/* * Copyright IBM Corp. 2012 * * Author(s): * Jan Glauber * * The System z PCI code is a rewrite from a prototype by * the following people (Kudoz!): * Alexander Schmidt * Christoph Raisch * Hannes Hering * Hoang-Nam Nguyen * Jan-Bernd Themann * Stefan Roscher * Thomas Klein */ #define COMPONENT "zPCI" #define pr_fmt(fmt) COMPONENT ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG /* enable pr_debug */ #define SIC_IRQ_MODE_ALL 0 #define SIC_IRQ_MODE_SINGLE 1 #define ZPCI_NR_DMA_SPACES 1 #define ZPCI_MSI_VEC_BITS 6 #define ZPCI_NR_DEVICES CONFIG_PCI_NR_FUNCTIONS /* list of all detected zpci devices */ LIST_HEAD(zpci_list); EXPORT_SYMBOL_GPL(zpci_list); DEFINE_MUTEX(zpci_list_lock); EXPORT_SYMBOL_GPL(zpci_list_lock); struct pci_hp_callback_ops hotplug_ops; EXPORT_SYMBOL_GPL(hotplug_ops); static DECLARE_BITMAP(zpci_domain, ZPCI_NR_DEVICES); static DEFINE_SPINLOCK(zpci_domain_lock); struct callback { irq_handler_t handler; void *data; }; struct zdev_irq_map { unsigned long aibv; /* AI bit vector */ int msi_vecs; /* consecutive MSI-vectors used */ int __unused; struct callback cb[ZPCI_NR_MSI_VECS]; /* callback handler array */ spinlock_t lock; /* protect callbacks against de-reg */ }; struct intr_bucket { /* amap of adapters, one bit per dev, corresponds to one irq nr */ unsigned long *alloc; /* AI summary bit, global page for all devices */ unsigned long *aisb; /* pointer to aibv and callback data in zdev */ struct zdev_irq_map *imap[ZPCI_NR_DEVICES]; /* protects the whole bucket struct */ spinlock_t lock; }; static struct intr_bucket *bucket; /* Adapter local summary indicator */ static u8 *zpci_irq_si; static atomic_t irq_retries = ATOMIC_INIT(0); /* I/O Map */ static DEFINE_SPINLOCK(zpci_iomap_lock); static DECLARE_BITMAP(zpci_iomap, ZPCI_IOMAP_MAX_ENTRIES); struct zpci_iomap_entry *zpci_iomap_start; EXPORT_SYMBOL_GPL(zpci_iomap_start); /* highest irq summary bit */ static int __read_mostly aisb_max; static struct kmem_cache *zdev_irq_cache; static inline int irq_to_msi_nr(unsigned int irq) { return irq & ZPCI_MSI_MASK; } static inline int irq_to_dev_nr(unsigned int irq) { return irq >> ZPCI_MSI_VEC_BITS; } static inline struct zdev_irq_map *get_imap(unsigned int irq) { return bucket->imap[irq_to_dev_nr(irq)]; } struct zpci_dev *get_zdev(struct pci_dev *pdev) { return (struct zpci_dev *) pdev->sysdata; } struct zpci_dev *get_zdev_by_fid(u32 fid) { struct zpci_dev *tmp, *zdev = NULL; mutex_lock(&zpci_list_lock); list_for_each_entry(tmp, &zpci_list, entry) { if (tmp->fid == fid) { zdev = tmp; break; } } mutex_unlock(&zpci_list_lock); return zdev; } bool zpci_fid_present(u32 fid) { return (get_zdev_by_fid(fid) != NULL) ? true : false; } static struct zpci_dev *get_zdev_by_bus(struct pci_bus *bus) { return (bus && bus->sysdata) ? (struct zpci_dev *) bus->sysdata : NULL; } int pci_domain_nr(struct pci_bus *bus) { return ((struct zpci_dev *) bus->sysdata)->domain; } EXPORT_SYMBOL_GPL(pci_domain_nr); int pci_proc_domain(struct pci_bus *bus) { return pci_domain_nr(bus); } EXPORT_SYMBOL_GPL(pci_proc_domain); /* Store PCI function information block */ static int zpci_store_fib(struct zpci_dev *zdev, u8 *fc) { struct zpci_fib *fib; u8 status, cc; fib = (void *) get_zeroed_page(GFP_KERNEL); if (!fib) return -ENOMEM; do { cc = __stpcifc(zdev->fh, 0, fib, &status); if (cc == 2) { msleep(ZPCI_INSN_BUSY_DELAY); memset(fib, 0, PAGE_SIZE); } } while (cc == 2); if (cc) pr_err_once("%s: cc: %u status: %u\n", __func__, cc, status); /* Return PCI function controls */ *fc = fib->fc; free_page((unsigned long) fib); return (cc) ? -EIO : 0; } /* Modify PCI: Register adapter interruptions */ static int zpci_register_airq(struct zpci_dev *zdev, unsigned int aisb, u64 aibv) { u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT); struct zpci_fib *fib; int rc; fib = (void *) get_zeroed_page(GFP_KERNEL); if (!fib) return -ENOMEM; fib->isc = PCI_ISC; fib->noi = zdev->irq_map->msi_vecs; fib->sum = 1; /* enable summary notifications */ fib->aibv = aibv; fib->aibvo = 0; /* every function has its own page */ fib->aisb = (u64) bucket->aisb + aisb / 8; fib->aisbo = aisb & ZPCI_MSI_MASK; rc = mpcifc_instr(req, fib); pr_debug("%s mpcifc returned noi: %d\n", __func__, fib->noi); free_page((unsigned long) fib); return rc; } struct mod_pci_args { u64 base; u64 limit; u64 iota; }; static int mod_pci(struct zpci_dev *zdev, int fn, u8 dmaas, struct mod_pci_args *args) { u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, fn); struct zpci_fib *fib; int rc; /* The FIB must be available even if it's not used */ fib = (void *) get_zeroed_page(GFP_KERNEL); if (!fib) return -ENOMEM; fib->pba = args->base; fib->pal = args->limit; fib->iota = args->iota; rc = mpcifc_instr(req, fib); free_page((unsigned long) fib); return rc; } /* Modify PCI: Register I/O address translation parameters */ int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, u64 base, u64 limit, u64 iota) { struct mod_pci_args args = { base, limit, iota }; WARN_ON_ONCE(iota & 0x3fff); args.iota |= ZPCI_IOTA_RTTO_FLAG; return mod_pci(zdev, ZPCI_MOD_FC_REG_IOAT, dmaas, &args); } /* Modify PCI: Unregister I/O address translation parameters */ int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) { struct mod_pci_args args = { 0, 0, 0 }; return mod_pci(zdev, ZPCI_MOD_FC_DEREG_IOAT, dmaas, &args); } /* Modify PCI: Unregister adapter interruptions */ static int zpci_unregister_airq(struct zpci_dev *zdev) { struct mod_pci_args args = { 0, 0, 0 }; return mod_pci(zdev, ZPCI_MOD_FC_DEREG_INT, 0, &args); } #define ZPCI_PCIAS_CFGSPC 15 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) { u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); u64 data; int rc; rc = pcilg_instr(&data, req, offset); data = data << ((8 - len) * 8); data = le64_to_cpu(data); if (!rc) *val = (u32) data; else *val = 0xffffffff; return rc; } static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) { u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); u64 data = val; int rc; data = cpu_to_le64(data); data = data >> ((8 - len) * 8); rc = pcistg_instr(data, req, offset); return rc; } void synchronize_irq(unsigned int irq) { /* * Not needed, the handler is protected by a lock and IRQs that occur * after the handler is deleted are just NOPs. */ } EXPORT_SYMBOL_GPL(synchronize_irq); void enable_irq(unsigned int irq) { struct msi_desc *msi = irq_get_msi_desc(irq); zpci_msi_set_mask_bits(msi, 1, 0); } EXPORT_SYMBOL_GPL(enable_irq); void disable_irq(unsigned int irq) { struct msi_desc *msi = irq_get_msi_desc(irq); zpci_msi_set_mask_bits(msi, 1, 1); } EXPORT_SYMBOL_GPL(disable_irq); void disable_irq_nosync(unsigned int irq) { disable_irq(irq); } EXPORT_SYMBOL_GPL(disable_irq_nosync); unsigned long probe_irq_on(void) { return 0; } EXPORT_SYMBOL_GPL(probe_irq_on); int probe_irq_off(unsigned long val) { return 0; } EXPORT_SYMBOL_GPL(probe_irq_off); unsigned int probe_irq_mask(unsigned long val) { return val; } EXPORT_SYMBOL_GPL(probe_irq_mask); void __devinit pcibios_fixup_bus(struct pci_bus *bus) { } resource_size_t pcibios_align_resource(void *data, const struct resource *res, resource_size_t size, resource_size_t align) { return 0; } /* Create a virtual mapping cookie for a PCI BAR */ void __iomem *pci_iomap(struct pci_dev *pdev, int bar, unsigned long max) { struct zpci_dev *zdev = get_zdev(pdev); u64 addr; int idx; if ((bar & 7) != bar) return NULL; idx = zdev->bars[bar].map_idx; spin_lock(&zpci_iomap_lock); zpci_iomap_start[idx].fh = zdev->fh; zpci_iomap_start[idx].bar = bar; spin_unlock(&zpci_iomap_lock); addr = ZPCI_IOMAP_ADDR_BASE | ((u64) idx << 48); return (void __iomem *) addr; } EXPORT_SYMBOL_GPL(pci_iomap); void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) { unsigned int idx; idx = (((__force u64) addr) & ~ZPCI_IOMAP_ADDR_BASE) >> 48; spin_lock(&zpci_iomap_lock); zpci_iomap_start[idx].fh = 0; zpci_iomap_start[idx].bar = 0; spin_unlock(&zpci_iomap_lock); } EXPORT_SYMBOL_GPL(pci_iounmap); static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct zpci_dev *zdev = get_zdev_by_bus(bus); if (!zdev || devfn != ZPCI_DEVFN) return 0; return zpci_cfg_load(zdev, where, val, size); } static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct zpci_dev *zdev = get_zdev_by_bus(bus); if (!zdev || devfn != ZPCI_DEVFN) return 0; return zpci_cfg_store(zdev, where, val, size); } static struct pci_ops pci_root_ops = { .read = pci_read, .write = pci_write, }; /* store the last handled bit to implement fair scheduling of devices */ static DEFINE_PER_CPU(unsigned long, next_sbit); static void zpci_irq_handler(void *dont, void *need) { unsigned long sbit, mbit, last = 0, start = __get_cpu_var(next_sbit); int rescan = 0, max = aisb_max; struct zdev_irq_map *imap; kstat_cpu(smp_processor_id()).irqs[IOINT_PCI]++; sbit = start; scan: /* find summary_bit */ for_each_set_bit_left_cont(sbit, bucket->aisb, max) { clear_bit(63 - (sbit & 63), bucket->aisb + (sbit >> 6)); last = sbit; /* find vector bit */ imap = bucket->imap[sbit]; for_each_set_bit_left(mbit, &imap->aibv, imap->msi_vecs) { kstat_cpu(smp_processor_id()).irqs[IOINT_MSI]++; clear_bit(63 - mbit, &imap->aibv); spin_lock(&imap->lock); if (imap->cb[mbit].handler) imap->cb[mbit].handler(mbit, imap->cb[mbit].data); spin_unlock(&imap->lock); } } if (rescan) goto out; /* scan the skipped bits */ if (start > 0) { sbit = 0; max = start; start = 0; goto scan; } /* enable interrupts again */ sic_instr(SIC_IRQ_MODE_SINGLE, NULL, PCI_ISC); /* check again to not lose initiative */ rmb(); max = aisb_max; sbit = find_first_bit_left(bucket->aisb, max); if (sbit != max) { atomic_inc(&irq_retries); rescan++; goto scan; } out: /* store next device bit to scan */ __get_cpu_var(next_sbit) = (++last >= aisb_max) ? 0 : last; } /* msi_vecs - number of requested interrupts, 0 place function to error state */ static int zpci_setup_msi(struct pci_dev *pdev, int msi_vecs) { struct zpci_dev *zdev = get_zdev(pdev); unsigned int aisb, msi_nr; struct msi_desc *msi; int rc; /* store the number of used MSI vectors */ zdev->irq_map->msi_vecs = min(msi_vecs, ZPCI_NR_MSI_VECS); spin_lock(&bucket->lock); aisb = find_first_zero_bit(bucket->alloc, PAGE_SIZE); /* alloc map exhausted? */ if (aisb == PAGE_SIZE) { spin_unlock(&bucket->lock); return -EIO; } set_bit(aisb, bucket->alloc); spin_unlock(&bucket->lock); zdev->aisb = aisb; if (aisb + 1 > aisb_max) aisb_max = aisb + 1; /* wire up IRQ shortcut pointer */ bucket->imap[zdev->aisb] = zdev->irq_map; pr_debug("%s: imap[%u] linked to %p\n", __func__, zdev->aisb, zdev->irq_map); /* TODO: irq number 0 wont be found if we return less than requested MSIs. * ignore it for now and fix in common code. */ msi_nr = aisb << ZPCI_MSI_VEC_BITS; list_for_each_entry(msi, &pdev->msi_list, list) { rc = zpci_setup_msi_irq(zdev, msi, msi_nr, aisb << ZPCI_MSI_VEC_BITS); if (rc) return rc; msi_nr++; } rc = zpci_register_airq(zdev, aisb, (u64) &zdev->irq_map->aibv); if (rc) { clear_bit(aisb, bucket->alloc); dev_err(&pdev->dev, "register MSI failed with: %d\n", rc); return rc; } return (zdev->irq_map->msi_vecs == msi_vecs) ? 0 : zdev->irq_map->msi_vecs; } static void zpci_teardown_msi(struct pci_dev *pdev) { struct zpci_dev *zdev = get_zdev(pdev); struct msi_desc *msi; int aisb, rc; rc = zpci_unregister_airq(zdev); if (rc) { dev_err(&pdev->dev, "deregister MSI failed with: %d\n", rc); return; } msi = list_first_entry(&pdev->msi_list, struct msi_desc, list); aisb = irq_to_dev_nr(msi->irq); list_for_each_entry(msi, &pdev->msi_list, list) zpci_teardown_msi_irq(zdev, msi); clear_bit(aisb, bucket->alloc); if (aisb + 1 == aisb_max) aisb_max--; } int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type) { pr_debug("%s: requesting %d MSI-X interrupts...", __func__, nvec); if (type != PCI_CAP_ID_MSIX && type != PCI_CAP_ID_MSI) return -EINVAL; return zpci_setup_msi(pdev, nvec); } void arch_teardown_msi_irqs(struct pci_dev *pdev) { pr_info("%s: on pdev: %p\n", __func__, pdev); zpci_teardown_msi(pdev); } static void zpci_map_resources(struct zpci_dev *zdev) { struct pci_dev *pdev = zdev->pdev; resource_size_t len; int i; for (i = 0; i < PCI_BAR_COUNT; i++) { len = pci_resource_len(pdev, i); if (!len) continue; pdev->resource[i].start = (resource_size_t) pci_iomap(pdev, i, 0); pdev->resource[i].end = pdev->resource[i].start + len - 1; pr_debug("BAR%i: -> start: %Lx end: %Lx\n", i, pdev->resource[i].start, pdev->resource[i].end); } }; static void zpci_unmap_resources(struct pci_dev *pdev) { resource_size_t len; int i; for (i = 0; i < PCI_BAR_COUNT; i++) { len = pci_resource_len(pdev, i); if (!len) continue; pci_iounmap(pdev, (void *) pdev->resource[i].start); } }; struct zpci_dev *zpci_alloc_device(void) { struct zpci_dev *zdev; /* Alloc memory for our private pci device data */ zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); if (!zdev) return ERR_PTR(-ENOMEM); /* Alloc aibv & callback space */ zdev->irq_map = kmem_cache_alloc(zdev_irq_cache, GFP_KERNEL); if (!zdev->irq_map) goto error; memset(zdev->irq_map, 0, sizeof(*zdev->irq_map)); WARN_ON((u64) zdev->irq_map & 0xff); return zdev; error: kfree(zdev); return ERR_PTR(-ENOMEM); } void zpci_free_device(struct zpci_dev *zdev) { kmem_cache_free(zdev_irq_cache, zdev->irq_map); kfree(zdev); } /* Called on removal of pci_dev, leaves zpci and bus device */ static void zpci_remove_device(struct pci_dev *pdev) { struct zpci_dev *zdev = get_zdev(pdev); dev_info(&pdev->dev, "Removing device %u\n", zdev->domain); zdev->state = ZPCI_FN_STATE_CONFIGURED; zpci_dma_exit_device(zdev); zpci_sysfs_remove_device(&pdev->dev); zpci_unmap_resources(pdev); list_del(&zdev->entry); /* can be called from init */ zdev->pdev = NULL; } static void zpci_scan_devices(void) { struct zpci_dev *zdev; mutex_lock(&zpci_list_lock); list_for_each_entry(zdev, &zpci_list, entry) if (zdev->state == ZPCI_FN_STATE_CONFIGURED) zpci_scan_device(zdev); mutex_unlock(&zpci_list_lock); } /* * Too late for any s390 specific setup, since interrupts must be set up * already which requires DMA setup too and the pci scan will access the * config space, which only works if the function handle is enabled. */ int pcibios_enable_device(struct pci_dev *pdev, int mask) { struct resource *res; u16 cmd; int i; pci_read_config_word(pdev, PCI_COMMAND, &cmd); for (i = 0; i < PCI_BAR_COUNT; i++) { res = &pdev->resource[i]; if (res->flags & IORESOURCE_IO) return -EINVAL; if (res->flags & IORESOURCE_MEM) cmd |= PCI_COMMAND_MEMORY; } pci_write_config_word(pdev, PCI_COMMAND, cmd); return 0; } void pcibios_disable_device(struct pci_dev *pdev) { zpci_remove_device(pdev); pdev->sysdata = NULL; } int pcibios_add_platform_entries(struct pci_dev *pdev) { return zpci_sysfs_add_device(&pdev->dev); } int zpci_request_irq(unsigned int irq, irq_handler_t handler, void *data) { int msi_nr = irq_to_msi_nr(irq); struct zdev_irq_map *imap; struct msi_desc *msi; msi = irq_get_msi_desc(irq); if (!msi) return -EIO; imap = get_imap(irq); spin_lock_init(&imap->lock); pr_debug("%s: register handler for IRQ:MSI %d:%d\n", __func__, irq >> 6, msi_nr); imap->cb[msi_nr].handler = handler; imap->cb[msi_nr].data = data; /* * The generic MSI code returns with the interrupt disabled on the * card, using the MSI mask bits. Firmware doesn't appear to unmask * at that level, so we do it here by hand. */ zpci_msi_set_mask_bits(msi, 1, 0); return 0; } void zpci_free_irq(unsigned int irq) { struct zdev_irq_map *imap = get_imap(irq); int msi_nr = irq_to_msi_nr(irq); unsigned long flags; pr_debug("%s: for irq: %d\n", __func__, irq); spin_lock_irqsave(&imap->lock, flags); imap->cb[msi_nr].handler = NULL; imap->cb[msi_nr].data = NULL; spin_unlock_irqrestore(&imap->lock, flags); } int request_irq(unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) { pr_debug("%s: irq: %d handler: %p flags: %lx dev: %s\n", __func__, irq, handler, irqflags, devname); return zpci_request_irq(irq, handler, dev_id); } EXPORT_SYMBOL_GPL(request_irq); void free_irq(unsigned int irq, void *dev_id) { zpci_free_irq(irq); } EXPORT_SYMBOL_GPL(free_irq); static int __init zpci_irq_init(void) { int cpu, rc; bucket = kzalloc(sizeof(*bucket), GFP_KERNEL); if (!bucket) return -ENOMEM; bucket->aisb = (unsigned long *) get_zeroed_page(GFP_KERNEL); if (!bucket->aisb) { rc = -ENOMEM; goto out_aisb; } bucket->alloc = (unsigned long *) get_zeroed_page(GFP_KERNEL); if (!bucket->alloc) { rc = -ENOMEM; goto out_alloc; } isc_register(PCI_ISC); zpci_irq_si = s390_register_adapter_interrupt(&zpci_irq_handler, NULL, PCI_ISC); if (IS_ERR(zpci_irq_si)) { rc = PTR_ERR(zpci_irq_si); zpci_irq_si = NULL; goto out_ai; } for_each_online_cpu(cpu) per_cpu(next_sbit, cpu) = 0; spin_lock_init(&bucket->lock); /* set summary to 1 to be called every time for the ISC */ *zpci_irq_si = 1; sic_instr(SIC_IRQ_MODE_SINGLE, NULL, PCI_ISC); return 0; out_ai: isc_unregister(PCI_ISC); free_page((unsigned long) bucket->alloc); out_alloc: free_page((unsigned long) bucket->aisb); out_aisb: kfree(bucket); return rc; } static void zpci_irq_exit(void) { free_page((unsigned long) bucket->alloc); free_page((unsigned long) bucket->aisb); s390_unregister_adapter_interrupt(zpci_irq_si, PCI_ISC); isc_unregister(PCI_ISC); kfree(bucket); } static struct resource *zpci_alloc_bus_resource(unsigned long start, unsigned long size, unsigned long flags, int domain) { struct resource *r; char *name; int rc; r = kzalloc(sizeof(*r), GFP_KERNEL); if (!r) return ERR_PTR(-ENOMEM); r->start = start; r->end = r->start + size - 1; r->flags = flags; r->parent = &iomem_resource; name = kmalloc(18, GFP_KERNEL); if (!name) { kfree(r); return ERR_PTR(-ENOMEM); } sprintf(name, "PCI Bus: %04x:%02x", domain, ZPCI_BUS_NR); r->name = name; rc = request_resource(&iomem_resource, r); if (rc) pr_debug("request resource %pR failed\n", r); return r; } static int zpci_alloc_iomap(struct zpci_dev *zdev) { int entry; spin_lock(&zpci_iomap_lock); entry = find_first_zero_bit(zpci_iomap, ZPCI_IOMAP_MAX_ENTRIES); if (entry == ZPCI_IOMAP_MAX_ENTRIES) { spin_unlock(&zpci_iomap_lock); return -ENOSPC; } set_bit(entry, zpci_iomap); spin_unlock(&zpci_iomap_lock); return entry; } static void zpci_free_iomap(struct zpci_dev *zdev, int entry) { spin_lock(&zpci_iomap_lock); memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); clear_bit(entry, zpci_iomap); spin_unlock(&zpci_iomap_lock); } static int zpci_create_device_bus(struct zpci_dev *zdev) { struct resource *res; LIST_HEAD(resources); int i; /* allocate mapping entry for each used bar */ for (i = 0; i < PCI_BAR_COUNT; i++) { unsigned long addr, size, flags; int entry; if (!zdev->bars[i].size) continue; entry = zpci_alloc_iomap(zdev); if (entry < 0) return entry; zdev->bars[i].map_idx = entry; /* only MMIO is supported */ flags = IORESOURCE_MEM; if (zdev->bars[i].val & 8) flags |= IORESOURCE_PREFETCH; if (zdev->bars[i].val & 4) flags |= IORESOURCE_MEM_64; addr = ZPCI_IOMAP_ADDR_BASE + ((u64) entry << 48); size = 1UL << zdev->bars[i].size; res = zpci_alloc_bus_resource(addr, size, flags, zdev->domain); if (IS_ERR(res)) { zpci_free_iomap(zdev, entry); return PTR_ERR(res); } pci_add_resource(&resources, res); } zdev->bus = pci_create_root_bus(NULL, ZPCI_BUS_NR, &pci_root_ops, zdev, &resources); if (!zdev->bus) return -EIO; zdev->bus->max_bus_speed = zdev->max_bus_speed; return 0; } static int zpci_alloc_domain(struct zpci_dev *zdev) { spin_lock(&zpci_domain_lock); zdev->domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); if (zdev->domain == ZPCI_NR_DEVICES) { spin_unlock(&zpci_domain_lock); return -ENOSPC; } set_bit(zdev->domain, zpci_domain); spin_unlock(&zpci_domain_lock); return 0; } static void zpci_free_domain(struct zpci_dev *zdev) { spin_lock(&zpci_domain_lock); clear_bit(zdev->domain, zpci_domain); spin_unlock(&zpci_domain_lock); } int zpci_enable_device(struct zpci_dev *zdev) { int rc; rc = clp_enable_fh(zdev, ZPCI_NR_DMA_SPACES); if (rc) goto out; pr_info("Enabled fh: 0x%x fid: 0x%x\n", zdev->fh, zdev->fid); rc = zpci_dma_init_device(zdev); if (rc) goto out_dma; return 0; out_dma: clp_disable_fh(zdev); out: return rc; } EXPORT_SYMBOL_GPL(zpci_enable_device); int zpci_create_device(struct zpci_dev *zdev) { int rc; rc = zpci_alloc_domain(zdev); if (rc) goto out; rc = zpci_create_device_bus(zdev); if (rc) goto out_bus; mutex_lock(&zpci_list_lock); list_add_tail(&zdev->entry, &zpci_list); if (hotplug_ops.create_slot) hotplug_ops.create_slot(zdev); mutex_unlock(&zpci_list_lock); if (zdev->state == ZPCI_FN_STATE_STANDBY) return 0; rc = zpci_enable_device(zdev); if (rc) goto out_start; return 0; out_start: mutex_lock(&zpci_list_lock); list_del(&zdev->entry); if (hotplug_ops.remove_slot) hotplug_ops.remove_slot(zdev); mutex_unlock(&zpci_list_lock); out_bus: zpci_free_domain(zdev); out: return rc; } void zpci_stop_device(struct zpci_dev *zdev) { zpci_dma_exit_device(zdev); /* * Note: SCLP disables fh via set-pci-fn so don't * do that here. */ } EXPORT_SYMBOL_GPL(zpci_stop_device); int zpci_scan_device(struct zpci_dev *zdev) { zdev->pdev = pci_scan_single_device(zdev->bus, ZPCI_DEVFN); if (!zdev->pdev) { pr_err("pci_scan_single_device failed for fid: 0x%x\n", zdev->fid); goto out; } zpci_map_resources(zdev); pci_bus_add_devices(zdev->bus); /* now that pdev was added to the bus mark it as used */ zdev->state = ZPCI_FN_STATE_ONLINE; return 0; out: zpci_dma_exit_device(zdev); clp_disable_fh(zdev); return -EIO; } EXPORT_SYMBOL_GPL(zpci_scan_device); static inline int barsize(u8 size) { return (size) ? (1 << size) >> 10 : 0; } static int zpci_mem_init(void) { zdev_irq_cache = kmem_cache_create("PCI_IRQ_cache", sizeof(struct zdev_irq_map), L1_CACHE_BYTES, SLAB_HWCACHE_ALIGN, NULL); if (!zdev_irq_cache) goto error_zdev; /* TODO: use realloc */ zpci_iomap_start = kzalloc(ZPCI_IOMAP_MAX_ENTRIES * sizeof(*zpci_iomap_start), GFP_KERNEL); if (!zpci_iomap_start) goto error_iomap; return 0; error_iomap: kmem_cache_destroy(zdev_irq_cache); error_zdev: return -ENOMEM; } static void zpci_mem_exit(void) { kfree(zpci_iomap_start); kmem_cache_destroy(zdev_irq_cache); } unsigned int pci_probe = 1; EXPORT_SYMBOL_GPL(pci_probe); char * __init pcibios_setup(char *str) { if (!strcmp(str, "off")) { pci_probe = 0; return NULL; } return str; } static int __init pci_base_init(void) { int rc; if (!pci_probe) return 0; if (!test_facility(2) || !test_facility(69) || !test_facility(71) || !test_facility(72)) return 0; pr_info("Probing PCI hardware: PCI:%d SID:%d AEN:%d\n", test_facility(69), test_facility(70), test_facility(71)); rc = zpci_mem_init(); if (rc) goto out_mem; rc = zpci_msihash_init(); if (rc) goto out_hash; rc = zpci_irq_init(); if (rc) goto out_irq; rc = zpci_dma_init(); if (rc) goto out_dma; rc = clp_find_pci_devices(); if (rc) goto out_find; zpci_scan_devices(); return 0; out_find: zpci_dma_exit(); out_dma: zpci_irq_exit(); out_irq: zpci_msihash_exit(); out_hash: zpci_mem_exit(); out_mem: return rc; } subsys_initcall(pci_base_init);