/* * Kprobes-based tracing events * * Created by Masami Hiramatsu * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trace.h" #include "trace_output.h" #define MAX_TRACE_ARGS 128 #define MAX_ARGSTR_LEN 63 #define MAX_EVENT_NAME_LEN 64 #define MAX_STRING_SIZE PATH_MAX #define KPROBE_EVENT_SYSTEM "kprobes" /* Reserved field names */ #define FIELD_STRING_IP "__probe_ip" #define FIELD_STRING_RETIP "__probe_ret_ip" #define FIELD_STRING_FUNC "__probe_func" const char *reserved_field_names[] = { "common_type", "common_flags", "common_preempt_count", "common_pid", "common_tgid", FIELD_STRING_IP, FIELD_STRING_RETIP, FIELD_STRING_FUNC, }; /* Printing function type */ typedef int (*print_type_func_t)(struct trace_seq *, const char *, void *, void *); #define PRINT_TYPE_FUNC_NAME(type) print_type_##type #define PRINT_TYPE_FMT_NAME(type) print_type_format_##type /* Printing in basic type function template */ #define DEFINE_BASIC_PRINT_TYPE_FUNC(type, fmt, cast) \ static __kprobes int PRINT_TYPE_FUNC_NAME(type)(struct trace_seq *s, \ const char *name, \ void *data, void *ent)\ { \ return trace_seq_printf(s, " %s=" fmt, name, (cast)*(type *)data);\ } \ static const char PRINT_TYPE_FMT_NAME(type)[] = fmt; DEFINE_BASIC_PRINT_TYPE_FUNC(u8, "%x", unsigned int) DEFINE_BASIC_PRINT_TYPE_FUNC(u16, "%x", unsigned int) DEFINE_BASIC_PRINT_TYPE_FUNC(u32, "%lx", unsigned long) DEFINE_BASIC_PRINT_TYPE_FUNC(u64, "%llx", unsigned long long) DEFINE_BASIC_PRINT_TYPE_FUNC(s8, "%d", int) DEFINE_BASIC_PRINT_TYPE_FUNC(s16, "%d", int) DEFINE_BASIC_PRINT_TYPE_FUNC(s32, "%ld", long) DEFINE_BASIC_PRINT_TYPE_FUNC(s64, "%lld", long long) /* data_rloc: data relative location, compatible with u32 */ #define make_data_rloc(len, roffs) \ (((u32)(len) << 16) | ((u32)(roffs) & 0xffff)) #define get_rloc_len(dl) ((u32)(dl) >> 16) #define get_rloc_offs(dl) ((u32)(dl) & 0xffff) static inline void *get_rloc_data(u32 *dl) { return (u8 *)dl + get_rloc_offs(*dl); } /* For data_loc conversion */ static inline void *get_loc_data(u32 *dl, void *ent) { return (u8 *)ent + get_rloc_offs(*dl); } /* * Convert data_rloc to data_loc: * data_rloc stores the offset from data_rloc itself, but data_loc * stores the offset from event entry. */ #define convert_rloc_to_loc(dl, offs) ((u32)(dl) + (offs)) /* For defining macros, define string/string_size types */ typedef u32 string; typedef u32 string_size; /* Print type function for string type */ static __kprobes int PRINT_TYPE_FUNC_NAME(string)(struct trace_seq *s, const char *name, void *data, void *ent) { int len = *(u32 *)data >> 16; if (!len) return trace_seq_printf(s, " %s=(fault)", name); else return trace_seq_printf(s, " %s=\"%s\"", name, (const char *)get_loc_data(data, ent)); } static const char PRINT_TYPE_FMT_NAME(string)[] = "\\\"%s\\\""; /* Data fetch function type */ typedef void (*fetch_func_t)(struct pt_regs *, void *, void *); struct fetch_param { fetch_func_t fn; void *data; }; static __kprobes void call_fetch(struct fetch_param *fprm, struct pt_regs *regs, void *dest) { return fprm->fn(regs, fprm->data, dest); } #define FETCH_FUNC_NAME(method, type) fetch_##method##_##type /* * Define macro for basic types - we don't need to define s* types, because * we have to care only about bitwidth at recording time. */ #define DEFINE_BASIC_FETCH_FUNCS(method) \ DEFINE_FETCH_##method(u8) \ DEFINE_FETCH_##method(u16) \ DEFINE_FETCH_##method(u32) \ DEFINE_FETCH_##method(u64) #define CHECK_FETCH_FUNCS(method, fn) \ (((FETCH_FUNC_NAME(method, u8) == fn) || \ (FETCH_FUNC_NAME(method, u16) == fn) || \ (FETCH_FUNC_NAME(method, u32) == fn) || \ (FETCH_FUNC_NAME(method, u64) == fn) || \ (FETCH_FUNC_NAME(method, string) == fn) || \ (FETCH_FUNC_NAME(method, string_size) == fn)) \ && (fn != NULL)) /* Data fetch function templates */ #define DEFINE_FETCH_reg(type) \ static __kprobes void FETCH_FUNC_NAME(reg, type)(struct pt_regs *regs, \ void *offset, void *dest) \ { \ *(type *)dest = (type)regs_get_register(regs, \ (unsigned int)((unsigned long)offset)); \ } DEFINE_BASIC_FETCH_FUNCS(reg) /* No string on the register */ #define fetch_reg_string NULL #define fetch_reg_string_size NULL #define DEFINE_FETCH_stack(type) \ static __kprobes void FETCH_FUNC_NAME(stack, type)(struct pt_regs *regs,\ void *offset, void *dest) \ { \ *(type *)dest = (type)regs_get_kernel_stack_nth(regs, \ (unsigned int)((unsigned long)offset)); \ } DEFINE_BASIC_FETCH_FUNCS(stack) /* No string on the stack entry */ #define fetch_stack_string NULL #define fetch_stack_string_size NULL #define DEFINE_FETCH_retval(type) \ static __kprobes void FETCH_FUNC_NAME(retval, type)(struct pt_regs *regs,\ void *dummy, void *dest) \ { \ *(type *)dest = (type)regs_return_value(regs); \ } DEFINE_BASIC_FETCH_FUNCS(retval) /* No string on the retval */ #define fetch_retval_string NULL #define fetch_retval_string_size NULL #define DEFINE_FETCH_memory(type) \ static __kprobes void FETCH_FUNC_NAME(memory, type)(struct pt_regs *regs,\ void *addr, void *dest) \ { \ type retval; \ if (probe_kernel_address(addr, retval)) \ *(type *)dest = 0; \ else \ *(type *)dest = retval; \ } DEFINE_BASIC_FETCH_FUNCS(memory) /* * Fetch a null-terminated string. Caller MUST set *(u32 *)dest with max * length and relative data location. */ static __kprobes void FETCH_FUNC_NAME(memory, string)(struct pt_regs *regs, void *addr, void *dest) { long ret; int maxlen = get_rloc_len(*(u32 *)dest); u8 *dst = get_rloc_data(dest); u8 *src = addr; mm_segment_t old_fs = get_fs(); if (!maxlen) return; /* * Try to get string again, since the string can be changed while * probing. */ set_fs(KERNEL_DS); pagefault_disable(); do ret = __copy_from_user_inatomic(dst++, src++, 1); while (dst[-1] && ret == 0 && src - (u8 *)addr < maxlen); dst[-1] = '\0'; pagefault_enable(); set_fs(old_fs); if (ret < 0) { /* Failed to fetch string */ ((u8 *)get_rloc_data(dest))[0] = '\0'; *(u32 *)dest = make_data_rloc(0, get_rloc_offs(*(u32 *)dest)); } else *(u32 *)dest = make_data_rloc(src - (u8 *)addr, get_rloc_offs(*(u32 *)dest)); } /* Return the length of string -- including null terminal byte */ static __kprobes void FETCH_FUNC_NAME(memory, string_size)(struct pt_regs *regs, void *addr, void *dest) { int ret, len = 0; u8 c; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); pagefault_disable(); do { ret = __copy_from_user_inatomic(&c, (u8 *)addr + len, 1); len++; } while (c && ret == 0 && len < MAX_STRING_SIZE); pagefault_enable(); set_fs(old_fs); if (ret < 0) /* Failed to check the length */ *(u32 *)dest = 0; else *(u32 *)dest = len; } /* Memory fetching by symbol */ struct symbol_cache { char *symbol; long offset; unsigned long addr; }; static unsigned long update_symbol_cache(struct symbol_cache *sc) { sc->addr = (unsigned long)kallsyms_lookup_name(sc->symbol); if (sc->addr) sc->addr += sc->offset; return sc->addr; } static void free_symbol_cache(struct symbol_cache *sc) { kfree(sc->symbol); kfree(sc); } static struct symbol_cache *alloc_symbol_cache(const char *sym, long offset) { struct symbol_cache *sc; if (!sym || strlen(sym) == 0) return NULL; sc = kzalloc(sizeof(struct symbol_cache), GFP_KERNEL); if (!sc) return NULL; sc->symbol = kstrdup(sym, GFP_KERNEL); if (!sc->symbol) { kfree(sc); return NULL; } sc->offset = offset; update_symbol_cache(sc); return sc; } #define DEFINE_FETCH_symbol(type) \ static __kprobes void FETCH_FUNC_NAME(symbol, type)(struct pt_regs *regs,\ void *data, void *dest) \ { \ struct symbol_cache *sc = data; \ if (sc->addr) \ fetch_memory_##type(regs, (void *)sc->addr, dest); \ else \ *(type *)dest = 0; \ } DEFINE_BASIC_FETCH_FUNCS(symbol) DEFINE_FETCH_symbol(string) DEFINE_FETCH_symbol(string_size) /* Dereference memory access function */ struct deref_fetch_param { struct fetch_param orig; long offset; }; #define DEFINE_FETCH_deref(type) \ static __kprobes void FETCH_FUNC_NAME(deref, type)(struct pt_regs *regs,\ void *data, void *dest) \ { \ struct deref_fetch_param *dprm = data; \ unsigned long addr; \ call_fetch(&dprm->orig, regs, &addr); \ if (addr) { \ addr += dprm->offset; \ fetch_memory_##type(regs, (void *)addr, dest); \ } else \ *(type *)dest = 0; \ } DEFINE_BASIC_FETCH_FUNCS(deref) DEFINE_FETCH_deref(string) DEFINE_FETCH_deref(string_size) static __kprobes void free_deref_fetch_param(struct deref_fetch_param *data) { if (CHECK_FETCH_FUNCS(deref, data->orig.fn)) free_deref_fetch_param(data->orig.data); else if (CHECK_FETCH_FUNCS(symbol, data->orig.fn)) free_symbol_cache(data->orig.data); kfree(data); } /* Bitfield fetch function */ struct bitfield_fetch_param { struct fetch_param orig; unsigned char hi_shift; unsigned char low_shift; }; #define DEFINE_FETCH_bitfield(type) \ static __kprobes void FETCH_FUNC_NAME(bitfield, type)(struct pt_regs *regs,\ void *data, void *dest) \ { \ struct bitfield_fetch_param *bprm = data; \ type buf = 0; \ call_fetch(&bprm->orig, regs, &buf); \ if (buf) { \ buf <<= bprm->hi_shift; \ buf >>= bprm->low_shift; \ } \ *(type *)dest = buf; \ } DEFINE_BASIC_FETCH_FUNCS(bitfield) #define fetch_bitfield_string NULL #define fetch_bitfield_string_size NULL static __kprobes void free_bitfield_fetch_param(struct bitfield_fetch_param *data) { /* * Don't check the bitfield itself, because this must be the * last fetch function. */ if (CHECK_FETCH_FUNCS(deref, data->orig.fn)) free_deref_fetch_param(data->orig.data); else if (CHECK_FETCH_FUNCS(symbol, data->orig.fn)) free_symbol_cache(data->orig.data); kfree(data); } /* Default (unsigned long) fetch type */ #define __DEFAULT_FETCH_TYPE(t) u##t #define _DEFAULT_FETCH_TYPE(t) __DEFAULT_FETCH_TYPE(t) #define DEFAULT_FETCH_TYPE _DEFAULT_FETCH_TYPE(BITS_PER_LONG) #define DEFAULT_FETCH_TYPE_STR __stringify(DEFAULT_FETCH_TYPE) /* Fetch types */ enum { FETCH_MTD_reg = 0, FETCH_MTD_stack, FETCH_MTD_retval, FETCH_MTD_memory, FETCH_MTD_symbol, FETCH_MTD_deref, FETCH_MTD_bitfield, FETCH_MTD_END, }; #define ASSIGN_FETCH_FUNC(method, type) \ [FETCH_MTD_##method] = FETCH_FUNC_NAME(method, type) #define __ASSIGN_FETCH_TYPE(_name, ptype, ftype, _size, sign, _fmttype) \ {.name = _name, \ .size = _size, \ .is_signed = sign, \ .print = PRINT_TYPE_FUNC_NAME(ptype), \ .fmt = PRINT_TYPE_FMT_NAME(ptype), \ .fmttype = _fmttype, \ .fetch = { \ ASSIGN_FETCH_FUNC(reg, ftype), \ ASSIGN_FETCH_FUNC(stack, ftype), \ ASSIGN_FETCH_FUNC(retval, ftype), \ ASSIGN_FETCH_FUNC(memory, ftype), \ ASSIGN_FETCH_FUNC(symbol, ftype), \ ASSIGN_FETCH_FUNC(deref, ftype), \ ASSIGN_FETCH_FUNC(bitfield, ftype), \ } \ } #define ASSIGN_FETCH_TYPE(ptype, ftype, sign) \ __ASSIGN_FETCH_TYPE(#ptype, ptype, ftype, sizeof(ftype), sign, #ptype) #define FETCH_TYPE_STRING 0 #define FETCH_TYPE_STRSIZE 1 /* Fetch type information table */ static const struct fetch_type { const char *name; /* Name of type */ size_t size; /* Byte size of type */ int is_signed; /* Signed flag */ print_type_func_t print; /* Print functions */ const char *fmt; /* Fromat string */ const char *fmttype; /* Name in format file */ /* Fetch functions */ fetch_func_t fetch[FETCH_MTD_END]; } fetch_type_table[] = { /* Special types */ [FETCH_TYPE_STRING] = __ASSIGN_FETCH_TYPE("string", string, string, sizeof(u32), 1, "__data_loc char[]"), [FETCH_TYPE_STRSIZE] = __ASSIGN_FETCH_TYPE("string_size", u32, string_size, sizeof(u32), 0, "u32"), /* Basic types */ ASSIGN_FETCH_TYPE(u8, u8, 0), ASSIGN_FETCH_TYPE(u16, u16, 0), ASSIGN_FETCH_TYPE(u32, u32, 0), ASSIGN_FETCH_TYPE(u64, u64, 0), ASSIGN_FETCH_TYPE(s8, u8, 1), ASSIGN_FETCH_TYPE(s16, u16, 1), ASSIGN_FETCH_TYPE(s32, u32, 1), ASSIGN_FETCH_TYPE(s64, u64, 1), }; static const struct fetch_type *find_fetch_type(const char *type) { int i; if (!type) type = DEFAULT_FETCH_TYPE_STR; /* Special case: bitfield */ if (*type == 'b') { unsigned long bs; type = strchr(type, '/'); if (!type) goto fail; type++; if (strict_strtoul(type, 0, &bs)) goto fail; switch (bs) { case 8: return find_fetch_type("u8"); case 16: return find_fetch_type("u16"); case 32: return find_fetch_type("u32"); case 64: return find_fetch_type("u64"); default: goto fail; } } for (i = 0; i < ARRAY_SIZE(fetch_type_table); i++) if (strcmp(type, fetch_type_table[i].name) == 0) return &fetch_type_table[i]; fail: return NULL; } /* Special function : only accept unsigned long */ static __kprobes void fetch_stack_address(struct pt_regs *regs, void *dummy, void *dest) { *(unsigned long *)dest = kernel_stack_pointer(regs); } static fetch_func_t get_fetch_size_function(const struct fetch_type *type, fetch_func_t orig_fn) { int i; if (type != &fetch_type_table[FETCH_TYPE_STRING]) return NULL; /* Only string type needs size function */ for (i = 0; i < FETCH_MTD_END; i++) if (type->fetch[i] == orig_fn) return fetch_type_table[FETCH_TYPE_STRSIZE].fetch[i]; WARN_ON(1); /* This should not happen */ return NULL; } /** * Kprobe event core functions */ struct probe_arg { struct fetch_param fetch; struct fetch_param fetch_size; unsigned int offset; /* Offset from argument entry */ const char *name; /* Name of this argument */ const char *comm; /* Command of this argument */ const struct fetch_type *type; /* Type of this argument */ }; /* Flags for trace_probe */ #define TP_FLAG_TRACE 1 #define TP_FLAG_PROFILE 2 struct trace_probe { struct list_head list; struct kretprobe rp; /* Use rp.kp for kprobe use */ unsigned long nhit; unsigned int flags; /* For TP_FLAG_* */ const char *symbol; /* symbol name */ struct ftrace_event_class class; struct ftrace_event_call call; ssize_t size; /* trace entry size */ unsigned int nr_args; struct probe_arg args[]; }; #define SIZEOF_TRACE_PROBE(n) \ (offsetof(struct trace_probe, args) + \ (sizeof(struct probe_arg) * (n))) static __kprobes int probe_is_return(struct trace_probe *tp) { return tp->rp.handler != NULL; } static __kprobes const char *probe_symbol(struct trace_probe *tp) { return tp->symbol ? tp->symbol : "unknown"; } static int register_probe_event(struct trace_probe *tp); static void unregister_probe_event(struct trace_probe *tp); static DEFINE_MUTEX(probe_lock); static LIST_HEAD(probe_list); static int kprobe_dispatcher(struct kprobe *kp, struct pt_regs *regs); static int kretprobe_dispatcher(struct kretprobe_instance *ri, struct pt_regs *regs); /* Check the name is good for event/group/fields */ static int is_good_name(const char *name) { if (!isalpha(*name) && *name != '_') return 0; while (*++name != '\0') { if (!isalpha(*name) && !isdigit(*name) && *name != '_') return 0; } return 1; } /* * Allocate new trace_probe and initialize it (including kprobes). */ static struct trace_probe *alloc_trace_probe(const char *group, const char *event, void *addr, const char *symbol, unsigned long offs, int nargs, int is_return) { struct trace_probe *tp; int ret = -ENOMEM; tp = kzalloc(SIZEOF_TRACE_PROBE(nargs), GFP_KERNEL); if (!tp) return ERR_PTR(ret); if (symbol) { tp->symbol = kstrdup(symbol, GFP_KERNEL); if (!tp->symbol) goto error; tp->rp.kp.symbol_name = tp->symbol; tp->rp.kp.offset = offs; } else tp->rp.kp.addr = addr; if (is_return) tp->rp.handler = kretprobe_dispatcher; else tp->rp.kp.pre_handler = kprobe_dispatcher; if (!event || !is_good_name(event)) { ret = -EINVAL; goto error; } tp->call.class = &tp->class; tp->call.name = kstrdup(event, GFP_KERNEL); if (!tp->call.name) goto error; if (!group || !is_good_name(group)) { ret = -EINVAL; goto error; } tp->class.system = kstrdup(group, GFP_KERNEL); if (!tp->class.system) goto error; INIT_LIST_HEAD(&tp->list); return tp; error: kfree(tp->call.name); kfree(tp->symbol); kfree(tp); return ERR_PTR(ret); } static void free_probe_arg(struct probe_arg *arg) { if (CHECK_FETCH_FUNCS(bitfield, arg->fetch.fn)) free_bitfield_fetch_param(arg->fetch.data); else if (CHECK_FETCH_FUNCS(deref, arg->fetch.fn)) free_deref_fetch_param(arg->fetch.data); else if (CHECK_FETCH_FUNCS(symbol, arg->fetch.fn)) free_symbol_cache(arg->fetch.data); kfree(arg->name); kfree(arg->comm); } static void free_trace_probe(struct trace_probe *tp) { int i; for (i = 0; i < tp->nr_args; i++) free_probe_arg(&tp->args[i]); kfree(tp->call.class->system); kfree(tp->call.name); kfree(tp->symbol); kfree(tp); } static struct trace_probe *find_probe_event(const char *event, const char *group) { struct trace_probe *tp; list_for_each_entry(tp, &probe_list, list) if (strcmp(tp->call.name, event) == 0 && strcmp(tp->call.class->system, group) == 0) return tp; return NULL; } /* Unregister a trace_probe and probe_event: call with locking probe_lock */ static void unregister_trace_probe(struct trace_probe *tp) { if (probe_is_return(tp)) unregister_kretprobe(&tp->rp); else unregister_kprobe(&tp->rp.kp); list_del(&tp->list); unregister_probe_event(tp); } /* Register a trace_probe and probe_event */ static int register_trace_probe(struct trace_probe *tp) { struct trace_probe *old_tp; int ret; mutex_lock(&probe_lock); /* register as an event */ old_tp = find_probe_event(tp->call.name, tp->call.class->system); if (old_tp) { /* delete old event */ unregister_trace_probe(old_tp); free_trace_probe(old_tp); } ret = register_probe_event(tp); if (ret) { pr_warning("Failed to register probe event(%d)\n", ret); goto end; } tp->rp.kp.flags |= KPROBE_FLAG_DISABLED; if (probe_is_return(tp)) ret = register_kretprobe(&tp->rp); else ret = register_kprobe(&tp->rp.kp); if (ret) { pr_warning("Could not insert probe(%d)\n", ret); if (ret == -EILSEQ) { pr_warning("Probing address(0x%p) is not an " "instruction boundary.\n", tp->rp.kp.addr); ret = -EINVAL; } unregister_probe_event(tp); } else list_add_tail(&tp->list, &probe_list); end: mutex_unlock(&probe_lock); return ret; } /* Split symbol and offset. */ static int split_symbol_offset(char *symbol, unsigned long *offset) { char *tmp; int ret; if (!offset) return -EINVAL; tmp = strchr(symbol, '+'); if (tmp) { /* skip sign because strict_strtol doesn't accept '+' */ ret = strict_strtoul(tmp + 1, 0, offset); if (ret) return ret; *tmp = '\0'; } else *offset = 0; return 0; } #define PARAM_MAX_ARGS 16 #define PARAM_MAX_STACK (THREAD_SIZE / sizeof(unsigned long)) static int parse_probe_vars(char *arg, const struct fetch_type *t, struct fetch_param *f, int is_return) { int ret = 0; unsigned long param; if (strcmp(arg, "retval") == 0) { if (is_return) f->fn = t->fetch[FETCH_MTD_retval]; else ret = -EINVAL; } else if (strncmp(arg, "stack", 5) == 0) { if (arg[5] == '\0') { if (strcmp(t->name, DEFAULT_FETCH_TYPE_STR) == 0) f->fn = fetch_stack_address; else ret = -EINVAL; } else if (isdigit(arg[5])) { ret = strict_strtoul(arg + 5, 10, ¶m); if (ret || param > PARAM_MAX_STACK) ret = -EINVAL; else { f->fn = t->fetch[FETCH_MTD_stack]; f->data = (void *)param; } } else ret = -EINVAL; } else ret = -EINVAL; return ret; } /* Recursive argument parser */ static int __parse_probe_arg(char *arg, const struct fetch_type *t, struct fetch_param *f, int is_return) { int ret = 0; unsigned long param; long offset; char *tmp; switch (arg[0]) { case '$': ret = parse_probe_vars(arg + 1, t, f, is_return); break; case '%': /* named register */ ret = regs_query_register_offset(arg + 1); if (ret >= 0) { f->fn = t->fetch[FETCH_MTD_reg]; f->data = (void *)(unsigned long)ret; ret = 0; } break; case '@': /* memory or symbol */ if (isdigit(arg[1])) { ret = strict_strtoul(arg + 1, 0, ¶m); if (ret) break; f->fn = t->fetch[FETCH_MTD_memory]; f->data = (void *)param; } else { ret = split_symbol_offset(arg + 1, &offset); if (ret) break; f->data = alloc_symbol_cache(arg + 1, offset); if (f->data) f->fn = t->fetch[FETCH_MTD_symbol]; } break; case '+': /* deref memory */ arg++; /* Skip '+', because strict_strtol() rejects it. */ case '-': tmp = strchr(arg, '('); if (!tmp) break; *tmp = '\0'; ret = strict_strtol(arg, 0, &offset); if (ret) break; arg = tmp + 1; tmp = strrchr(arg, ')'); if (tmp) { struct deref_fetch_param *dprm; const struct fetch_type *t2 = find_fetch_type(NULL); *tmp = '\0'; dprm = kzalloc(sizeof(struct deref_fetch_param), GFP_KERNEL); if (!dprm) return -ENOMEM; dprm->offset = offset; ret = __parse_probe_arg(arg, t2, &dprm->orig, is_return); if (ret) kfree(dprm); else { f->fn = t->fetch[FETCH_MTD_deref]; f->data = (void *)dprm; } } break; } if (!ret && !f->fn) { /* Parsed, but do not find fetch method */ pr_info("%s type has no corresponding fetch method.\n", t->name); ret = -EINVAL; } return ret; } #define BYTES_TO_BITS(nb) ((BITS_PER_LONG * (nb)) / sizeof(long)) /* Bitfield type needs to be parsed into a fetch function */ static int __parse_bitfield_probe_arg(const char *bf, const struct fetch_type *t, struct fetch_param *f) { struct bitfield_fetch_param *bprm; unsigned long bw, bo; char *tail; if (*bf != 'b') return 0; bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); if (!bprm) return -ENOMEM; bprm->orig = *f; f->fn = t->fetch[FETCH_MTD_bitfield]; f->data = (void *)bprm; bw = simple_strtoul(bf + 1, &tail, 0); /* Use simple one */ if (bw == 0 || *tail != '@') return -EINVAL; bf = tail + 1; bo = simple_strtoul(bf, &tail, 0); if (tail == bf || *tail != '/') return -EINVAL; bprm->hi_shift = BYTES_TO_BITS(t->size) - (bw + bo); bprm->low_shift = bprm->hi_shift + bo; return (BYTES_TO_BITS(t->size) < (bw + bo)) ? -EINVAL : 0; } /* String length checking wrapper */ static int parse_probe_arg(char *arg, struct trace_probe *tp, struct probe_arg *parg, int is_return) { const char *t; int ret; if (strlen(arg) > MAX_ARGSTR_LEN) { pr_info("Argument is too long.: %s\n", arg); return -ENOSPC; } parg->comm = kstrdup(arg, GFP_KERNEL); if (!parg->comm) { pr_info("Failed to allocate memory for command '%s'.\n", arg); return -ENOMEM; } t = strchr(parg->comm, ':'); if (t) { arg[t - parg->comm] = '\0'; t++; } parg->type = find_fetch_type(t); if (!parg->type) { pr_info("Unsupported type: %s\n", t); return -EINVAL; } parg->offset = tp->size; tp->size += parg->type->size; ret = __parse_probe_arg(arg, parg->type, &parg->fetch, is_return); if (ret >= 0 && t != NULL) ret = __parse_bitfield_probe_arg(t, parg->type, &parg->fetch); if (ret >= 0) { parg->fetch_size.fn = get_fetch_size_function(parg->type, parg->fetch.fn); parg->fetch_size.data = parg->fetch.data; } return ret; } /* Return 1 if name is reserved or already used by another argument */ static int conflict_field_name(const char *name, struct probe_arg *args, int narg) { int i; for (i = 0; i < ARRAY_SIZE(reserved_field_names); i++) if (strcmp(reserved_field_names[i], name) == 0) return 1; for (i = 0; i < narg; i++) if (strcmp(args[i].name, name) == 0) return 1; return 0; } static int create_trace_probe(int argc, char **argv) { /* * Argument syntax: * - Add kprobe: p[:[GRP/]EVENT] KSYM[+OFFS]|KADDR [FETCHARGS] * - Add kretprobe: r[:[GRP/]EVENT] KSYM[+0] [FETCHARGS] * Fetch args: * $retval : fetch return value * $stack : fetch stack address * $stackN : fetch Nth of stack (N:0-) * @ADDR : fetch memory at ADDR (ADDR should be in kernel) * @SYM[+|-offs] : fetch memory at SYM +|- offs (SYM is a data symbol) * %REG : fetch register REG * Dereferencing memory fetch: * +|-offs(ARG) : fetch memory at ARG +|- offs address. * Alias name of args: * NAME=FETCHARG : set NAME as alias of FETCHARG. * Type of args: * FETCHARG:TYPE : use TYPE instead of unsigned long. */ struct trace_probe *tp; int i, ret = 0; int is_return = 0, is_delete = 0; char *symbol = NULL, *event = NULL, *group = NULL; char *arg; unsigned long offset = 0; void *addr = NULL; char buf[MAX_EVENT_NAME_LEN]; /* argc must be >= 1 */ if (argv[0][0] == 'p') is_return = 0; else if (argv[0][0] == 'r') is_return = 1; else if (argv[0][0] == '-') is_delete = 1; else { pr_info("Probe definition must be started with 'p', 'r' or" " '-'.\n"); return -EINVAL; } if (argv[0][1] == ':') { event = &argv[0][2]; if (strchr(event, '/')) { group = event; event = strchr(group, '/') + 1; event[-1] = '\0'; if (strlen(group) == 0) { pr_info("Group name is not specified\n"); return -EINVAL; } } if (strlen(event) == 0) { pr_info("Event name is not specified\n"); return -EINVAL; } } if (!group) group = KPROBE_EVENT_SYSTEM; if (is_delete) { if (!event) { pr_info("Delete command needs an event name.\n"); return -EINVAL; } mutex_lock(&probe_lock); tp = find_probe_event(event, group); if (!tp) { mutex_unlock(&probe_lock); pr_info("Event %s/%s doesn't exist.\n", group, event); return -ENOENT; } /* delete an event */ unregister_trace_probe(tp); free_trace_probe(tp); mutex_unlock(&probe_lock); return 0; } if (argc < 2) { pr_info("Probe point is not specified.\n"); return -EINVAL; } if (isdigit(argv[1][0])) { if (is_return) { pr_info("Return probe point must be a symbol.\n"); return -EINVAL; } /* an address specified */ ret = strict_strtoul(&argv[1][0], 0, (unsigned long *)&addr); if (ret) { pr_info("Failed to parse address.\n"); return ret; } } else { /* a symbol specified */ symbol = argv[1]; /* TODO: support .init module functions */ ret = split_symbol_offset(symbol, &offset); if (ret) { pr_info("Failed to parse symbol.\n"); return ret; } if (offset && is_return) { pr_info("Return probe must be used without offset.\n"); return -EINVAL; } } argc -= 2; argv += 2; /* setup a probe */ if (!event) { /* Make a new event name */ if (symbol) snprintf(buf, MAX_EVENT_NAME_LEN, "%c_%s_%ld", is_return ? 'r' : 'p', symbol, offset); else snprintf(buf, MAX_EVENT_NAME_LEN, "%c_0x%p", is_return ? 'r' : 'p', addr); event = buf; } tp = alloc_trace_probe(group, event, addr, symbol, offset, argc, is_return); if (IS_ERR(tp)) { pr_info("Failed to allocate trace_probe.(%d)\n", (int)PTR_ERR(tp)); return PTR_ERR(tp); } /* parse arguments */ ret = 0; for (i = 0; i < argc && i < MAX_TRACE_ARGS; i++) { /* Increment count for freeing args in error case */ tp->nr_args++; /* Parse argument name */ arg = strchr(argv[i], '='); if (arg) { *arg++ = '\0'; tp->args[i].name = kstrdup(argv[i], GFP_KERNEL); } else { arg = argv[i]; /* If argument name is omitted, set "argN" */ snprintf(buf, MAX_EVENT_NAME_LEN, "arg%d", i + 1); tp->args[i].name = kstrdup(buf, GFP_KERNEL); } if (!tp->args[i].name) { pr_info("Failed to allocate argument[%d] name.\n", i); ret = -ENOMEM; goto error; } if (!is_good_name(tp->args[i].name)) { pr_info("Invalid argument[%d] name: %s\n", i, tp->args[i].name); ret = -EINVAL; goto error; } if (conflict_field_name(tp->args[i].name, tp->args, i)) { pr_info("Argument[%d] name '%s' conflicts with " "another field.\n", i, argv[i]); ret = -EINVAL; goto error; } /* Parse fetch argument */ ret = parse_probe_arg(arg, tp, &tp->args[i], is_return); if (ret) { pr_info("Parse error at argument[%d]. (%d)\n", i, ret); goto error; } } ret = register_trace_probe(tp); if (ret) goto error; return 0; error: free_trace_probe(tp); return ret; } static void cleanup_all_probes(void) { struct trace_probe *tp; mutex_lock(&probe_lock); /* TODO: Use batch unregistration */ while (!list_empty(&probe_list)) { tp = list_entry(probe_list.next, struct trace_probe, list); unregister_trace_probe(tp); free_trace_probe(tp); } mutex_unlock(&probe_lock); } /* Probes listing interfaces */ static void *probes_seq_start(struct seq_file *m, loff_t *pos) { mutex_lock(&probe_lock); return seq_list_start(&probe_list, *pos); } static void *probes_seq_next(struct seq_file *m, void *v, loff_t *pos) { return seq_list_next(v, &probe_list, pos); } static void probes_seq_stop(struct seq_file *m, void *v) { mutex_unlock(&probe_lock); } static int probes_seq_show(struct seq_file *m, void *v) { struct trace_probe *tp = v; int i; seq_printf(m, "%c", probe_is_return(tp) ? 'r' : 'p'); seq_printf(m, ":%s/%s", tp->call.class->system, tp->call.name); if (!tp->symbol) seq_printf(m, " 0x%p", tp->rp.kp.addr); else if (tp->rp.kp.offset) seq_printf(m, " %s+%u", probe_symbol(tp), tp->rp.kp.offset); else seq_printf(m, " %s", probe_symbol(tp)); for (i = 0; i < tp->nr_args; i++) seq_printf(m, " %s=%s", tp->args[i].name, tp->args[i].comm); seq_printf(m, "\n"); return 0; } static const struct seq_operations probes_seq_op = { .start = probes_seq_start, .next = probes_seq_next, .stop = probes_seq_stop, .show = probes_seq_show }; static int probes_open(struct inode *inode, struct file *file) { if ((file->f_mode & FMODE_WRITE) && (file->f_flags & O_TRUNC)) cleanup_all_probes(); return seq_open(file, &probes_seq_op); } static int command_trace_probe(const char *buf) { char **argv; int argc = 0, ret = 0; argv = argv_split(GFP_KERNEL, buf, &argc); if (!argv) return -ENOMEM; if (argc) ret = create_trace_probe(argc, argv); argv_free(argv); return ret; } #define WRITE_BUFSIZE 4096 static ssize_t probes_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { char *kbuf, *tmp; int ret; size_t done; size_t size; kbuf = kmalloc(WRITE_BUFSIZE, GFP_KERNEL); if (!kbuf) return -ENOMEM; ret = done = 0; while (done < count) { size = count - done; if (size >= WRITE_BUFSIZE) size = WRITE_BUFSIZE - 1; if (copy_from_user(kbuf, buffer + done, size)) { ret = -EFAULT; goto out; } kbuf[size] = '\0'; tmp = strchr(kbuf, '\n'); if (tmp) { *tmp = '\0'; size = tmp - kbuf + 1; } else if (done + size < count) { pr_warning("Line length is too long: " "Should be less than %d.", WRITE_BUFSIZE); ret = -EINVAL; goto out; } done += size; /* Remove comments */ tmp = strchr(kbuf, '#'); if (tmp) *tmp = '\0'; ret = command_trace_probe(kbuf); if (ret) goto out; } ret = done; out: kfree(kbuf); return ret; } static const struct file_operations kprobe_events_ops = { .owner = THIS_MODULE, .open = probes_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, .write = probes_write, }; /* Probes profiling interfaces */ static int probes_profile_seq_show(struct seq_file *m, void *v) { struct trace_probe *tp = v; seq_printf(m, " %-44s %15lu %15lu\n", tp->call.name, tp->nhit, tp->rp.kp.nmissed); return 0; } static const struct seq_operations profile_seq_op = { .start = probes_seq_start, .next = probes_seq_next, .stop = probes_seq_stop, .show = probes_profile_seq_show }; static int profile_open(struct inode *inode, struct file *file) { return seq_open(file, &profile_seq_op); } static const struct file_operations kprobe_profile_ops = { .owner = THIS_MODULE, .open = profile_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; /* Sum up total data length for dynamic arraies (strings) */ static __kprobes int __get_data_size(struct trace_probe *tp, struct pt_regs *regs) { int i, ret = 0; u32 len; for (i = 0; i < tp->nr_args; i++) if (unlikely(tp->args[i].fetch_size.fn)) { call_fetch(&tp->args[i].fetch_size, regs, &len); ret += len; } return ret; } /* Store the value of each argument */ static __kprobes void store_trace_args(int ent_size, struct trace_probe *tp, struct pt_regs *regs, u8 *data, int maxlen) { int i; u32 end = tp->size; u32 *dl; /* Data (relative) location */ for (i = 0; i < tp->nr_args; i++) { if (unlikely(tp->args[i].fetch_size.fn)) { /* * First, we set the relative location and * maximum data length to *dl */ dl = (u32 *)(data + tp->args[i].offset); *dl = make_data_rloc(maxlen, end - tp->args[i].offset); /* Then try to fetch string or dynamic array data */ call_fetch(&tp->args[i].fetch, regs, dl); /* Reduce maximum length */ end += get_rloc_len(*dl); maxlen -= get_rloc_len(*dl); /* Trick here, convert data_rloc to data_loc */ *dl = convert_rloc_to_loc(*dl, ent_size + tp->args[i].offset); } else /* Just fetching data normally */ call_fetch(&tp->args[i].fetch, regs, data + tp->args[i].offset); } } /* Kprobe handler */ static __kprobes void kprobe_trace_func(struct kprobe *kp, struct pt_regs *regs) { struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp); struct kprobe_trace_entry_head *entry; struct ring_buffer_event *event; struct ring_buffer *buffer; int size, dsize, pc; unsigned long irq_flags; struct ftrace_event_call *call = &tp->call; tp->nhit++; local_save_flags(irq_flags); pc = preempt_count(); dsize = __get_data_size(tp, regs); size = sizeof(*entry) + tp->size + dsize; event = trace_current_buffer_lock_reserve(&buffer, call->event.type, size, irq_flags, pc); if (!event) return; entry = ring_buffer_event_data(event); entry->ip = (unsigned long)kp->addr; store_trace_args(sizeof(*entry), tp, regs, (u8 *)&entry[1], dsize); if (!filter_current_check_discard(buffer, call, entry, event)) trace_nowake_buffer_unlock_commit_regs(buffer, event, irq_flags, pc, regs); } /* Kretprobe handler */ static __kprobes void kretprobe_trace_func(struct kretprobe_instance *ri, struct pt_regs *regs) { struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp); struct kretprobe_trace_entry_head *entry; struct ring_buffer_event *event; struct ring_buffer *buffer; int size, pc, dsize; unsigned long irq_flags; struct ftrace_event_call *call = &tp->call; local_save_flags(irq_flags); pc = preempt_count(); dsize = __get_data_size(tp, regs); size = sizeof(*entry) + tp->size + dsize; event = trace_current_buffer_lock_reserve(&buffer, call->event.type, size, irq_flags, pc); if (!event) return; entry = ring_buffer_event_data(event); entry->func = (unsigned long)tp->rp.kp.addr; entry->ret_ip = (unsigned long)ri->ret_addr; store_trace_args(sizeof(*entry), tp, regs, (u8 *)&entry[1], dsize); if (!filter_current_check_discard(buffer, call, entry, event)) trace_nowake_buffer_unlock_commit_regs(buffer, event, irq_flags, pc, regs); } /* Event entry printers */ enum print_line_t print_kprobe_event(struct trace_iterator *iter, int flags, struct trace_event *event) { struct kprobe_trace_entry_head *field; struct trace_seq *s = &iter->seq; struct trace_probe *tp; u8 *data; int i; field = (struct kprobe_trace_entry_head *)iter->ent; tp = container_of(event, struct trace_probe, call.event); if (!trace_seq_printf(s, "%s: (", tp->call.name)) goto partial; if (!seq_print_ip_sym(s, field->ip, flags | TRACE_ITER_SYM_OFFSET)) goto partial; if (!trace_seq_puts(s, ")")) goto partial; data = (u8 *)&field[1]; for (i = 0; i < tp->nr_args; i++) if (!tp->args[i].type->print(s, tp->args[i].name, data + tp->args[i].offset, field)) goto partial; if (!trace_seq_puts(s, "\n")) goto partial; return TRACE_TYPE_HANDLED; partial: return TRACE_TYPE_PARTIAL_LINE; } enum print_line_t print_kretprobe_event(struct trace_iterator *iter, int flags, struct trace_event *event) { struct kretprobe_trace_entry_head *field; struct trace_seq *s = &iter->seq; struct trace_probe *tp; u8 *data; int i; field = (struct kretprobe_trace_entry_head *)iter->ent; tp = container_of(event, struct trace_probe, call.event); if (!trace_seq_printf(s, "%s: (", tp->call.name)) goto partial; if (!seq_print_ip_sym(s, field->ret_ip, flags | TRACE_ITER_SYM_OFFSET)) goto partial; if (!trace_seq_puts(s, " <- ")) goto partial; if (!seq_print_ip_sym(s, field->func, flags & ~TRACE_ITER_SYM_OFFSET)) goto partial; if (!trace_seq_puts(s, ")")) goto partial; data = (u8 *)&field[1]; for (i = 0; i < tp->nr_args; i++) if (!tp->args[i].type->print(s, tp->args[i].name, data + tp->args[i].offset, field)) goto partial; if (!trace_seq_puts(s, "\n")) goto partial; return TRACE_TYPE_HANDLED; partial: return TRACE_TYPE_PARTIAL_LINE; } static int probe_event_enable(struct ftrace_event_call *call) { struct trace_probe *tp = (struct trace_probe *)call->data; tp->flags |= TP_FLAG_TRACE; if (probe_is_return(tp)) return enable_kretprobe(&tp->rp); else return enable_kprobe(&tp->rp.kp); } static void probe_event_disable(struct ftrace_event_call *call) { struct trace_probe *tp = (struct trace_probe *)call->data; tp->flags &= ~TP_FLAG_TRACE; if (!(tp->flags & (TP_FLAG_TRACE | TP_FLAG_PROFILE))) { if (probe_is_return(tp)) disable_kretprobe(&tp->rp); else disable_kprobe(&tp->rp.kp); } } #undef DEFINE_FIELD #define DEFINE_FIELD(type, item, name, is_signed) \ do { \ ret = trace_define_field(event_call, #type, name, \ offsetof(typeof(field), item), \ sizeof(field.item), is_signed, \ FILTER_OTHER); \ if (ret) \ return ret; \ } while (0) static int kprobe_event_define_fields(struct ftrace_event_call *event_call) { int ret, i; struct kprobe_trace_entry_head field; struct trace_probe *tp = (struct trace_probe *)event_call->data; DEFINE_FIELD(unsigned long, ip, FIELD_STRING_IP, 0); /* Set argument names as fields */ for (i = 0; i < tp->nr_args; i++) { ret = trace_define_field(event_call, tp->args[i].type->fmttype, tp->args[i].name, sizeof(field) + tp->args[i].offset, tp->args[i].type->size, tp->args[i].type->is_signed, FILTER_OTHER); if (ret) return ret; } return 0; } static int kretprobe_event_define_fields(struct ftrace_event_call *event_call) { int ret, i; struct kretprobe_trace_entry_head field; struct trace_probe *tp = (struct trace_probe *)event_call->data; DEFINE_FIELD(unsigned long, func, FIELD_STRING_FUNC, 0); DEFINE_FIELD(unsigned long, ret_ip, FIELD_STRING_RETIP, 0); /* Set argument names as fields */ for (i = 0; i < tp->nr_args; i++) { ret = trace_define_field(event_call, tp->args[i].type->fmttype, tp->args[i].name, sizeof(field) + tp->args[i].offset, tp->args[i].type->size, tp->args[i].type->is_signed, FILTER_OTHER); if (ret) return ret; } return 0; } static int __set_print_fmt(struct trace_probe *tp, char *buf, int len) { int i; int pos = 0; const char *fmt, *arg; if (!probe_is_return(tp)) { fmt = "(%lx)"; arg = "REC->" FIELD_STRING_IP; } else { fmt = "(%lx <- %lx)"; arg = "REC->" FIELD_STRING_FUNC ", REC->" FIELD_STRING_RETIP; } /* When len=0, we just calculate the needed length */ #define LEN_OR_ZERO (len ? len - pos : 0) pos += snprintf(buf + pos, LEN_OR_ZERO, "\"%s", fmt); for (i = 0; i < tp->nr_args; i++) { pos += snprintf(buf + pos, LEN_OR_ZERO, " %s=%s", tp->args[i].name, tp->args[i].type->fmt); } pos += snprintf(buf + pos, LEN_OR_ZERO, "\", %s", arg); for (i = 0; i < tp->nr_args; i++) { if (strcmp(tp->args[i].type->name, "string") == 0) pos += snprintf(buf + pos, LEN_OR_ZERO, ", __get_str(%s)", tp->args[i].name); else pos += snprintf(buf + pos, LEN_OR_ZERO, ", REC->%s", tp->args[i].name); } #undef LEN_OR_ZERO /* return the length of print_fmt */ return pos; } static int set_print_fmt(struct trace_probe *tp) { int len; char *print_fmt; /* First: called with 0 length to calculate the needed length */ len = __set_print_fmt(tp, NULL, 0); print_fmt = kmalloc(len + 1, GFP_KERNEL); if (!print_fmt) return -ENOMEM; /* Second: actually write the @print_fmt */ __set_print_fmt(tp, print_fmt, len + 1); tp->call.print_fmt = print_fmt; return 0; } #ifdef CONFIG_PERF_EVENTS /* Kprobe profile handler */ static __kprobes void kprobe_perf_func(struct kprobe *kp, struct pt_regs *regs) { struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp); struct ftrace_event_call *call = &tp->call; struct kprobe_trace_entry_head *entry; struct hlist_head *head; int size, __size, dsize; int rctx; dsize = __get_data_size(tp, regs); __size = sizeof(*entry) + tp->size + dsize; size = ALIGN(__size + sizeof(u32), sizeof(u64)); size -= sizeof(u32); if (WARN_ONCE(size > PERF_MAX_TRACE_SIZE, "profile buffer not large enough")) return; entry = perf_trace_buf_prepare(size, call->event.type, regs, &rctx); if (!entry) return; entry->ip = (unsigned long)kp->addr; memset(&entry[1], 0, dsize); store_trace_args(sizeof(*entry), tp, regs, (u8 *)&entry[1], dsize); head = this_cpu_ptr(call->perf_events); perf_trace_buf_submit(entry, size, rctx, entry->ip, 1, regs, head); } /* Kretprobe profile handler */ static __kprobes void kretprobe_perf_func(struct kretprobe_instance *ri, struct pt_regs *regs) { struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp); struct ftrace_event_call *call = &tp->call; struct kretprobe_trace_entry_head *entry; struct hlist_head *head; int size, __size, dsize; int rctx; dsize = __get_data_size(tp, regs); __size = sizeof(*entry) + tp->size + dsize; size = ALIGN(__size + sizeof(u32), sizeof(u64)); size -= sizeof(u32); if (WARN_ONCE(size > PERF_MAX_TRACE_SIZE, "profile buffer not large enough")) return; entry = perf_trace_buf_prepare(size, call->event.type, regs, &rctx); if (!entry) return; entry->func = (unsigned long)tp->rp.kp.addr; entry->ret_ip = (unsigned long)ri->ret_addr; store_trace_args(sizeof(*entry), tp, regs, (u8 *)&entry[1], dsize); head = this_cpu_ptr(call->perf_events); perf_trace_buf_submit(entry, size, rctx, entry->ret_ip, 1, regs, head); } static int probe_perf_enable(struct ftrace_event_call *call) { struct trace_probe *tp = (struct trace_probe *)call->data; tp->flags |= TP_FLAG_PROFILE; if (probe_is_return(tp)) return enable_kretprobe(&tp->rp); else return enable_kprobe(&tp->rp.kp); } static void probe_perf_disable(struct ftrace_event_call *call) { struct trace_probe *tp = (struct trace_probe *)call->data; tp->flags &= ~TP_FLAG_PROFILE; if (!(tp->flags & TP_FLAG_TRACE)) { if (probe_is_return(tp)) disable_kretprobe(&tp->rp); else disable_kprobe(&tp->rp.kp); } } #endif /* CONFIG_PERF_EVENTS */ static __kprobes int kprobe_register(struct ftrace_event_call *event, enum trace_reg type) { switch (type) { case TRACE_REG_REGISTER: return probe_event_enable(event); case TRACE_REG_UNREGISTER: probe_event_disable(event); return 0; #ifdef CONFIG_PERF_EVENTS case TRACE_REG_PERF_REGISTER: return probe_perf_enable(event); case TRACE_REG_PERF_UNREGISTER: probe_perf_disable(event); return 0; #endif } return 0; } static __kprobes int kprobe_dispatcher(struct kprobe *kp, struct pt_regs *regs) { struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp); if (tp->flags & TP_FLAG_TRACE) kprobe_trace_func(kp, regs); #ifdef CONFIG_PERF_EVENTS if (tp->flags & TP_FLAG_PROFILE) kprobe_perf_func(kp, regs); #endif return 0; /* We don't tweek kernel, so just return 0 */ } static __kprobes int kretprobe_dispatcher(struct kretprobe_instance *ri, struct pt_regs *regs) { struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp); if (tp->flags & TP_FLAG_TRACE) kretprobe_trace_func(ri, regs); #ifdef CONFIG_PERF_EVENTS if (tp->flags & TP_FLAG_PROFILE) kretprobe_perf_func(ri, regs); #endif return 0; /* We don't tweek kernel, so just return 0 */ } static struct trace_event_functions kretprobe_funcs = { .trace = print_kretprobe_event }; static struct trace_event_functions kprobe_funcs = { .trace = print_kprobe_event }; static int register_probe_event(struct trace_probe *tp) { struct ftrace_event_call *call = &tp->call; int ret; /* Initialize ftrace_event_call */ INIT_LIST_HEAD(&call->class->fields); if (probe_is_return(tp)) { call->event.funcs = &kretprobe_funcs; call->class->define_fields = kretprobe_event_define_fields; } else { call->event.funcs = &kprobe_funcs; call->class->define_fields = kprobe_event_define_fields; } if (set_print_fmt(tp) < 0) return -ENOMEM; ret = register_ftrace_event(&call->event); if (!ret) { kfree(call->print_fmt); return -ENODEV; } call->flags = 0; call->class->reg = kprobe_register; call->data = tp; ret = trace_add_event_call(call); if (ret) { pr_info("Failed to register kprobe event: %s\n", call->name); kfree(call->print_fmt); unregister_ftrace_event(&call->event); } return ret; } static void unregister_probe_event(struct trace_probe *tp) { /* tp->event is unregistered in trace_remove_event_call() */ trace_remove_event_call(&tp->call); kfree(tp->call.print_fmt); } /* Make a debugfs interface for controlling probe points */ static __init int init_kprobe_trace(void) { struct dentry *d_tracer; struct dentry *entry; d_tracer = tracing_init_dentry(); if (!d_tracer) return 0; entry = debugfs_create_file("kprobe_events", 0644, d_tracer, NULL, &kprobe_events_ops); /* Event list interface */ if (!entry) pr_warning("Could not create debugfs " "'kprobe_events' entry\n"); /* Profile interface */ entry = debugfs_create_file("kprobe_profile", 0444, d_tracer, NULL, &kprobe_profile_ops); if (!entry) pr_warning("Could not create debugfs " "'kprobe_profile' entry\n"); return 0; } fs_initcall(init_kprobe_trace); #ifdef CONFIG_FTRACE_STARTUP_TEST static int kprobe_trace_selftest_target(int a1, int a2, int a3, int a4, int a5, int a6) { return a1 + a2 + a3 + a4 + a5 + a6; } static __init int kprobe_trace_self_tests_init(void) { int ret, warn = 0; int (*target)(int, int, int, int, int, int); struct trace_probe *tp; target = kprobe_trace_selftest_target; pr_info("Testing kprobe tracing: "); ret = command_trace_probe("p:testprobe kprobe_trace_selftest_target " "$stack $stack0 +0($stack)"); if (WARN_ON_ONCE(ret)) { pr_warning("error on probing function entry.\n"); warn++; } else { /* Enable trace point */ tp = find_probe_event("testprobe", KPROBE_EVENT_SYSTEM); if (WARN_ON_ONCE(tp == NULL)) { pr_warning("error on getting new probe.\n"); warn++; } else probe_event_enable(&tp->call); } ret = command_trace_probe("r:testprobe2 kprobe_trace_selftest_target " "$retval"); if (WARN_ON_ONCE(ret)) { pr_warning("error on probing function return.\n"); warn++; } else { /* Enable trace point */ tp = find_probe_event("testprobe2", KPROBE_EVENT_SYSTEM); if (WARN_ON_ONCE(tp == NULL)) { pr_warning("error on getting new probe.\n"); warn++; } else probe_event_enable(&tp->call); } if (warn) goto end; ret = target(1, 2, 3, 4, 5, 6); ret = command_trace_probe("-:testprobe"); if (WARN_ON_ONCE(ret)) { pr_warning("error on deleting a probe.\n"); warn++; } ret = command_trace_probe("-:testprobe2"); if (WARN_ON_ONCE(ret)) { pr_warning("error on deleting a probe.\n"); warn++; } end: cleanup_all_probes(); if (warn) pr_cont("NG: Some tests are failed. Please check them.\n"); else pr_cont("OK\n"); return 0; } late_initcall(kprobe_trace_self_tests_init); #endif