/* * Generic VM initialization for x86-64 NUMA setups. * Copyright 2002,2003 Andi Kleen, SuSE Labs. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef Dprintk #define Dprintk(x...) #endif struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; bootmem_data_t plat_node_bdata[MAX_NUMNODES]; struct memnode memnode; unsigned char cpu_to_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = NUMA_NO_NODE }; unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = { [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE }; cpumask_t node_to_cpumask[MAX_NUMNODES] __read_mostly; int numa_off __initdata; unsigned long __initdata nodemap_addr; unsigned long __initdata nodemap_size; /* * Given a shift value, try to populate memnodemap[] * Returns : * 1 if OK * 0 if memnodmap[] too small (of shift too small) * -1 if node overlap or lost ram (shift too big) */ static int __init populate_memnodemap(const struct bootnode *nodes, int numnodes, int shift) { int i; int res = -1; unsigned long addr, end; memset(memnodemap, 0xff, memnodemapsize); for (i = 0; i < numnodes; i++) { addr = nodes[i].start; end = nodes[i].end; if (addr >= end) continue; if ((end >> shift) >= memnodemapsize) return 0; do { if (memnodemap[addr >> shift] != 0xff) return -1; memnodemap[addr >> shift] = i; addr += (1UL << shift); } while (addr < end); res = 1; } return res; } static int __init allocate_cachealigned_memnodemap(void) { unsigned long pad, pad_addr; memnodemap = memnode.embedded_map; if (memnodemapsize <= 48) return 0; pad = L1_CACHE_BYTES - 1; pad_addr = 0x8000; nodemap_size = pad + memnodemapsize; nodemap_addr = find_e820_area(pad_addr, end_pfn<= end) continue; bitfield |= start; nodes_used++; if (end > memtop) memtop = end; } if (nodes_used <= 1) i = 63; else i = find_first_bit(&bitfield, sizeof(unsigned long)*8); memnodemapsize = (memtop >> i)+1; return i; } int __init compute_hash_shift(struct bootnode *nodes, int numnodes) { int shift; shift = extract_lsb_from_nodes(nodes, numnodes); if (allocate_cachealigned_memnodemap()) return -1; printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", shift); if (populate_memnodemap(nodes, numnodes, shift) != 1) { printk(KERN_INFO "Your memory is not aligned you need to rebuild your kernel " "with a bigger NODEMAPSIZE shift=%d\n", shift); return -1; } return shift; } #ifdef CONFIG_SPARSEMEM int early_pfn_to_nid(unsigned long pfn) { return phys_to_nid(pfn << PAGE_SHIFT); } #endif static void * __init early_node_mem(int nodeid, unsigned long start, unsigned long end, unsigned long size) { unsigned long mem = find_e820_area(start, end, size); void *ptr; if (mem != -1L) return __va(mem); ptr = __alloc_bootmem_nopanic(size, SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS)); if (ptr == NULL) { printk(KERN_ERR "Cannot find %lu bytes in node %d\n", size, nodeid); return NULL; } return ptr; } /* Initialize bootmem allocator for a node */ void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end) { unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size, bootmap_start; unsigned long nodedata_phys; void *bootmap; const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE); start = round_up(start, ZONE_ALIGN); printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end); start_pfn = start >> PAGE_SHIFT; end_pfn = end >> PAGE_SHIFT; node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size); if (node_data[nodeid] == NULL) return; nodedata_phys = __pa(node_data[nodeid]); memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid]; NODE_DATA(nodeid)->node_start_pfn = start_pfn; NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn; /* Find a place for the bootmem map */ bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE); bootmap = early_node_mem(nodeid, bootmap_start, end, bootmap_pages<= end) free_bootmem((unsigned long)node_data[nodeid],pgdat_size); node_data[nodeid] = NULL; return; } bootmap_start = __pa(bootmap); Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages); bootmap_size = init_bootmem_node(NODE_DATA(nodeid), bootmap_start >> PAGE_SHIFT, start_pfn, end_pfn); free_bootmem_with_active_regions(nodeid, end); reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size); reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages<node_mem_map = __alloc_bootmem_core(NODE_DATA(nodeid)->bdata, memmapsize, SMP_CACHE_BYTES, round_down(limit - memmapsize, PAGE_SIZE), limit); #endif } void __init numa_init_array(void) { int rr, i; /* There are unfortunately some poorly designed mainboards around that only connect memory to a single CPU. This breaks the 1:1 cpu->node mapping. To avoid this fill in the mapping for all possible CPUs, as the number of CPUs is not known yet. We round robin the existing nodes. */ rr = first_node(node_online_map); for (i = 0; i < NR_CPUS; i++) { if (cpu_to_node(i) != NUMA_NO_NODE) continue; numa_set_node(i, rr); rr = next_node(rr, node_online_map); if (rr == MAX_NUMNODES) rr = first_node(node_online_map); } } #ifdef CONFIG_NUMA_EMU /* Numa emulation */ char *cmdline __initdata; /* * Setups up nid to range from addr to addr + size. If the end boundary is * greater than max_addr, then max_addr is used instead. The return value is 0 * if there is additional memory left for allocation past addr and -1 otherwise. * addr is adjusted to be at the end of the node. */ static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr, u64 size, u64 max_addr) { int ret = 0; nodes[nid].start = *addr; *addr += size; if (*addr >= max_addr) { *addr = max_addr; ret = -1; } nodes[nid].end = *addr; node_set(nid, node_possible_map); printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid, nodes[nid].start, nodes[nid].end, (nodes[nid].end - nodes[nid].start) >> 20); return ret; } /* * Splits num_nodes nodes up equally starting at node_start. The return value * is the number of nodes split up and addr is adjusted to be at the end of the * last node allocated. */ static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr, u64 max_addr, int node_start, int num_nodes) { unsigned int big; u64 size; int i; if (num_nodes <= 0) return -1; if (num_nodes > MAX_NUMNODES) num_nodes = MAX_NUMNODES; size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) / num_nodes; /* * Calculate the number of big nodes that can be allocated as a result * of consolidating the leftovers. */ big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) / FAKE_NODE_MIN_SIZE; /* Round down to nearest FAKE_NODE_MIN_SIZE. */ size &= FAKE_NODE_MIN_HASH_MASK; if (!size) { printk(KERN_ERR "Not enough memory for each node. " "NUMA emulation disabled.\n"); return -1; } for (i = node_start; i < num_nodes + node_start; i++) { u64 end = *addr + size; if (i < big) end += FAKE_NODE_MIN_SIZE; /* * The final node can have the remaining system RAM. Other * nodes receive roughly the same amount of available pages. */ if (i == num_nodes + node_start - 1) end = max_addr; else while (end - *addr - e820_hole_size(*addr, end) < size) { end += FAKE_NODE_MIN_SIZE; if (end > max_addr) { end = max_addr; break; } } if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0) break; } return i - node_start + 1; } /* * Splits the remaining system RAM into chunks of size. The remaining memory is * always assigned to a final node and can be asymmetric. Returns the number of * nodes split. */ static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr, u64 max_addr, int node_start, u64 size) { int i = node_start; size = (size << 20) & FAKE_NODE_MIN_HASH_MASK; while (!setup_node_range(i++, nodes, addr, size, max_addr)) ; return i - node_start; } /* * Sets up the system RAM area from start_pfn to end_pfn according to the * numa=fake command-line option. */ static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn) { struct bootnode nodes[MAX_NUMNODES]; u64 addr = start_pfn << PAGE_SHIFT; u64 max_addr = end_pfn << PAGE_SHIFT; int num_nodes = 0; int coeff_flag; int coeff = -1; int num = 0; u64 size; int i; memset(&nodes, 0, sizeof(nodes)); /* * If the numa=fake command-line is just a single number N, split the * system RAM into N fake nodes. */ if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) { num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, simple_strtol(cmdline, NULL, 0)); if (num_nodes < 0) return num_nodes; goto out; } /* Parse the command line. */ for (coeff_flag = 0; ; cmdline++) { if (*cmdline && isdigit(*cmdline)) { num = num * 10 + *cmdline - '0'; continue; } if (*cmdline == '*') { if (num > 0) coeff = num; coeff_flag = 1; } if (!*cmdline || *cmdline == ',') { if (!coeff_flag) coeff = 1; /* * Round down to the nearest FAKE_NODE_MIN_SIZE. * Command-line coefficients are in megabytes. */ size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK; if (size) for (i = 0; i < coeff; i++, num_nodes++) if (setup_node_range(num_nodes, nodes, &addr, size, max_addr) < 0) goto done; if (!*cmdline) break; coeff_flag = 0; coeff = -1; } num = 0; } done: if (!num_nodes) return -1; /* Fill remainder of system RAM, if appropriate. */ if (addr < max_addr) { if (coeff_flag && coeff < 0) { /* Split remaining nodes into num-sized chunks */ num_nodes += split_nodes_by_size(nodes, &addr, max_addr, num_nodes, num); goto out; } switch (*(cmdline - 1)) { case '*': /* Split remaining nodes into coeff chunks */ if (coeff <= 0) break; num_nodes += split_nodes_equally(nodes, &addr, max_addr, num_nodes, coeff); break; case ',': /* Do not allocate remaining system RAM */ break; default: /* Give one final node */ setup_node_range(num_nodes, nodes, &addr, max_addr - addr, max_addr); num_nodes++; } } out: memnode_shift = compute_hash_shift(nodes, num_nodes); if (memnode_shift < 0) { memnode_shift = 0; printk(KERN_ERR "No NUMA hash function found. NUMA emulation " "disabled.\n"); return -1; } /* * We need to vacate all active ranges that may have been registered by * SRAT and set acpi_numa to -1 so that srat_disabled() always returns * true. NUMA emulation has succeeded so we will not scan ACPI nodes. */ remove_all_active_ranges(); #ifdef CONFIG_ACPI_NUMA acpi_numa = -1; #endif for_each_node_mask(i, node_possible_map) { e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT, nodes[i].end >> PAGE_SHIFT); setup_node_bootmem(i, nodes[i].start, nodes[i].end); } acpi_fake_nodes(nodes, num_nodes); numa_init_array(); return 0; } #endif /* CONFIG_NUMA_EMU */ void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn) { int i; nodes_clear(node_possible_map); #ifdef CONFIG_NUMA_EMU if (cmdline && !numa_emulation(start_pfn, end_pfn)) return; nodes_clear(node_possible_map); #endif #ifdef CONFIG_ACPI_NUMA if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT)) return; nodes_clear(node_possible_map); #endif #ifdef CONFIG_K8_NUMA if (!numa_off && !k8_scan_nodes(start_pfn<nodenumber = node; cpu_to_node(cpu) = node; } unsigned long __init numa_free_all_bootmem(void) { int i; unsigned long pages = 0; for_each_online_node(i) { pages += free_all_bootmem_node(NODE_DATA(i)); } return pages; } void __init paging_init(void) { int i; unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; max_zone_pfns[ZONE_NORMAL] = end_pfn; sparse_memory_present_with_active_regions(MAX_NUMNODES); sparse_init(); for_each_online_node(i) { setup_node_zones(i); } free_area_init_nodes(max_zone_pfns); } static __init int numa_setup(char *opt) { if (!opt) return -EINVAL; if (!strncmp(opt,"off",3)) numa_off = 1; #ifdef CONFIG_NUMA_EMU if (!strncmp(opt, "fake=", 5)) cmdline = opt + 5; #endif #ifdef CONFIG_ACPI_NUMA if (!strncmp(opt,"noacpi",6)) acpi_numa = -1; if (!strncmp(opt,"hotadd=", 7)) hotadd_percent = simple_strtoul(opt+7, NULL, 10); #endif return 0; } early_param("numa", numa_setup); /* * Setup early cpu_to_node. * * Populate cpu_to_node[] only if x86_cpu_to_apicid[], * and apicid_to_node[] tables have valid entries for a CPU. * This means we skip cpu_to_node[] initialisation for NUMA * emulation and faking node case (when running a kernel compiled * for NUMA on a non NUMA box), which is OK as cpu_to_node[] * is already initialized in a round robin manner at numa_init_array, * prior to this call, and this initialization is good enough * for the fake NUMA cases. */ void __init init_cpu_to_node(void) { int i; for (i = 0; i < NR_CPUS; i++) { u8 apicid = x86_cpu_to_apicid_init[i]; if (apicid == BAD_APICID) continue; if (apicid_to_node[apicid] == NUMA_NO_NODE) continue; numa_set_node(i,apicid_to_node[apicid]); } } EXPORT_SYMBOL(cpu_to_node); EXPORT_SYMBOL(node_to_cpumask); EXPORT_SYMBOL(memnode); EXPORT_SYMBOL(node_data); #ifdef CONFIG_DISCONTIGMEM /* * Functions to convert PFNs from/to per node page addresses. * These are out of line because they are quite big. * They could be all tuned by pre caching more state. * Should do that. */ int pfn_valid(unsigned long pfn) { unsigned nid; if (pfn >= num_physpages) return 0; nid = pfn_to_nid(pfn); if (nid == 0xff) return 0; return pfn >= node_start_pfn(nid) && (pfn) < node_end_pfn(nid); } EXPORT_SYMBOL(pfn_valid); #endif