/* * Ptrace user space interface. * * Copyright IBM Corp. 1999, 2010 * Author(s): Denis Joseph Barrow * Martin Schwidefsky (schwidefsky@de.ibm.com) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "entry.h" #ifdef CONFIG_COMPAT #include "compat_ptrace.h" #endif #define CREATE_TRACE_POINTS #include enum s390_regset { REGSET_GENERAL, REGSET_FP, REGSET_LAST_BREAK, REGSET_TDB, REGSET_SYSTEM_CALL, REGSET_GENERAL_EXTENDED, }; void update_cr_regs(struct task_struct *task) { struct pt_regs *regs = task_pt_regs(task); struct thread_struct *thread = &task->thread; struct per_regs old, new; #ifdef CONFIG_64BIT /* Take care of the enable/disable of transactional execution. */ if (MACHINE_HAS_TE) { unsigned long cr[3], cr_new[3]; __ctl_store(cr, 0, 2); cr_new[1] = cr[1]; /* Set or clear transaction execution TXC bit 8. */ if (task->thread.per_flags & PER_FLAG_NO_TE) cr_new[0] = cr[0] & ~(1UL << 55); else cr_new[0] = cr[0] | (1UL << 55); /* Set or clear transaction execution TDC bits 62 and 63. */ cr_new[2] = cr[2] & ~3UL; if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) { if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND) cr_new[2] |= 1UL; else cr_new[2] |= 2UL; } if (memcmp(&cr_new, &cr, sizeof(cr))) __ctl_load(cr_new, 0, 2); } #endif /* Copy user specified PER registers */ new.control = thread->per_user.control; new.start = thread->per_user.start; new.end = thread->per_user.end; /* merge TIF_SINGLE_STEP into user specified PER registers. */ if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) { new.control |= PER_EVENT_IFETCH; #ifdef CONFIG_64BIT new.control |= PER_CONTROL_SUSPENSION; new.control |= PER_EVENT_TRANSACTION_END; #endif new.start = 0; new.end = PSW_ADDR_INSN; } /* Take care of the PER enablement bit in the PSW. */ if (!(new.control & PER_EVENT_MASK)) { regs->psw.mask &= ~PSW_MASK_PER; return; } regs->psw.mask |= PSW_MASK_PER; __ctl_store(old, 9, 11); if (memcmp(&new, &old, sizeof(struct per_regs)) != 0) __ctl_load(new, 9, 11); } void user_enable_single_step(struct task_struct *task) { set_tsk_thread_flag(task, TIF_SINGLE_STEP); } void user_disable_single_step(struct task_struct *task) { clear_tsk_thread_flag(task, TIF_SINGLE_STEP); } /* * Called by kernel/ptrace.c when detaching.. * * Clear all debugging related fields. */ void ptrace_disable(struct task_struct *task) { memset(&task->thread.per_user, 0, sizeof(task->thread.per_user)); memset(&task->thread.per_event, 0, sizeof(task->thread.per_event)); clear_tsk_thread_flag(task, TIF_SINGLE_STEP); clear_tsk_thread_flag(task, TIF_PER_TRAP); task->thread.per_flags = 0; } #ifndef CONFIG_64BIT # define __ADDR_MASK 3 #else # define __ADDR_MASK 7 #endif static inline unsigned long __peek_user_per(struct task_struct *child, addr_t addr) { struct per_struct_kernel *dummy = NULL; if (addr == (addr_t) &dummy->cr9) /* Control bits of the active per set. */ return test_thread_flag(TIF_SINGLE_STEP) ? PER_EVENT_IFETCH : child->thread.per_user.control; else if (addr == (addr_t) &dummy->cr10) /* Start address of the active per set. */ return test_thread_flag(TIF_SINGLE_STEP) ? 0 : child->thread.per_user.start; else if (addr == (addr_t) &dummy->cr11) /* End address of the active per set. */ return test_thread_flag(TIF_SINGLE_STEP) ? PSW_ADDR_INSN : child->thread.per_user.end; else if (addr == (addr_t) &dummy->bits) /* Single-step bit. */ return test_thread_flag(TIF_SINGLE_STEP) ? (1UL << (BITS_PER_LONG - 1)) : 0; else if (addr == (addr_t) &dummy->starting_addr) /* Start address of the user specified per set. */ return child->thread.per_user.start; else if (addr == (addr_t) &dummy->ending_addr) /* End address of the user specified per set. */ return child->thread.per_user.end; else if (addr == (addr_t) &dummy->perc_atmid) /* PER code, ATMID and AI of the last PER trap */ return (unsigned long) child->thread.per_event.cause << (BITS_PER_LONG - 16); else if (addr == (addr_t) &dummy->address) /* Address of the last PER trap */ return child->thread.per_event.address; else if (addr == (addr_t) &dummy->access_id) /* Access id of the last PER trap */ return (unsigned long) child->thread.per_event.paid << (BITS_PER_LONG - 8); return 0; } /* * Read the word at offset addr from the user area of a process. The * trouble here is that the information is littered over different * locations. The process registers are found on the kernel stack, * the floating point stuff and the trace settings are stored in * the task structure. In addition the different structures in * struct user contain pad bytes that should be read as zeroes. * Lovely... */ static unsigned long __peek_user(struct task_struct *child, addr_t addr) { struct user *dummy = NULL; addr_t offset, tmp; if (addr < (addr_t) &dummy->regs.acrs) { /* * psw and gprs are stored on the stack */ tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr); if (addr == (addr_t) &dummy->regs.psw.mask) { /* Return a clean psw mask. */ tmp &= PSW_MASK_USER | PSW_MASK_RI; tmp |= PSW_USER_BITS; } } else if (addr < (addr_t) &dummy->regs.orig_gpr2) { /* * access registers are stored in the thread structure */ offset = addr - (addr_t) &dummy->regs.acrs; #ifdef CONFIG_64BIT /* * Very special case: old & broken 64 bit gdb reading * from acrs[15]. Result is a 64 bit value. Read the * 32 bit acrs[15] value and shift it by 32. Sick... */ if (addr == (addr_t) &dummy->regs.acrs[15]) tmp = ((unsigned long) child->thread.acrs[15]) << 32; else #endif tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset); } else if (addr == (addr_t) &dummy->regs.orig_gpr2) { /* * orig_gpr2 is stored on the kernel stack */ tmp = (addr_t) task_pt_regs(child)->orig_gpr2; } else if (addr < (addr_t) &dummy->regs.fp_regs) { /* * prevent reads of padding hole between * orig_gpr2 and fp_regs on s390. */ tmp = 0; } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) { /* * floating point regs. are stored in the thread structure */ offset = addr - (addr_t) &dummy->regs.fp_regs; tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset); if (addr == (addr_t) &dummy->regs.fp_regs.fpc) tmp <<= BITS_PER_LONG - 32; } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) { /* * Handle access to the per_info structure. */ addr -= (addr_t) &dummy->regs.per_info; tmp = __peek_user_per(child, addr); } else tmp = 0; return tmp; } static int peek_user(struct task_struct *child, addr_t addr, addr_t data) { addr_t tmp, mask; /* * Stupid gdb peeks/pokes the access registers in 64 bit with * an alignment of 4. Programmers from hell... */ mask = __ADDR_MASK; #ifdef CONFIG_64BIT if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs && addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2) mask = 3; #endif if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) return -EIO; tmp = __peek_user(child, addr); return put_user(tmp, (addr_t __user *) data); } static inline void __poke_user_per(struct task_struct *child, addr_t addr, addr_t data) { struct per_struct_kernel *dummy = NULL; /* * There are only three fields in the per_info struct that the * debugger user can write to. * 1) cr9: the debugger wants to set a new PER event mask * 2) starting_addr: the debugger wants to set a new starting * address to use with the PER event mask. * 3) ending_addr: the debugger wants to set a new ending * address to use with the PER event mask. * The user specified PER event mask and the start and end * addresses are used only if single stepping is not in effect. * Writes to any other field in per_info are ignored. */ if (addr == (addr_t) &dummy->cr9) /* PER event mask of the user specified per set. */ child->thread.per_user.control = data & (PER_EVENT_MASK | PER_CONTROL_MASK); else if (addr == (addr_t) &dummy->starting_addr) /* Starting address of the user specified per set. */ child->thread.per_user.start = data; else if (addr == (addr_t) &dummy->ending_addr) /* Ending address of the user specified per set. */ child->thread.per_user.end = data; } /* * Write a word to the user area of a process at location addr. This * operation does have an additional problem compared to peek_user. * Stores to the program status word and on the floating point * control register needs to get checked for validity. */ static int __poke_user(struct task_struct *child, addr_t addr, addr_t data) { struct user *dummy = NULL; addr_t offset; if (addr < (addr_t) &dummy->regs.acrs) { /* * psw and gprs are stored on the stack */ if (addr == (addr_t) &dummy->regs.psw.mask) { unsigned long mask = PSW_MASK_USER; mask |= is_ri_task(child) ? PSW_MASK_RI : 0; if ((data & ~mask) != PSW_USER_BITS) return -EINVAL; if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA)) return -EINVAL; } *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data; } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) { /* * access registers are stored in the thread structure */ offset = addr - (addr_t) &dummy->regs.acrs; #ifdef CONFIG_64BIT /* * Very special case: old & broken 64 bit gdb writing * to acrs[15] with a 64 bit value. Ignore the lower * half of the value and write the upper 32 bit to * acrs[15]. Sick... */ if (addr == (addr_t) &dummy->regs.acrs[15]) child->thread.acrs[15] = (unsigned int) (data >> 32); else #endif *(addr_t *)((addr_t) &child->thread.acrs + offset) = data; } else if (addr == (addr_t) &dummy->regs.orig_gpr2) { /* * orig_gpr2 is stored on the kernel stack */ task_pt_regs(child)->orig_gpr2 = data; } else if (addr < (addr_t) &dummy->regs.fp_regs) { /* * prevent writes of padding hole between * orig_gpr2 and fp_regs on s390. */ return 0; } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) { /* * floating point regs. are stored in the thread structure */ if (addr == (addr_t) &dummy->regs.fp_regs.fpc) if ((unsigned int) data != 0 || test_fp_ctl(data >> (BITS_PER_LONG - 32))) return -EINVAL; offset = addr - (addr_t) &dummy->regs.fp_regs; *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data; } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) { /* * Handle access to the per_info structure. */ addr -= (addr_t) &dummy->regs.per_info; __poke_user_per(child, addr, data); } return 0; } static int poke_user(struct task_struct *child, addr_t addr, addr_t data) { addr_t mask; /* * Stupid gdb peeks/pokes the access registers in 64 bit with * an alignment of 4. Programmers from hell indeed... */ mask = __ADDR_MASK; #ifdef CONFIG_64BIT if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs && addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2) mask = 3; #endif if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) return -EIO; return __poke_user(child, addr, data); } long arch_ptrace(struct task_struct *child, long request, unsigned long addr, unsigned long data) { ptrace_area parea; int copied, ret; switch (request) { case PTRACE_PEEKUSR: /* read the word at location addr in the USER area. */ return peek_user(child, addr, data); case PTRACE_POKEUSR: /* write the word at location addr in the USER area */ return poke_user(child, addr, data); case PTRACE_PEEKUSR_AREA: case PTRACE_POKEUSR_AREA: if (copy_from_user(&parea, (void __force __user *) addr, sizeof(parea))) return -EFAULT; addr = parea.kernel_addr; data = parea.process_addr; copied = 0; while (copied < parea.len) { if (request == PTRACE_PEEKUSR_AREA) ret = peek_user(child, addr, data); else { addr_t utmp; if (get_user(utmp, (addr_t __force __user *) data)) return -EFAULT; ret = poke_user(child, addr, utmp); } if (ret) return ret; addr += sizeof(unsigned long); data += sizeof(unsigned long); copied += sizeof(unsigned long); } return 0; case PTRACE_GET_LAST_BREAK: put_user(task_thread_info(child)->last_break, (unsigned long __user *) data); return 0; case PTRACE_ENABLE_TE: if (!MACHINE_HAS_TE) return -EIO; child->thread.per_flags &= ~PER_FLAG_NO_TE; return 0; case PTRACE_DISABLE_TE: if (!MACHINE_HAS_TE) return -EIO; child->thread.per_flags |= PER_FLAG_NO_TE; child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND; return 0; case PTRACE_TE_ABORT_RAND: if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE)) return -EIO; switch (data) { case 0UL: child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND; break; case 1UL: child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND; child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND; break; case 2UL: child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND; child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND; break; default: return -EINVAL; } return 0; default: /* Removing high order bit from addr (only for 31 bit). */ addr &= PSW_ADDR_INSN; return ptrace_request(child, request, addr, data); } } #ifdef CONFIG_COMPAT /* * Now the fun part starts... a 31 bit program running in the * 31 bit emulation tracing another program. PTRACE_PEEKTEXT, * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy * to handle, the difference to the 64 bit versions of the requests * is that the access is done in multiples of 4 byte instead of * 8 bytes (sizeof(unsigned long) on 31/64 bit). * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA, * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program * is a 31 bit program too, the content of struct user can be * emulated. A 31 bit program peeking into the struct user of * a 64 bit program is a no-no. */ /* * Same as peek_user_per but for a 31 bit program. */ static inline __u32 __peek_user_per_compat(struct task_struct *child, addr_t addr) { struct compat_per_struct_kernel *dummy32 = NULL; if (addr == (addr_t) &dummy32->cr9) /* Control bits of the active per set. */ return (__u32) test_thread_flag(TIF_SINGLE_STEP) ? PER_EVENT_IFETCH : child->thread.per_user.control; else if (addr == (addr_t) &dummy32->cr10) /* Start address of the active per set. */ return (__u32) test_thread_flag(TIF_SINGLE_STEP) ? 0 : child->thread.per_user.start; else if (addr == (addr_t) &dummy32->cr11) /* End address of the active per set. */ return test_thread_flag(TIF_SINGLE_STEP) ? PSW32_ADDR_INSN : child->thread.per_user.end; else if (addr == (addr_t) &dummy32->bits) /* Single-step bit. */ return (__u32) test_thread_flag(TIF_SINGLE_STEP) ? 0x80000000 : 0; else if (addr == (addr_t) &dummy32->starting_addr) /* Start address of the user specified per set. */ return (__u32) child->thread.per_user.start; else if (addr == (addr_t) &dummy32->ending_addr) /* End address of the user specified per set. */ return (__u32) child->thread.per_user.end; else if (addr == (addr_t) &dummy32->perc_atmid) /* PER code, ATMID and AI of the last PER trap */ return (__u32) child->thread.per_event.cause << 16; else if (addr == (addr_t) &dummy32->address) /* Address of the last PER trap */ return (__u32) child->thread.per_event.address; else if (addr == (addr_t) &dummy32->access_id) /* Access id of the last PER trap */ return (__u32) child->thread.per_event.paid << 24; return 0; } /* * Same as peek_user but for a 31 bit program. */ static u32 __peek_user_compat(struct task_struct *child, addr_t addr) { struct compat_user *dummy32 = NULL; addr_t offset; __u32 tmp; if (addr < (addr_t) &dummy32->regs.acrs) { struct pt_regs *regs = task_pt_regs(child); /* * psw and gprs are stored on the stack */ if (addr == (addr_t) &dummy32->regs.psw.mask) { /* Fake a 31 bit psw mask. */ tmp = (__u32)(regs->psw.mask >> 32); tmp &= PSW32_MASK_USER | PSW32_MASK_RI; tmp |= PSW32_USER_BITS; } else if (addr == (addr_t) &dummy32->regs.psw.addr) { /* Fake a 31 bit psw address. */ tmp = (__u32) regs->psw.addr | (__u32)(regs->psw.mask & PSW_MASK_BA); } else { /* gpr 0-15 */ tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4); } } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) { /* * access registers are stored in the thread structure */ offset = addr - (addr_t) &dummy32->regs.acrs; tmp = *(__u32*)((addr_t) &child->thread.acrs + offset); } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) { /* * orig_gpr2 is stored on the kernel stack */ tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4); } else if (addr < (addr_t) &dummy32->regs.fp_regs) { /* * prevent reads of padding hole between * orig_gpr2 and fp_regs on s390. */ tmp = 0; } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) { /* * floating point regs. are stored in the thread structure */ offset = addr - (addr_t) &dummy32->regs.fp_regs; tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset); } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) { /* * Handle access to the per_info structure. */ addr -= (addr_t) &dummy32->regs.per_info; tmp = __peek_user_per_compat(child, addr); } else tmp = 0; return tmp; } static int peek_user_compat(struct task_struct *child, addr_t addr, addr_t data) { __u32 tmp; if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3) return -EIO; tmp = __peek_user_compat(child, addr); return put_user(tmp, (__u32 __user *) data); } /* * Same as poke_user_per but for a 31 bit program. */ static inline void __poke_user_per_compat(struct task_struct *child, addr_t addr, __u32 data) { struct compat_per_struct_kernel *dummy32 = NULL; if (addr == (addr_t) &dummy32->cr9) /* PER event mask of the user specified per set. */ child->thread.per_user.control = data & (PER_EVENT_MASK | PER_CONTROL_MASK); else if (addr == (addr_t) &dummy32->starting_addr) /* Starting address of the user specified per set. */ child->thread.per_user.start = data; else if (addr == (addr_t) &dummy32->ending_addr) /* Ending address of the user specified per set. */ child->thread.per_user.end = data; } /* * Same as poke_user but for a 31 bit program. */ static int __poke_user_compat(struct task_struct *child, addr_t addr, addr_t data) { struct compat_user *dummy32 = NULL; __u32 tmp = (__u32) data; addr_t offset; if (addr < (addr_t) &dummy32->regs.acrs) { struct pt_regs *regs = task_pt_regs(child); /* * psw, gprs, acrs and orig_gpr2 are stored on the stack */ if (addr == (addr_t) &dummy32->regs.psw.mask) { __u32 mask = PSW32_MASK_USER; mask |= is_ri_task(child) ? PSW32_MASK_RI : 0; /* Build a 64 bit psw mask from 31 bit mask. */ if ((tmp & ~mask) != PSW32_USER_BITS) /* Invalid psw mask. */ return -EINVAL; regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) | (regs->psw.mask & PSW_MASK_BA) | (__u64)(tmp & mask) << 32; } else if (addr == (addr_t) &dummy32->regs.psw.addr) { /* Build a 64 bit psw address from 31 bit address. */ regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN; /* Transfer 31 bit amode bit to psw mask. */ regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) | (__u64)(tmp & PSW32_ADDR_AMODE); } else { /* gpr 0-15 */ *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp; } } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) { /* * access registers are stored in the thread structure */ offset = addr - (addr_t) &dummy32->regs.acrs; *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp; } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) { /* * orig_gpr2 is stored on the kernel stack */ *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp; } else if (addr < (addr_t) &dummy32->regs.fp_regs) { /* * prevent writess of padding hole between * orig_gpr2 and fp_regs on s390. */ return 0; } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) { /* * floating point regs. are stored in the thread structure */ if (addr == (addr_t) &dummy32->regs.fp_regs.fpc && test_fp_ctl(tmp)) return -EINVAL; offset = addr - (addr_t) &dummy32->regs.fp_regs; *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp; } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) { /* * Handle access to the per_info structure. */ addr -= (addr_t) &dummy32->regs.per_info; __poke_user_per_compat(child, addr, data); } return 0; } static int poke_user_compat(struct task_struct *child, addr_t addr, addr_t data) { if (!is_compat_task() || (addr & 3) || addr > sizeof(struct compat_user) - 3) return -EIO; return __poke_user_compat(child, addr, data); } long compat_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t caddr, compat_ulong_t cdata) { unsigned long addr = caddr; unsigned long data = cdata; compat_ptrace_area parea; int copied, ret; switch (request) { case PTRACE_PEEKUSR: /* read the word at location addr in the USER area. */ return peek_user_compat(child, addr, data); case PTRACE_POKEUSR: /* write the word at location addr in the USER area */ return poke_user_compat(child, addr, data); case PTRACE_PEEKUSR_AREA: case PTRACE_POKEUSR_AREA: if (copy_from_user(&parea, (void __force __user *) addr, sizeof(parea))) return -EFAULT; addr = parea.kernel_addr; data = parea.process_addr; copied = 0; while (copied < parea.len) { if (request == PTRACE_PEEKUSR_AREA) ret = peek_user_compat(child, addr, data); else { __u32 utmp; if (get_user(utmp, (__u32 __force __user *) data)) return -EFAULT; ret = poke_user_compat(child, addr, utmp); } if (ret) return ret; addr += sizeof(unsigned int); data += sizeof(unsigned int); copied += sizeof(unsigned int); } return 0; case PTRACE_GET_LAST_BREAK: put_user(task_thread_info(child)->last_break, (unsigned int __user *) data); return 0; } return compat_ptrace_request(child, request, addr, data); } #endif asmlinkage long do_syscall_trace_enter(struct pt_regs *regs) { long ret = 0; /* Do the secure computing check first. */ if (secure_computing(regs->gprs[2])) { /* seccomp failures shouldn't expose any additional code. */ ret = -1; goto out; } /* * The sysc_tracesys code in entry.S stored the system * call number to gprs[2]. */ if (test_thread_flag(TIF_SYSCALL_TRACE) && (tracehook_report_syscall_entry(regs) || regs->gprs[2] >= NR_syscalls)) { /* * Tracing decided this syscall should not happen or the * debugger stored an invalid system call number. Skip * the system call and the system call restart handling. */ clear_thread_flag(TIF_SYSCALL); ret = -1; } if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) trace_sys_enter(regs, regs->gprs[2]); audit_syscall_entry(is_compat_task() ? AUDIT_ARCH_S390 : AUDIT_ARCH_S390X, regs->gprs[2], regs->orig_gpr2, regs->gprs[3], regs->gprs[4], regs->gprs[5]); out: return ret ?: regs->gprs[2]; } asmlinkage void do_syscall_trace_exit(struct pt_regs *regs) { audit_syscall_exit(regs); if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) trace_sys_exit(regs, regs->gprs[2]); if (test_thread_flag(TIF_SYSCALL_TRACE)) tracehook_report_syscall_exit(regs, 0); } /* * user_regset definitions. */ static int s390_regs_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { if (target == current) save_access_regs(target->thread.acrs); if (kbuf) { unsigned long *k = kbuf; while (count > 0) { *k++ = __peek_user(target, pos); count -= sizeof(*k); pos += sizeof(*k); } } else { unsigned long __user *u = ubuf; while (count > 0) { if (__put_user(__peek_user(target, pos), u++)) return -EFAULT; count -= sizeof(*u); pos += sizeof(*u); } } return 0; } static int s390_regs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int rc = 0; if (target == current) save_access_regs(target->thread.acrs); if (kbuf) { const unsigned long *k = kbuf; while (count > 0 && !rc) { rc = __poke_user(target, pos, *k++); count -= sizeof(*k); pos += sizeof(*k); } } else { const unsigned long __user *u = ubuf; while (count > 0 && !rc) { unsigned long word; rc = __get_user(word, u++); if (rc) break; rc = __poke_user(target, pos, word); count -= sizeof(*u); pos += sizeof(*u); } } if (rc == 0 && target == current) restore_access_regs(target->thread.acrs); return rc; } static int s390_fpregs_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { if (target == current) { save_fp_ctl(&target->thread.fp_regs.fpc); save_fp_regs(target->thread.fp_regs.fprs); } return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &target->thread.fp_regs, 0, -1); } static int s390_fpregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int rc = 0; if (target == current) { save_fp_ctl(&target->thread.fp_regs.fpc); save_fp_regs(target->thread.fp_regs.fprs); } /* If setting FPC, must validate it first. */ if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) { u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 }; rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc, 0, offsetof(s390_fp_regs, fprs)); if (rc) return rc; if (ufpc[1] != 0 || test_fp_ctl(ufpc[0])) return -EINVAL; target->thread.fp_regs.fpc = ufpc[0]; } if (rc == 0 && count > 0) rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, target->thread.fp_regs.fprs, offsetof(s390_fp_regs, fprs), -1); if (rc == 0 && target == current) { restore_fp_ctl(&target->thread.fp_regs.fpc); restore_fp_regs(target->thread.fp_regs.fprs); } return rc; } #ifdef CONFIG_64BIT static int s390_last_break_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { if (count > 0) { if (kbuf) { unsigned long *k = kbuf; *k = task_thread_info(target)->last_break; } else { unsigned long __user *u = ubuf; if (__put_user(task_thread_info(target)->last_break, u)) return -EFAULT; } } return 0; } static int s390_last_break_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { return 0; } static int s390_tdb_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { struct pt_regs *regs = task_pt_regs(target); unsigned char *data; if (!(regs->int_code & 0x200)) return -ENODATA; data = target->thread.trap_tdb; return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256); } static int s390_tdb_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { return 0; } #endif static int s390_system_call_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { unsigned int *data = &task_thread_info(target)->system_call; return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, sizeof(unsigned int)); } static int s390_system_call_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { unsigned int *data = &task_thread_info(target)->system_call; return user_regset_copyin(&pos, &count, &kbuf, &ubuf, data, 0, sizeof(unsigned int)); } static const struct user_regset s390_regsets[] = { [REGSET_GENERAL] = { .core_note_type = NT_PRSTATUS, .n = sizeof(s390_regs) / sizeof(long), .size = sizeof(long), .align = sizeof(long), .get = s390_regs_get, .set = s390_regs_set, }, [REGSET_FP] = { .core_note_type = NT_PRFPREG, .n = sizeof(s390_fp_regs) / sizeof(long), .size = sizeof(long), .align = sizeof(long), .get = s390_fpregs_get, .set = s390_fpregs_set, }, #ifdef CONFIG_64BIT [REGSET_LAST_BREAK] = { .core_note_type = NT_S390_LAST_BREAK, .n = 1, .size = sizeof(long), .align = sizeof(long), .get = s390_last_break_get, .set = s390_last_break_set, }, [REGSET_TDB] = { .core_note_type = NT_S390_TDB, .n = 1, .size = 256, .align = 1, .get = s390_tdb_get, .set = s390_tdb_set, }, #endif [REGSET_SYSTEM_CALL] = { .core_note_type = NT_S390_SYSTEM_CALL, .n = 1, .size = sizeof(unsigned int), .align = sizeof(unsigned int), .get = s390_system_call_get, .set = s390_system_call_set, }, }; static const struct user_regset_view user_s390_view = { .name = UTS_MACHINE, .e_machine = EM_S390, .regsets = s390_regsets, .n = ARRAY_SIZE(s390_regsets) }; #ifdef CONFIG_COMPAT static int s390_compat_regs_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { if (target == current) save_access_regs(target->thread.acrs); if (kbuf) { compat_ulong_t *k = kbuf; while (count > 0) { *k++ = __peek_user_compat(target, pos); count -= sizeof(*k); pos += sizeof(*k); } } else { compat_ulong_t __user *u = ubuf; while (count > 0) { if (__put_user(__peek_user_compat(target, pos), u++)) return -EFAULT; count -= sizeof(*u); pos += sizeof(*u); } } return 0; } static int s390_compat_regs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int rc = 0; if (target == current) save_access_regs(target->thread.acrs); if (kbuf) { const compat_ulong_t *k = kbuf; while (count > 0 && !rc) { rc = __poke_user_compat(target, pos, *k++); count -= sizeof(*k); pos += sizeof(*k); } } else { const compat_ulong_t __user *u = ubuf; while (count > 0 && !rc) { compat_ulong_t word; rc = __get_user(word, u++); if (rc) break; rc = __poke_user_compat(target, pos, word); count -= sizeof(*u); pos += sizeof(*u); } } if (rc == 0 && target == current) restore_access_regs(target->thread.acrs); return rc; } static int s390_compat_regs_high_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { compat_ulong_t *gprs_high; gprs_high = (compat_ulong_t *) &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)]; if (kbuf) { compat_ulong_t *k = kbuf; while (count > 0) { *k++ = *gprs_high; gprs_high += 2; count -= sizeof(*k); } } else { compat_ulong_t __user *u = ubuf; while (count > 0) { if (__put_user(*gprs_high, u++)) return -EFAULT; gprs_high += 2; count -= sizeof(*u); } } return 0; } static int s390_compat_regs_high_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { compat_ulong_t *gprs_high; int rc = 0; gprs_high = (compat_ulong_t *) &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)]; if (kbuf) { const compat_ulong_t *k = kbuf; while (count > 0) { *gprs_high = *k++; *gprs_high += 2; count -= sizeof(*k); } } else { const compat_ulong_t __user *u = ubuf; while (count > 0 && !rc) { unsigned long word; rc = __get_user(word, u++); if (rc) break; *gprs_high = word; *gprs_high += 2; count -= sizeof(*u); } } return rc; } static int s390_compat_last_break_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { compat_ulong_t last_break; if (count > 0) { last_break = task_thread_info(target)->last_break; if (kbuf) { unsigned long *k = kbuf; *k = last_break; } else { unsigned long __user *u = ubuf; if (__put_user(last_break, u)) return -EFAULT; } } return 0; } static int s390_compat_last_break_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { return 0; } static const struct user_regset s390_compat_regsets[] = { [REGSET_GENERAL] = { .core_note_type = NT_PRSTATUS, .n = sizeof(s390_compat_regs) / sizeof(compat_long_t), .size = sizeof(compat_long_t), .align = sizeof(compat_long_t), .get = s390_compat_regs_get, .set = s390_compat_regs_set, }, [REGSET_FP] = { .core_note_type = NT_PRFPREG, .n = sizeof(s390_fp_regs) / sizeof(compat_long_t), .size = sizeof(compat_long_t), .align = sizeof(compat_long_t), .get = s390_fpregs_get, .set = s390_fpregs_set, }, [REGSET_LAST_BREAK] = { .core_note_type = NT_S390_LAST_BREAK, .n = 1, .size = sizeof(long), .align = sizeof(long), .get = s390_compat_last_break_get, .set = s390_compat_last_break_set, }, [REGSET_TDB] = { .core_note_type = NT_S390_TDB, .n = 1, .size = 256, .align = 1, .get = s390_tdb_get, .set = s390_tdb_set, }, [REGSET_SYSTEM_CALL] = { .core_note_type = NT_S390_SYSTEM_CALL, .n = 1, .size = sizeof(compat_uint_t), .align = sizeof(compat_uint_t), .get = s390_system_call_get, .set = s390_system_call_set, }, [REGSET_GENERAL_EXTENDED] = { .core_note_type = NT_S390_HIGH_GPRS, .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t), .size = sizeof(compat_long_t), .align = sizeof(compat_long_t), .get = s390_compat_regs_high_get, .set = s390_compat_regs_high_set, }, }; static const struct user_regset_view user_s390_compat_view = { .name = "s390", .e_machine = EM_S390, .regsets = s390_compat_regsets, .n = ARRAY_SIZE(s390_compat_regsets) }; #endif const struct user_regset_view *task_user_regset_view(struct task_struct *task) { #ifdef CONFIG_COMPAT if (test_tsk_thread_flag(task, TIF_31BIT)) return &user_s390_compat_view; #endif return &user_s390_view; } static const char *gpr_names[NUM_GPRS] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", }; unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset) { if (offset >= NUM_GPRS) return 0; return regs->gprs[offset]; } int regs_query_register_offset(const char *name) { unsigned long offset; if (!name || *name != 'r') return -EINVAL; if (kstrtoul(name + 1, 10, &offset)) return -EINVAL; if (offset >= NUM_GPRS) return -EINVAL; return offset; } const char *regs_query_register_name(unsigned int offset) { if (offset >= NUM_GPRS) return NULL; return gpr_names[offset]; } static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) { unsigned long ksp = kernel_stack_pointer(regs); return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1)); } /** * regs_get_kernel_stack_nth() - get Nth entry of the stack * @regs:pt_regs which contains kernel stack pointer. * @n:stack entry number. * * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which * is specifined by @regs. If the @n th entry is NOT in the kernel stack, * this returns 0. */ unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) { unsigned long addr; addr = kernel_stack_pointer(regs) + n * sizeof(long); if (!regs_within_kernel_stack(regs, addr)) return 0; return *(unsigned long *)addr; }