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE); } static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x, int cpuid, int irq) { if (irq < VGIC_NR_PRIVATE_IRQS) return test_bit(irq, x->private + cpuid); return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared); } static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, int irq, int val) { unsigned long *reg; if (irq < VGIC_NR_PRIVATE_IRQS) { reg = x->private + cpuid; } else { reg = x->shared; irq -= VGIC_NR_PRIVATE_IRQS; } if (val) set_bit(irq, reg); else clear_bit(irq, reg); } static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid) { return x->private + cpuid; } static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) { return x->shared; } static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs) { int size; size = nr_cpus * VGIC_NR_PRIVATE_IRQS; size += nr_irqs - VGIC_NR_PRIVATE_IRQS; x->private = kzalloc(size, GFP_KERNEL); if (!x->private) return -ENOMEM; x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32); return 0; } static void vgic_free_bytemap(struct vgic_bytemap *b) { kfree(b->private); b->private = NULL; b->shared = NULL; } static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) { u32 *reg; if (offset < VGIC_NR_PRIVATE_IRQS) { reg = x->private; offset += cpuid * VGIC_NR_PRIVATE_IRQS; } else { reg = x->shared; offset -= VGIC_NR_PRIVATE_IRQS; } return reg + (offset / sizeof(u32)); } #define VGIC_CFG_LEVEL 0 #define VGIC_CFG_EDGE 1 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; int irq_val; irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq); return irq_val == VGIC_CFG_EDGE; } static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq); } static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq); } static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1); } static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0); } static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq); } static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1); } static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0); } static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq); } static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0); } static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq); } static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1); } static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0); } static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq) { if (irq < VGIC_NR_PRIVATE_IRQS) set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); else set_bit(irq - VGIC_NR_PRIVATE_IRQS, vcpu->arch.vgic_cpu.pending_shared); } static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) { if (irq < VGIC_NR_PRIVATE_IRQS) clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); else clear_bit(irq - VGIC_NR_PRIVATE_IRQS, vcpu->arch.vgic_cpu.pending_shared); } static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq) { return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq); } static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask) { return le32_to_cpu(*((u32 *)mmio->data)) & mask; } static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value) { *((u32 *)mmio->data) = cpu_to_le32(value) & mask; } /** * vgic_reg_access - access vgic register * @mmio: pointer to the data describing the mmio access * @reg: pointer to the virtual backing of vgic distributor data * @offset: least significant 2 bits used for word offset * @mode: ACCESS_ mode (see defines above) * * Helper to make vgic register access easier using one of the access * modes defined for vgic register access * (read,raz,write-ignored,setbit,clearbit,write) */ static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, phys_addr_t offset, int mode) { int word_offset = (offset & 3) * 8; u32 mask = (1UL << (mmio->len * 8)) - 1; u32 regval; /* * Any alignment fault should have been delivered to the guest * directly (ARM ARM B3.12.7 "Prioritization of aborts"). */ if (reg) { regval = *reg; } else { BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED)); regval = 0; } if (mmio->is_write) { u32 data = mmio_data_read(mmio, mask) << word_offset; switch (ACCESS_WRITE_MASK(mode)) { case ACCESS_WRITE_IGNORED: return; case ACCESS_WRITE_SETBIT: regval |= data; break; case ACCESS_WRITE_CLEARBIT: regval &= ~data; break; case ACCESS_WRITE_VALUE: regval = (regval & ~(mask << word_offset)) | data; break; } *reg = regval; } else { switch (ACCESS_READ_MASK(mode)) { case ACCESS_READ_RAZ: regval = 0; /* fall through */ case ACCESS_READ_VALUE: mmio_data_write(mmio, mask, regval >> word_offset); } } } static bool handle_mmio_misc(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg; u32 word_offset = offset & 3; switch (offset & ~3) { case 0: /* GICD_CTLR */ reg = vcpu->kvm->arch.vgic.enabled; vgic_reg_access(mmio, ®, word_offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); if (mmio->is_write) { vcpu->kvm->arch.vgic.enabled = reg & 1; vgic_update_state(vcpu->kvm); return true; } break; case 4: /* GICD_TYPER */ reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1; vgic_reg_access(mmio, ®, word_offset, ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); break; case 8: /* GICD_IIDR */ reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); vgic_reg_access(mmio, ®, word_offset, ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); break; } return false; } static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled, vcpu->vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); if (mmio->is_write) { vgic_update_state(vcpu->kvm); return true; } return false; } static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled, vcpu->vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); if (mmio->is_write) { if (offset < 4) /* Force SGI enabled */ *reg |= 0xffff; vgic_retire_disabled_irqs(vcpu); vgic_update_state(vcpu->kvm); return true; } return false; } static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 *reg, orig; u32 level_mask; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset); level_mask = (~(*reg)); /* Mark both level and edge triggered irqs as pending */ reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset); orig = *reg; vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); if (mmio->is_write) { /* Set the soft-pending flag only for level-triggered irqs */ reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, vcpu->vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); *reg &= level_mask; /* Ignore writes to SGIs */ if (offset < 2) { *reg &= ~0xffff; *reg |= orig & 0xffff; } vgic_update_state(vcpu->kvm); return true; } return false; } static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 *level_active; u32 *reg, orig; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset); orig = *reg; vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); if (mmio->is_write) { /* Re-set level triggered level-active interrupts */ level_active = vgic_bitmap_get_reg(&dist->irq_level, vcpu->vcpu_id, offset); reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset); *reg |= *level_active; /* Ignore writes to SGIs */ if (offset < 2) { *reg &= ~0xffff; *reg |= orig & 0xffff; } /* Clear soft-pending flags */ reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, vcpu->vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); vgic_update_state(vcpu->kvm); return true; } return false; } static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, vcpu->vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); return false; } #define GICD_ITARGETSR_SIZE 32 #define GICD_CPUTARGETS_BITS 8 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS) static u32 vgic_get_target_reg(struct kvm *kvm, int irq) { struct vgic_dist *dist = &kvm->arch.vgic; int i; u32 val = 0; irq -= VGIC_NR_PRIVATE_IRQS; for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8); return val; } static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int i, c; unsigned long *bmap; u32 target; irq -= VGIC_NR_PRIVATE_IRQS; /* * Pick the LSB in each byte. This ensures we target exactly * one vcpu per IRQ. If the byte is null, assume we target * CPU0. */ for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) { int shift = i * GICD_CPUTARGETS_BITS; target = ffs((val >> shift) & 0xffU); target = target ? (target - 1) : 0; dist->irq_spi_cpu[irq + i] = target; kvm_for_each_vcpu(c, vcpu, kvm) { bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]); if (c == target) set_bit(irq + i, bmap); else clear_bit(irq + i, bmap); } } } static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg; /* We treat the banked interrupts targets as read-only */ if (offset < 32) { u32 roreg = 1 << vcpu->vcpu_id; roreg |= roreg << 8; roreg |= roreg << 16; vgic_reg_access(mmio, &roreg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); return false; } reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U); vgic_reg_access(mmio, ®, offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); if (mmio->is_write) { vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U); vgic_update_state(vcpu->kvm); return true; } return false; } static u32 vgic_cfg_expand(u16 val) { u32 res = 0; int i; /* * Turn a 16bit value like abcd...mnop into a 32bit word * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is. */ for (i = 0; i < 16; i++) res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1); return res; } static u16 vgic_cfg_compress(u32 val) { u16 res = 0; int i; /* * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like * abcd...mnop which is what we really care about. */ for (i = 0; i < 16; i++) res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i; return res; } /* * The distributor uses 2 bits per IRQ for the CFG register, but the * LSB is always 0. As such, we only keep the upper bit, and use the * two above functions to compress/expand the bits */ static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 val; u32 *reg; reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, vcpu->vcpu_id, offset >> 1); if (offset & 4) val = *reg >> 16; else val = *reg & 0xffff; val = vgic_cfg_expand(val); vgic_reg_access(mmio, &val, offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); if (mmio->is_write) { if (offset < 8) { *reg = ~0U; /* Force PPIs/SGIs to 1 */ return false; } val = vgic_cfg_compress(val); if (offset & 4) { *reg &= 0xffff; *reg |= val << 16; } else { *reg &= 0xffff << 16; *reg |= val; } } return false; } static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg; vgic_reg_access(mmio, ®, offset, ACCESS_READ_RAZ | ACCESS_WRITE_VALUE); if (mmio->is_write) { vgic_dispatch_sgi(vcpu, reg); vgic_update_state(vcpu->kvm); return true; } return false; } /** * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs * * Move any pending IRQs that have already been assigned to LRs back to the * emulated distributor state so that the complete emulated state can be read * from the main emulation structures without investigating the LRs. * * Note that IRQs in the active state in the LRs get their pending state moved * to the distributor but the active state stays in the LRs, because we don't * track the active state on the distributor side. */ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; int vcpu_id = vcpu->vcpu_id; int i; for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) { struct vgic_lr lr = vgic_get_lr(vcpu, i); /* * There are three options for the state bits: * * 01: pending * 10: active * 11: pending and active * * If the LR holds only an active interrupt (not pending) then * just leave it alone. */ if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE) continue; /* * Reestablish the pending state on the distributor and the * CPU interface. It may have already been pending, but that * is fine, then we are only setting a few bits that were * already set. */ vgic_dist_irq_set_pending(vcpu, lr.irq); if (lr.irq < VGIC_NR_SGIS) *vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source; lr.state &= ~LR_STATE_PENDING; vgic_set_lr(vcpu, i, lr); /* * If there's no state left on the LR (it could still be * active), then the LR does not hold any useful info and can * be marked as free for other use. */ if (!(lr.state & LR_STATE_MASK)) { vgic_retire_lr(i, lr.irq, vcpu); vgic_irq_clear_queued(vcpu, lr.irq); } /* Finally update the VGIC state. */ vgic_update_state(vcpu->kvm); } } /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */ static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; int sgi; int min_sgi = (offset & ~0x3); int max_sgi = min_sgi + 3; int vcpu_id = vcpu->vcpu_id; u32 reg = 0; /* Copy source SGIs from distributor side */ for (sgi = min_sgi; sgi <= max_sgi; sgi++) { int shift = 8 * (sgi - min_sgi); reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift; } mmio_data_write(mmio, ~0, reg); return false; } static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset, bool set) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; int sgi; int min_sgi = (offset & ~0x3); int max_sgi = min_sgi + 3; int vcpu_id = vcpu->vcpu_id; u32 reg; bool updated = false; reg = mmio_data_read(mmio, ~0); /* Clear pending SGIs on the distributor */ for (sgi = min_sgi; sgi <= max_sgi; sgi++) { u8 mask = reg >> (8 * (sgi - min_sgi)); u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi); if (set) { if ((*src & mask) != mask) updated = true; *src |= mask; } else { if (*src & mask) updated = true; *src &= ~mask; } } if (updated) vgic_update_state(vcpu->kvm); return updated; } static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { if (!mmio->is_write) return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); else return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true); } static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { if (!mmio->is_write) return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); else return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false); } /* * I would have liked to use the kvm_bus_io_*() API instead, but it * cannot cope with banked registers (only the VM pointer is passed * around, and we need the vcpu). One of these days, someone please * fix it! */ struct mmio_range { phys_addr_t base; unsigned long len; int bits_per_irq; bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset); }; static const struct mmio_range vgic_dist_ranges[] = { { .base = GIC_DIST_CTRL, .len = 12, .bits_per_irq = 0, .handle_mmio = handle_mmio_misc, }, { .base = GIC_DIST_IGROUP, .len = VGIC_MAX_IRQS / 8, .bits_per_irq = 1, .handle_mmio = handle_mmio_raz_wi, }, { .base = GIC_DIST_ENABLE_SET, .len = VGIC_MAX_IRQS / 8, .bits_per_irq = 1, .handle_mmio = handle_mmio_set_enable_reg, }, { .base = GIC_DIST_ENABLE_CLEAR, .len = VGIC_MAX_IRQS / 8, .bits_per_irq = 1, .handle_mmio = handle_mmio_clear_enable_reg, }, { .base = GIC_DIST_PENDING_SET, .len = VGIC_MAX_IRQS / 8, .bits_per_irq = 1, .handle_mmio = handle_mmio_set_pending_reg, }, { .base = GIC_DIST_PENDING_CLEAR, .len = VGIC_MAX_IRQS / 8, .bits_per_irq = 1, .handle_mmio = handle_mmio_clear_pending_reg, }, { .base = GIC_DIST_ACTIVE_SET, .len = VGIC_MAX_IRQS / 8, .bits_per_irq = 1, .handle_mmio = handle_mmio_raz_wi, }, { .base = GIC_DIST_ACTIVE_CLEAR, .len = VGIC_MAX_IRQS / 8, .bits_per_irq = 1, .handle_mmio = handle_mmio_raz_wi, }, { .base = GIC_DIST_PRI, .len = VGIC_MAX_IRQS, .bits_per_irq = 8, .handle_mmio = handle_mmio_priority_reg, }, { .base = GIC_DIST_TARGET, .len = VGIC_MAX_IRQS, .bits_per_irq = 8, .handle_mmio = handle_mmio_target_reg, }, { .base = GIC_DIST_CONFIG, .len = VGIC_MAX_IRQS / 4, .bits_per_irq = 2, .handle_mmio = handle_mmio_cfg_reg, }, { .base = GIC_DIST_SOFTINT, .len = 4, .handle_mmio = handle_mmio_sgi_reg, }, { .base = GIC_DIST_SGI_PENDING_CLEAR, .len = VGIC_NR_SGIS, .handle_mmio = handle_mmio_sgi_clear, }, { .base = GIC_DIST_SGI_PENDING_SET, .len = VGIC_NR_SGIS, .handle_mmio = handle_mmio_sgi_set, }, {} }; static const struct mmio_range *find_matching_range(const struct mmio_range *ranges, struct kvm_exit_mmio *mmio, phys_addr_t offset) { const struct mmio_range *r = ranges; while (r->len) { if (offset >= r->base && (offset + mmio->len) <= (r->base + r->len)) return r; r++; } return NULL; } static bool vgic_validate_access(const struct vgic_dist *dist, const struct mmio_range *range, unsigned long offset) { int irq; if (!range->bits_per_irq) return true; /* Not an irq-based access */ irq = offset * 8 / range->bits_per_irq; if (irq >= dist->nr_irqs) return false; return true; } /* * Call the respective handler function for the given range. * We split up any 64 bit accesses into two consecutive 32 bit * handler calls and merge the result afterwards. * We do this in a little endian fashion regardless of the host's * or guest's endianness, because the GIC is always LE and the rest of * the code (vgic_reg_access) also puts it in a LE fashion already. * At this point we have already identified the handle function, so * range points to that one entry and offset is relative to this. */ static bool call_range_handler(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, unsigned long offset, const struct mmio_range *range) { u32 *data32 = (void *)mmio->data; struct kvm_exit_mmio mmio32; bool ret; if (likely(mmio->len <= 4)) return range->handle_mmio(vcpu, mmio, offset); /* * Any access bigger than 4 bytes (that we currently handle in KVM) * is actually 8 bytes long, caused by a 64-bit access */ mmio32.len = 4; mmio32.is_write = mmio->is_write; mmio32.phys_addr = mmio->phys_addr + 4; if (mmio->is_write) *(u32 *)mmio32.data = data32[1]; ret = range->handle_mmio(vcpu, &mmio32, offset + 4); if (!mmio->is_write) data32[1] = *(u32 *)mmio32.data; mmio32.phys_addr = mmio->phys_addr; if (mmio->is_write) *(u32 *)mmio32.data = data32[0]; ret |= range->handle_mmio(vcpu, &mmio32, offset); if (!mmio->is_write) data32[0] = *(u32 *)mmio32.data; return ret; } /** * vgic_handle_mmio_range - handle an in-kernel MMIO access * @vcpu: pointer to the vcpu performing the access * @run: pointer to the kvm_run structure * @mmio: pointer to the data describing the access * @ranges: array of MMIO ranges in a given region * @mmio_base: base address of that region * * returns true if the MMIO access could be performed */ static bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run, struct kvm_exit_mmio *mmio, const struct mmio_range *ranges, unsigned long mmio_base) { const struct mmio_range *range; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; bool updated_state; unsigned long offset; offset = mmio->phys_addr - mmio_base; range = find_matching_range(ranges, mmio, offset); if (unlikely(!range || !range->handle_mmio)) { pr_warn("Unhandled access %d %08llx %d\n", mmio->is_write, mmio->phys_addr, mmio->len); return false; } spin_lock(&vcpu->kvm->arch.vgic.lock); offset -= range->base; if (vgic_validate_access(dist, range, offset)) { updated_state = call_range_handler(vcpu, mmio, offset, range); } else { if (!mmio->is_write) memset(mmio->data, 0, mmio->len); updated_state = false; } spin_unlock(&vcpu->kvm->arch.vgic.lock); kvm_prepare_mmio(run, mmio); kvm_handle_mmio_return(vcpu, run); if (updated_state) vgic_kick_vcpus(vcpu->kvm); return true; } static inline bool is_in_range(phys_addr_t addr, unsigned long len, phys_addr_t baseaddr, unsigned long size) { return (addr >= baseaddr) && (addr + len <= baseaddr + size); } static bool vgic_v2_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, struct kvm_exit_mmio *mmio) { unsigned long base = vcpu->kvm->arch.vgic.vgic_dist_base; if (!is_in_range(mmio->phys_addr, mmio->len, base, KVM_VGIC_V2_DIST_SIZE)) return false; /* GICv2 does not support accesses wider than 32 bits */ if (mmio->len > 4) { kvm_inject_dabt(vcpu, mmio->phys_addr); return true; } return vgic_handle_mmio_range(vcpu, run, mmio, vgic_dist_ranges, base); } /** * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation * @vcpu: pointer to the vcpu performing the access * @run: pointer to the kvm_run structure * @mmio: pointer to the data describing the access * * returns true if the MMIO access has been performed in kernel space, * and false if it needs to be emulated in user space. */ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, struct kvm_exit_mmio *mmio) { if (!irqchip_in_kernel(vcpu->kvm)) return false; return vgic_v2_handle_mmio(vcpu, run, mmio); } static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi) { return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi; } static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg) { struct kvm *kvm = vcpu->kvm; struct vgic_dist *dist = &kvm->arch.vgic; int nrcpus = atomic_read(&kvm->online_vcpus); u8 target_cpus; int sgi, mode, c, vcpu_id; vcpu_id = vcpu->vcpu_id; sgi = reg & 0xf; target_cpus = (reg >> 16) & 0xff; mode = (reg >> 24) & 3; switch (mode) { case 0: if (!target_cpus) return; break; case 1: target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff; break; case 2: target_cpus = 1 << vcpu_id; break; } kvm_for_each_vcpu(c, vcpu, kvm) { if (target_cpus & 1) { /* Flag the SGI as pending */ vgic_dist_irq_set_pending(vcpu, sgi); *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id; kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); } target_cpus >>= 1; } } static int vgic_nr_shared_irqs(struct vgic_dist *dist) { return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS; } static int compute_pending_for_cpu(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; unsigned long *pending, *enabled, *pend_percpu, *pend_shared; unsigned long pending_private, pending_shared; int nr_shared = vgic_nr_shared_irqs(dist); int vcpu_id; vcpu_id = vcpu->vcpu_id; pend_percpu = vcpu->arch.vgic_cpu.pending_percpu; pend_shared = vcpu->arch.vgic_cpu.pending_shared; pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id); enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id); bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS); pending = vgic_bitmap_get_shared_map(&dist->irq_pending); enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled); bitmap_and(pend_shared, pending, enabled, nr_shared); bitmap_and(pend_shared, pend_shared, vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]), nr_shared); pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS); pending_shared = find_first_bit(pend_shared, nr_shared); return (pending_private < VGIC_NR_PRIVATE_IRQS || pending_shared < vgic_nr_shared_irqs(dist)); } /* * Update the interrupt state and determine which CPUs have pending * interrupts. Must be called with distributor lock held. */ static void vgic_update_state(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int c; if (!dist->enabled) { set_bit(0, dist->irq_pending_on_cpu); return; } kvm_for_each_vcpu(c, vcpu, kvm) { if (compute_pending_for_cpu(vcpu)) { pr_debug("CPU%d has pending interrupts\n", c); set_bit(c, dist->irq_pending_on_cpu); } } } static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr) { return vgic_ops->get_lr(vcpu, lr); } static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr) { vgic_ops->set_lr(vcpu, lr, vlr); } static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr) { vgic_ops->sync_lr_elrsr(vcpu, lr, vlr); } static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu) { return vgic_ops->get_elrsr(vcpu); } static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu) { return vgic_ops->get_eisr(vcpu); } static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu) { return vgic_ops->get_interrupt_status(vcpu); } static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu) { vgic_ops->enable_underflow(vcpu); } static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu) { vgic_ops->disable_underflow(vcpu); } static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) { vgic_ops->get_vmcr(vcpu, vmcr); } static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) { vgic_ops->set_vmcr(vcpu, vmcr); } static inline void vgic_enable(struct kvm_vcpu *vcpu) { vgic_ops->enable(vcpu); } static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr); vlr.state = 0; vgic_set_lr(vcpu, lr_nr, vlr); clear_bit(lr_nr, vgic_cpu->lr_used); vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY; } /* * An interrupt may have been disabled after being made pending on the * CPU interface (the classic case is a timer running while we're * rebooting the guest - the interrupt would kick as soon as the CPU * interface gets enabled, with deadly consequences). * * The solution is to examine already active LRs, and check the * interrupt is still enabled. If not, just retire it. */ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; int lr; for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) { struct vgic_lr vlr = vgic_get_lr(vcpu, lr); if (!vgic_irq_is_enabled(vcpu, vlr.irq)) { vgic_retire_lr(lr, vlr.irq, vcpu); if (vgic_irq_is_queued(vcpu, vlr.irq)) vgic_irq_clear_queued(vcpu, vlr.irq); } } } /* * Queue an interrupt to a CPU virtual interface. Return true on success, * or false if it wasn't possible to queue it. */ static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_lr vlr; int lr; /* Sanitize the input... */ BUG_ON(sgi_source_id & ~7); BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS); BUG_ON(irq >= dist->nr_irqs); kvm_debug("Queue IRQ%d\n", irq); lr = vgic_cpu->vgic_irq_lr_map[irq]; /* Do we have an active interrupt for the same CPUID? */ if (lr != LR_EMPTY) { vlr = vgic_get_lr(vcpu, lr); if (vlr.source == sgi_source_id) { kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq); BUG_ON(!test_bit(lr, vgic_cpu->lr_used)); vlr.state |= LR_STATE_PENDING; vgic_set_lr(vcpu, lr, vlr); return true; } } /* Try to use another LR for this interrupt */ lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used, vgic->nr_lr); if (lr >= vgic->nr_lr) return false; kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id); vgic_cpu->vgic_irq_lr_map[irq] = lr; set_bit(lr, vgic_cpu->lr_used); vlr.irq = irq; vlr.source = sgi_source_id; vlr.state = LR_STATE_PENDING; if (!vgic_irq_is_edge(vcpu, irq)) vlr.state |= LR_EOI_INT; vgic_set_lr(vcpu, lr, vlr); return true; } static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; unsigned long sources; int vcpu_id = vcpu->vcpu_id; int c; sources = *vgic_get_sgi_sources(dist, vcpu_id, irq); for_each_set_bit(c, &sources, dist->nr_cpus) { if (vgic_queue_irq(vcpu, c, irq)) clear_bit(c, &sources); } *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources; /* * If the sources bitmap has been cleared it means that we * could queue all the SGIs onto link registers (see the * clear_bit above), and therefore we are done with them in * our emulated gic and can get rid of them. */ if (!sources) { vgic_dist_irq_clear_pending(vcpu, irq); vgic_cpu_irq_clear(vcpu, irq); return true; } return false; } static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq) { if (!vgic_can_sample_irq(vcpu, irq)) return true; /* level interrupt, already queued */ if (vgic_queue_irq(vcpu, 0, irq)) { if (vgic_irq_is_edge(vcpu, irq)) { vgic_dist_irq_clear_pending(vcpu, irq); vgic_cpu_irq_clear(vcpu, irq); } else { vgic_irq_set_queued(vcpu, irq); } return true; } return false; } /* * Fill the list registers with pending interrupts before running the * guest. */ static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; int i, vcpu_id; int overflow = 0; vcpu_id = vcpu->vcpu_id; /* * We may not have any pending interrupt, or the interrupts * may have been serviced from another vcpu. In all cases, * move along. */ if (!kvm_vgic_vcpu_pending_irq(vcpu)) { pr_debug("CPU%d has no pending interrupt\n", vcpu_id); goto epilog; } /* SGIs */ for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) { if (!vgic_queue_sgi(vcpu, i)) overflow = 1; } /* PPIs */ for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) { if (!vgic_queue_hwirq(vcpu, i)) overflow = 1; } /* SPIs */ for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) { if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS)) overflow = 1; } epilog: if (overflow) { vgic_enable_underflow(vcpu); } else { vgic_disable_underflow(vcpu); /* * We're about to run this VCPU, and we've consumed * everything the distributor had in store for * us. Claim we don't have anything pending. We'll * adjust that if needed while exiting. */ clear_bit(vcpu_id, dist->irq_pending_on_cpu); } } static bool vgic_process_maintenance(struct kvm_vcpu *vcpu) { u32 status = vgic_get_interrupt_status(vcpu); bool level_pending = false; kvm_debug("STATUS = %08x\n", status); if (status & INT_STATUS_EOI) { /* * Some level interrupts have been EOIed. Clear their * active bit. */ u64 eisr = vgic_get_eisr(vcpu); unsigned long *eisr_ptr = u64_to_bitmask(&eisr); int lr; for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) { struct vgic_lr vlr = vgic_get_lr(vcpu, lr); WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq)); vgic_irq_clear_queued(vcpu, vlr.irq); WARN_ON(vlr.state & LR_STATE_MASK); vlr.state = 0; vgic_set_lr(vcpu, lr, vlr); /* * If the IRQ was EOIed it was also ACKed and we we * therefore assume we can clear the soft pending * state (should it had been set) for this interrupt. * * Note: if the IRQ soft pending state was set after * the IRQ was acked, it actually shouldn't be * cleared, but we have no way of knowing that unless * we start trapping ACKs when the soft-pending state * is set. */ vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq); /* Any additional pending interrupt? */ if (vgic_dist_irq_get_level(vcpu, vlr.irq)) { vgic_cpu_irq_set(vcpu, vlr.irq); level_pending = true; } else { vgic_dist_irq_clear_pending(vcpu, vlr.irq); vgic_cpu_irq_clear(vcpu, vlr.irq); } /* * Despite being EOIed, the LR may not have * been marked as empty. */ vgic_sync_lr_elrsr(vcpu, lr, vlr); } } if (status & INT_STATUS_UNDERFLOW) vgic_disable_underflow(vcpu); return level_pending; } /* * Sync back the VGIC state after a guest run. The distributor lock is * needed so we don't get preempted in the middle of the state processing. */ static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; u64 elrsr; unsigned long *elrsr_ptr; int lr, pending; bool level_pending; level_pending = vgic_process_maintenance(vcpu); elrsr = vgic_get_elrsr(vcpu); elrsr_ptr = u64_to_bitmask(&elrsr); /* Clear mappings for empty LRs */ for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) { struct vgic_lr vlr; if (!test_and_clear_bit(lr, vgic_cpu->lr_used)) continue; vlr = vgic_get_lr(vcpu, lr); BUG_ON(vlr.irq >= dist->nr_irqs); vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY; } /* Check if we still have something up our sleeve... */ pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr); if (level_pending || pending < vgic->nr_lr) set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); } void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; if (!irqchip_in_kernel(vcpu->kvm)) return; spin_lock(&dist->lock); __kvm_vgic_flush_hwstate(vcpu); spin_unlock(&dist->lock); } void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; if (!irqchip_in_kernel(vcpu->kvm)) return; spin_lock(&dist->lock); __kvm_vgic_sync_hwstate(vcpu); spin_unlock(&dist->lock); } int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; if (!irqchip_in_kernel(vcpu->kvm)) return 0; return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); } static void vgic_kick_vcpus(struct kvm *kvm) { struct kvm_vcpu *vcpu; int c; /* * We've injected an interrupt, time to find out who deserves * a good kick... */ kvm_for_each_vcpu(c, vcpu, kvm) { if (kvm_vgic_vcpu_pending_irq(vcpu)) kvm_vcpu_kick(vcpu); } } static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level) { int edge_triggered = vgic_irq_is_edge(vcpu, irq); /* * Only inject an interrupt if: * - edge triggered and we have a rising edge * - level triggered and we change level */ if (edge_triggered) { int state = vgic_dist_irq_is_pending(vcpu, irq); return level > state; } else { int state = vgic_dist_irq_get_level(vcpu, irq); return level != state; } } static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, unsigned int irq_num, bool level) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int edge_triggered, level_triggered; int enabled; bool ret = true; spin_lock(&dist->lock); vcpu = kvm_get_vcpu(kvm, cpuid); edge_triggered = vgic_irq_is_edge(vcpu, irq_num); level_triggered = !edge_triggered; if (!vgic_validate_injection(vcpu, irq_num, level)) { ret = false; goto out; } if (irq_num >= VGIC_NR_PRIVATE_IRQS) { cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS]; vcpu = kvm_get_vcpu(kvm, cpuid); } kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid); if (level) { if (level_triggered) vgic_dist_irq_set_level(vcpu, irq_num); vgic_dist_irq_set_pending(vcpu, irq_num); } else { if (level_triggered) { vgic_dist_irq_clear_level(vcpu, irq_num); if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) vgic_dist_irq_clear_pending(vcpu, irq_num); } ret = false; goto out; } enabled = vgic_irq_is_enabled(vcpu, irq_num); if (!enabled) { ret = false; goto out; } if (!vgic_can_sample_irq(vcpu, irq_num)) { /* * Level interrupt in progress, will be picked up * when EOId. */ ret = false; goto out; } if (level) { vgic_cpu_irq_set(vcpu, irq_num); set_bit(cpuid, dist->irq_pending_on_cpu); } out: spin_unlock(&dist->lock); return ret ? cpuid : -EINVAL; } /** * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic * @kvm: The VM structure pointer * @cpuid: The CPU for PPIs * @irq_num: The IRQ number that is assigned to the device * @level: Edge-triggered: true: to trigger the interrupt * false: to ignore the call * Level-sensitive true: activates an interrupt * false: deactivates an interrupt * * The GIC is not concerned with devices being active-LOW or active-HIGH for * level-sensitive interrupts. You can think of the level parameter as 1 * being HIGH and 0 being LOW and all devices being active-HIGH. */ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, bool level) { int ret = 0; int vcpu_id; if (unlikely(!vgic_initialized(kvm))) { /* * We only provide the automatic initialization of the VGIC * for the legacy case of a GICv2. Any other type must * be explicitly initialized once setup with the respective * KVM device call. */ if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) { ret = -EBUSY; goto out; } mutex_lock(&kvm->lock); ret = vgic_init(kvm); mutex_unlock(&kvm->lock); if (ret) goto out; } vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level); if (vcpu_id >= 0) { /* kick the specified vcpu */ kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id)); } out: return ret; } static irqreturn_t vgic_maintenance_handler(int irq, void *data) { /* * We cannot rely on the vgic maintenance interrupt to be * delivered synchronously. This means we can only use it to * exit the VM, and we perform the handling of EOIed * interrupts on the exit path (see vgic_process_maintenance). */ return IRQ_HANDLED; } void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; kfree(vgic_cpu->pending_shared); kfree(vgic_cpu->vgic_irq_lr_map); vgic_cpu->pending_shared = NULL; vgic_cpu->vgic_irq_lr_map = NULL; } static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8; vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL); vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL); if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) { kvm_vgic_vcpu_destroy(vcpu); return -ENOMEM; } memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs); /* * Store the number of LRs per vcpu, so we don't have to go * all the way to the distributor structure to find out. Only * assembly code should use this one. */ vgic_cpu->nr_lr = vgic->nr_lr; return 0; } void kvm_vgic_destroy(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int i; kvm_for_each_vcpu(i, vcpu, kvm) kvm_vgic_vcpu_destroy(vcpu); vgic_free_bitmap(&dist->irq_enabled); vgic_free_bitmap(&dist->irq_level); vgic_free_bitmap(&dist->irq_pending); vgic_free_bitmap(&dist->irq_soft_pend); vgic_free_bitmap(&dist->irq_queued); vgic_free_bitmap(&dist->irq_cfg); vgic_free_bytemap(&dist->irq_priority); if (dist->irq_spi_target) { for (i = 0; i < dist->nr_cpus; i++) vgic_free_bitmap(&dist->irq_spi_target[i]); } kfree(dist->irq_sgi_sources); kfree(dist->irq_spi_cpu); kfree(dist->irq_spi_target); kfree(dist->irq_pending_on_cpu); dist->irq_sgi_sources = NULL; dist->irq_spi_cpu = NULL; dist->irq_spi_target = NULL; dist->irq_pending_on_cpu = NULL; dist->nr_cpus = 0; } /* * Allocate and initialize the various data structures. Must be called * with kvm->lock held! */ static int vgic_init(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int nr_cpus, nr_irqs; int ret, i, vcpu_id; if (vgic_initialized(kvm)) return 0; nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus); if (!nr_cpus) /* No vcpus? Can't be good... */ return -ENODEV; /* * If nobody configured the number of interrupts, use the * legacy one. */ if (!dist->nr_irqs) dist->nr_irqs = VGIC_NR_IRQS_LEGACY; nr_irqs = dist->nr_irqs; ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs); ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs); ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs); ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs); ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs); ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs); ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs); if (ret) goto out; dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL); dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL); dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus, GFP_KERNEL); dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long), GFP_KERNEL); if (!dist->irq_sgi_sources || !dist->irq_spi_cpu || !dist->irq_spi_target || !dist->irq_pending_on_cpu) { ret = -ENOMEM; goto out; } for (i = 0; i < nr_cpus; i++) ret |= vgic_init_bitmap(&dist->irq_spi_target[i], nr_cpus, nr_irqs); if (ret) goto out; for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i += 4) vgic_set_target_reg(kvm, 0, i); kvm_for_each_vcpu(vcpu_id, vcpu, kvm) { ret = vgic_vcpu_init_maps(vcpu, nr_irqs); if (ret) { kvm_err("VGIC: Failed to allocate vcpu memory\n"); break; } for (i = 0; i < dist->nr_irqs; i++) { if (i < VGIC_NR_PPIS) vgic_bitmap_set_irq_val(&dist->irq_enabled, vcpu->vcpu_id, i, 1); if (i < VGIC_NR_PRIVATE_IRQS) vgic_bitmap_set_irq_val(&dist->irq_cfg, vcpu->vcpu_id, i, VGIC_CFG_EDGE); } vgic_enable(vcpu); } out: if (ret) kvm_vgic_destroy(kvm); return ret; } /** * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs * @kvm: pointer to the kvm struct * * Map the virtual CPU interface into the VM before running any VCPUs. We * can't do this at creation time, because user space must first set the * virtual CPU interface address in the guest physical address space. */ int kvm_vgic_map_resources(struct kvm *kvm) { int ret = 0; if (!irqchip_in_kernel(kvm)) return 0; mutex_lock(&kvm->lock); if (vgic_ready(kvm)) goto out; if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) || IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) { kvm_err("Need to set vgic cpu and dist addresses first\n"); ret = -ENXIO; goto out; } /* * Initialize the vgic if this hasn't already been done on demand by * accessing the vgic state from userspace. */ ret = vgic_init(kvm); if (ret) { kvm_err("Unable to allocate maps\n"); goto out; } ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base, vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE, true); if (ret) { kvm_err("Unable to remap VGIC CPU to VCPU\n"); goto out; } kvm->arch.vgic.ready = true; out: if (ret) kvm_vgic_destroy(kvm); mutex_unlock(&kvm->lock); return ret; } int kvm_vgic_create(struct kvm *kvm, u32 type) { int i, vcpu_lock_idx = -1, ret; struct kvm_vcpu *vcpu; mutex_lock(&kvm->lock); if (kvm->arch.vgic.vctrl_base) { ret = -EEXIST; goto out; } /* * Any time a vcpu is run, vcpu_load is called which tries to grab the * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure * that no other VCPUs are run while we create the vgic. */ ret = -EBUSY; kvm_for_each_vcpu(i, vcpu, kvm) { if (!mutex_trylock(&vcpu->mutex)) goto out_unlock; vcpu_lock_idx = i; } kvm_for_each_vcpu(i, vcpu, kvm) { if (vcpu->arch.has_run_once) goto out_unlock; } ret = 0; spin_lock_init(&kvm->arch.vgic.lock); kvm->arch.vgic.in_kernel = true; kvm->arch.vgic.vgic_model = type; kvm->arch.vgic.vctrl_base = vgic->vctrl_base; kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; out_unlock: for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); mutex_unlock(&vcpu->mutex); } out: mutex_unlock(&kvm->lock); return ret; } static int vgic_ioaddr_overlap(struct kvm *kvm) { phys_addr_t dist = kvm->arch.vgic.vgic_dist_base; phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base; if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu)) return 0; if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) || (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist)) return -EBUSY; return 0; } static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr, phys_addr_t addr, phys_addr_t size) { int ret; if (addr & ~KVM_PHYS_MASK) return -E2BIG; if (addr & (SZ_4K - 1)) return -EINVAL; if (!IS_VGIC_ADDR_UNDEF(*ioaddr)) return -EEXIST; if (addr + size < addr) return -EINVAL; *ioaddr = addr; ret = vgic_ioaddr_overlap(kvm); if (ret) *ioaddr = VGIC_ADDR_UNDEF; return ret; } /** * kvm_vgic_addr - set or get vgic VM base addresses * @kvm: pointer to the vm struct * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX * @addr: pointer to address value * @write: if true set the address in the VM address space, if false read the * address * * Set or get the vgic base addresses for the distributor and the virtual CPU * interface in the VM physical address space. These addresses are properties * of the emulated core/SoC and therefore user space initially knows this * information. */ int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write) { int r = 0; struct vgic_dist *vgic = &kvm->arch.vgic; mutex_lock(&kvm->lock); switch (type) { case KVM_VGIC_V2_ADDR_TYPE_DIST: if (write) { r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base, *addr, KVM_VGIC_V2_DIST_SIZE); } else { *addr = vgic->vgic_dist_base; } break; case KVM_VGIC_V2_ADDR_TYPE_CPU: if (write) { r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base, *addr, KVM_VGIC_V2_CPU_SIZE); } else { *addr = vgic->vgic_cpu_base; } break; default: r = -ENODEV; } mutex_unlock(&kvm->lock); return r; } static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { bool updated = false; struct vgic_vmcr vmcr; u32 *vmcr_field; u32 reg; vgic_get_vmcr(vcpu, &vmcr); switch (offset & ~0x3) { case GIC_CPU_CTRL: vmcr_field = &vmcr.ctlr; break; case GIC_CPU_PRIMASK: vmcr_field = &vmcr.pmr; break; case GIC_CPU_BINPOINT: vmcr_field = &vmcr.bpr; break; case GIC_CPU_ALIAS_BINPOINT: vmcr_field = &vmcr.abpr; break; default: BUG(); } if (!mmio->is_write) { reg = *vmcr_field; mmio_data_write(mmio, ~0, reg); } else { reg = mmio_data_read(mmio, ~0); if (reg != *vmcr_field) { *vmcr_field = reg; vgic_set_vmcr(vcpu, &vmcr); updated = true; } } return updated; } static bool handle_mmio_abpr(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT); } static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg; if (mmio->is_write) return false; /* GICC_IIDR */ reg = (PRODUCT_ID_KVM << 20) | (GICC_ARCH_VERSION_V2 << 16) | (IMPLEMENTER_ARM << 0); mmio_data_write(mmio, ~0, reg); return false; } /* * CPU Interface Register accesses - these are not accessed by the VM, but by * user space for saving and restoring VGIC state. */ static const struct mmio_range vgic_cpu_ranges[] = { { .base = GIC_CPU_CTRL, .len = 12, .handle_mmio = handle_cpu_mmio_misc, }, { .base = GIC_CPU_ALIAS_BINPOINT, .len = 4, .handle_mmio = handle_mmio_abpr, }, { .base = GIC_CPU_ACTIVEPRIO, .len = 16, .handle_mmio = handle_mmio_raz_wi, }, { .base = GIC_CPU_IDENT, .len = 4, .handle_mmio = handle_cpu_mmio_ident, }, }; static int vgic_attr_regs_access(struct kvm_device *dev, struct kvm_device_attr *attr, u32 *reg, bool is_write) { const struct mmio_range *r = NULL, *ranges; phys_addr_t offset; int ret, cpuid, c; struct kvm_vcpu *vcpu, *tmp_vcpu; struct vgic_dist *vgic; struct kvm_exit_mmio mmio; offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >> KVM_DEV_ARM_VGIC_CPUID_SHIFT; mutex_lock(&dev->kvm->lock); ret = vgic_init(dev->kvm); if (ret) goto out; if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) { ret = -EINVAL; goto out; } vcpu = kvm_get_vcpu(dev->kvm, cpuid); vgic = &dev->kvm->arch.vgic; mmio.len = 4; mmio.is_write = is_write; if (is_write) mmio_data_write(&mmio, ~0, *reg); switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: mmio.phys_addr = vgic->vgic_dist_base + offset; ranges = vgic_dist_ranges; break; case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: mmio.phys_addr = vgic->vgic_cpu_base + offset; ranges = vgic_cpu_ranges; break; default: BUG(); } r = find_matching_range(ranges, &mmio, offset); if (unlikely(!r || !r->handle_mmio)) { ret = -ENXIO; goto out; } spin_lock(&vgic->lock); /* * Ensure that no other VCPU is running by checking the vcpu->cpu * field. If no other VPCUs are running we can safely access the VGIC * state, because even if another VPU is run after this point, that * VCPU will not touch the vgic state, because it will block on * getting the vgic->lock in kvm_vgic_sync_hwstate(). */ kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) { if (unlikely(tmp_vcpu->cpu != -1)) { ret = -EBUSY; goto out_vgic_unlock; } } /* * Move all pending IRQs from the LRs on all VCPUs so the pending * state can be properly represented in the register state accessible * through this API. */ kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) vgic_unqueue_irqs(tmp_vcpu); offset -= r->base; r->handle_mmio(vcpu, &mmio, offset); if (!is_write) *reg = mmio_data_read(&mmio, ~0); ret = 0; out_vgic_unlock: spin_unlock(&vgic->lock); out: mutex_unlock(&dev->kvm->lock); return ret; } static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int r; switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_ADDR: { u64 __user *uaddr = (u64 __user *)(long)attr->addr; u64 addr; unsigned long type = (unsigned long)attr->attr; if (copy_from_user(&addr, uaddr, sizeof(addr))) return -EFAULT; r = kvm_vgic_addr(dev->kvm, type, &addr, true); return (r == -ENODEV) ? -ENXIO : r; } case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { u32 __user *uaddr = (u32 __user *)(long)attr->addr; u32 reg; if (get_user(reg, uaddr)) return -EFAULT; return vgic_attr_regs_access(dev, attr, ®, true); } case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { u32 __user *uaddr = (u32 __user *)(long)attr->addr; u32 val; int ret = 0; if (get_user(val, uaddr)) return -EFAULT; /* * We require: * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs * - at most 1024 interrupts * - a multiple of 32 interrupts */ if (val < (VGIC_NR_PRIVATE_IRQS + 32) || val > VGIC_MAX_IRQS || (val & 31)) return -EINVAL; mutex_lock(&dev->kvm->lock); if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs) ret = -EBUSY; else dev->kvm->arch.vgic.nr_irqs = val; mutex_unlock(&dev->kvm->lock); return ret; } case KVM_DEV_ARM_VGIC_GRP_CTRL: { switch (attr->attr) { case KVM_DEV_ARM_VGIC_CTRL_INIT: r = vgic_init(dev->kvm); return r; } break; } } return -ENXIO; } static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int r = -ENXIO; switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_ADDR: { u64 __user *uaddr = (u64 __user *)(long)attr->addr; u64 addr; unsigned long type = (unsigned long)attr->attr; r = kvm_vgic_addr(dev->kvm, type, &addr, false); if (r) return (r == -ENODEV) ? -ENXIO : r; if (copy_to_user(uaddr, &addr, sizeof(addr))) return -EFAULT; break; } case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { u32 __user *uaddr = (u32 __user *)(long)attr->addr; u32 reg = 0; r = vgic_attr_regs_access(dev, attr, ®, false); if (r) return r; r = put_user(reg, uaddr); break; } case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { u32 __user *uaddr = (u32 __user *)(long)attr->addr; r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr); break; } } return r; } static int vgic_has_attr_regs(const struct mmio_range *ranges, phys_addr_t offset) { struct kvm_exit_mmio dev_attr_mmio; dev_attr_mmio.len = 4; if (find_matching_range(ranges, &dev_attr_mmio, offset)) return 0; else return -ENXIO; } static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { phys_addr_t offset; switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_ADDR: switch (attr->attr) { case KVM_VGIC_V2_ADDR_TYPE_DIST: case KVM_VGIC_V2_ADDR_TYPE_CPU: return 0; } break; case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; return vgic_has_attr_regs(vgic_dist_ranges, offset); case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; return vgic_has_attr_regs(vgic_cpu_ranges, offset); case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: return 0; case KVM_DEV_ARM_VGIC_GRP_CTRL: switch (attr->attr) { case KVM_DEV_ARM_VGIC_CTRL_INIT: return 0; } } return -ENXIO; } static void vgic_destroy(struct kvm_device *dev) { kfree(dev); } static int vgic_create(struct kvm_device *dev, u32 type) { return kvm_vgic_create(dev->kvm, type); } static struct kvm_device_ops kvm_arm_vgic_v2_ops = { .name = "kvm-arm-vgic", .create = vgic_create, .destroy = vgic_destroy, .set_attr = vgic_set_attr, .get_attr = vgic_get_attr, .has_attr = vgic_has_attr, }; static void vgic_init_maintenance_interrupt(void *info) { enable_percpu_irq(vgic->maint_irq, 0); } static int vgic_cpu_notify(struct notifier_block *self, unsigned long action, void *cpu) { switch (action) { case CPU_STARTING: case CPU_STARTING_FROZEN: vgic_init_maintenance_interrupt(NULL); break; case CPU_DYING: case CPU_DYING_FROZEN: disable_percpu_irq(vgic->maint_irq); break; } return NOTIFY_OK; } static struct notifier_block vgic_cpu_nb = { .notifier_call = vgic_cpu_notify, }; static const struct of_device_id vgic_ids[] = { { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, }, { .compatible = "arm,gic-v3", .data = vgic_v3_probe, }, {}, }; int kvm_vgic_hyp_init(void) { const struct of_device_id *matched_id; const int (*vgic_probe)(struct device_node *,const struct vgic_ops **, const struct vgic_params **); struct device_node *vgic_node; int ret; vgic_node = of_find_matching_node_and_match(NULL, vgic_ids, &matched_id); if (!vgic_node) { kvm_err("error: no compatible GIC node found\n"); return -ENODEV; } vgic_probe = matched_id->data; ret = vgic_probe(vgic_node, &vgic_ops, &vgic); if (ret) return ret; ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler, "vgic", kvm_get_running_vcpus()); if (ret) { kvm_err("Cannot register interrupt %d\n", vgic->maint_irq); return ret; } ret = __register_cpu_notifier(&vgic_cpu_nb); if (ret) { kvm_err("Cannot register vgic CPU notifier\n"); goto out_free_irq; } /* Callback into for arch code for setup */ vgic_arch_setup(vgic); on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1); return kvm_register_device_ops(&kvm_arm_vgic_v2_ops, KVM_DEV_TYPE_ARM_VGIC_V2); out_free_irq: free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus()); return ret; }