/* bnx2.c: Broadcom NX2 network driver. * * Copyright (c) 2004, 2005, 2006 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Written by: Michael Chan (mchan@broadcom.com) */ #include <linux/config.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/dma-mapping.h> #include <asm/bitops.h> #include <asm/io.h> #include <asm/irq.h> #include <linux/delay.h> #include <asm/byteorder.h> #include <linux/time.h> #include <linux/ethtool.h> #include <linux/mii.h> #ifdef NETIF_F_HW_VLAN_TX #include <linux/if_vlan.h> #define BCM_VLAN 1 #endif #ifdef NETIF_F_TSO #include <net/ip.h> #include <net/tcp.h> #include <net/checksum.h> #define BCM_TSO 1 #endif #include <linux/workqueue.h> #include <linux/crc32.h> #include <linux/prefetch.h> #include <linux/cache.h> #include "bnx2.h" #include "bnx2_fw.h" #define DRV_MODULE_NAME "bnx2" #define PFX DRV_MODULE_NAME ": " #define DRV_MODULE_VERSION "1.4.38" #define DRV_MODULE_RELDATE "February 10, 2006" #define RUN_AT(x) (jiffies + (x)) /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (5*HZ) static char version[] __devinitdata = "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>"); MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_MODULE_VERSION); static int disable_msi = 0; module_param(disable_msi, int, 0); MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)"); typedef enum { BCM5706 = 0, NC370T, NC370I, BCM5706S, NC370F, BCM5708, BCM5708S, } board_t; /* indexed by board_t, above */ static const struct { char *name; } board_info[] __devinitdata = { { "Broadcom NetXtreme II BCM5706 1000Base-T" }, { "HP NC370T Multifunction Gigabit Server Adapter" }, { "HP NC370i Multifunction Gigabit Server Adapter" }, { "Broadcom NetXtreme II BCM5706 1000Base-SX" }, { "HP NC370F Multifunction Gigabit Server Adapter" }, { "Broadcom NetXtreme II BCM5708 1000Base-T" }, { "Broadcom NetXtreme II BCM5708 1000Base-SX" }, }; static struct pci_device_id bnx2_pci_tbl[] = { { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706, PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T }, { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706, PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I }, { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706, PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 }, { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708, PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 }, { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S, PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F }, { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S, PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S }, { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S, PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S }, { 0, } }; static struct flash_spec flash_table[] = { /* Slow EEPROM */ {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, "EEPROM - slow"}, /* Expansion entry 0001 */ {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 0001"}, /* Saifun SA25F010 (non-buffered flash) */ /* strap, cfg1, & write1 need updates */ {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, "Non-buffered flash (128kB)"}, /* Saifun SA25F020 (non-buffered flash) */ /* strap, cfg1, & write1 need updates */ {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, "Non-buffered flash (256kB)"}, /* Expansion entry 0100 */ {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 0100"}, /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, /* Entry 0110: ST M45PE20 (non-buffered flash)*/ {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, /* Saifun SA25F005 (non-buffered flash) */ /* strap, cfg1, & write1 need updates */ {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, "Non-buffered flash (64kB)"}, /* Fast EEPROM */ {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, "EEPROM - fast"}, /* Expansion entry 1001 */ {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1001"}, /* Expansion entry 1010 */ {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1010"}, /* ATMEL AT45DB011B (buffered flash) */ {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, "Buffered flash (128kB)"}, /* Expansion entry 1100 */ {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1100"}, /* Expansion entry 1101 */ {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1101"}, /* Ateml Expansion entry 1110 */ {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, BUFFERED_FLASH_BYTE_ADDR_MASK, 0, "Entry 1110 (Atmel)"}, /* ATMEL AT45DB021B (buffered flash) */ {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, "Buffered flash (256kB)"}, }; MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl); static inline u32 bnx2_tx_avail(struct bnx2 *bp) { u32 diff = TX_RING_IDX(bp->tx_prod) - TX_RING_IDX(bp->tx_cons); if (diff > MAX_TX_DESC_CNT) diff = (diff & MAX_TX_DESC_CNT) - 1; return (bp->tx_ring_size - diff); } static u32 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset) { REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset); return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW)); } static void bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val) { REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset); REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val); } static void bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val) { offset += cid_addr; REG_WR(bp, BNX2_CTX_DATA_ADR, offset); REG_WR(bp, BNX2_CTX_DATA, val); } static int bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val) { u32 val1; int i, ret; if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) { val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); REG_RD(bp, BNX2_EMAC_MDIO_MODE); udelay(40); } val1 = (bp->phy_addr << 21) | (reg << 16) | BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT | BNX2_EMAC_MDIO_COMM_START_BUSY; REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1); for (i = 0; i < 50; i++) { udelay(10); val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM); if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) { udelay(5); val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM); val1 &= BNX2_EMAC_MDIO_COMM_DATA; break; } } if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) { *val = 0x0; ret = -EBUSY; } else { *val = val1; ret = 0; } if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) { val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); REG_RD(bp, BNX2_EMAC_MDIO_MODE); udelay(40); } return ret; } static int bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val) { u32 val1; int i, ret; if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) { val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); REG_RD(bp, BNX2_EMAC_MDIO_MODE); udelay(40); } val1 = (bp->phy_addr << 21) | (reg << 16) | val | BNX2_EMAC_MDIO_COMM_COMMAND_WRITE | BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT; REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1); for (i = 0; i < 50; i++) { udelay(10); val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM); if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) { udelay(5); break; } } if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) ret = -EBUSY; else ret = 0; if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) { val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); REG_RD(bp, BNX2_EMAC_MDIO_MODE); udelay(40); } return ret; } static void bnx2_disable_int(struct bnx2 *bp) { REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT); REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD); } static void bnx2_enable_int(struct bnx2 *bp) { REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx); REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx); REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW); } static void bnx2_disable_int_sync(struct bnx2 *bp) { atomic_inc(&bp->intr_sem); bnx2_disable_int(bp); synchronize_irq(bp->pdev->irq); } static void bnx2_netif_stop(struct bnx2 *bp) { bnx2_disable_int_sync(bp); if (netif_running(bp->dev)) { netif_poll_disable(bp->dev); netif_tx_disable(bp->dev); bp->dev->trans_start = jiffies; /* prevent tx timeout */ } } static void bnx2_netif_start(struct bnx2 *bp) { if (atomic_dec_and_test(&bp->intr_sem)) { if (netif_running(bp->dev)) { netif_wake_queue(bp->dev); netif_poll_enable(bp->dev); bnx2_enable_int(bp); } } } static void bnx2_free_mem(struct bnx2 *bp) { int i; if (bp->status_blk) { pci_free_consistent(bp->pdev, bp->status_stats_size, bp->status_blk, bp->status_blk_mapping); bp->status_blk = NULL; bp->stats_blk = NULL; } if (bp->tx_desc_ring) { pci_free_consistent(bp->pdev, sizeof(struct tx_bd) * TX_DESC_CNT, bp->tx_desc_ring, bp->tx_desc_mapping); bp->tx_desc_ring = NULL; } kfree(bp->tx_buf_ring); bp->tx_buf_ring = NULL; for (i = 0; i < bp->rx_max_ring; i++) { if (bp->rx_desc_ring[i]) pci_free_consistent(bp->pdev, sizeof(struct rx_bd) * RX_DESC_CNT, bp->rx_desc_ring[i], bp->rx_desc_mapping[i]); bp->rx_desc_ring[i] = NULL; } vfree(bp->rx_buf_ring); bp->rx_buf_ring = NULL; } static int bnx2_alloc_mem(struct bnx2 *bp) { int i, status_blk_size; bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT, GFP_KERNEL); if (bp->tx_buf_ring == NULL) return -ENOMEM; bp->tx_desc_ring = pci_alloc_consistent(bp->pdev, sizeof(struct tx_bd) * TX_DESC_CNT, &bp->tx_desc_mapping); if (bp->tx_desc_ring == NULL) goto alloc_mem_err; bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT * bp->rx_max_ring); if (bp->rx_buf_ring == NULL) goto alloc_mem_err; memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT * bp->rx_max_ring); for (i = 0; i < bp->rx_max_ring; i++) { bp->rx_desc_ring[i] = pci_alloc_consistent(bp->pdev, sizeof(struct rx_bd) * RX_DESC_CNT, &bp->rx_desc_mapping[i]); if (bp->rx_desc_ring[i] == NULL) goto alloc_mem_err; } /* Combine status and statistics blocks into one allocation. */ status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block)); bp->status_stats_size = status_blk_size + sizeof(struct statistics_block); bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size, &bp->status_blk_mapping); if (bp->status_blk == NULL) goto alloc_mem_err; memset(bp->status_blk, 0, bp->status_stats_size); bp->stats_blk = (void *) ((unsigned long) bp->status_blk + status_blk_size); bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size; return 0; alloc_mem_err: bnx2_free_mem(bp); return -ENOMEM; } static void bnx2_report_fw_link(struct bnx2 *bp) { u32 fw_link_status = 0; if (bp->link_up) { u32 bmsr; switch (bp->line_speed) { case SPEED_10: if (bp->duplex == DUPLEX_HALF) fw_link_status = BNX2_LINK_STATUS_10HALF; else fw_link_status = BNX2_LINK_STATUS_10FULL; break; case SPEED_100: if (bp->duplex == DUPLEX_HALF) fw_link_status = BNX2_LINK_STATUS_100HALF; else fw_link_status = BNX2_LINK_STATUS_100FULL; break; case SPEED_1000: if (bp->duplex == DUPLEX_HALF) fw_link_status = BNX2_LINK_STATUS_1000HALF; else fw_link_status = BNX2_LINK_STATUS_1000FULL; break; case SPEED_2500: if (bp->duplex == DUPLEX_HALF) fw_link_status = BNX2_LINK_STATUS_2500HALF; else fw_link_status = BNX2_LINK_STATUS_2500FULL; break; } fw_link_status |= BNX2_LINK_STATUS_LINK_UP; if (bp->autoneg) { fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED; bnx2_read_phy(bp, MII_BMSR, &bmsr); bnx2_read_phy(bp, MII_BMSR, &bmsr); if (!(bmsr & BMSR_ANEGCOMPLETE) || bp->phy_flags & PHY_PARALLEL_DETECT_FLAG) fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET; else fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE; } } else fw_link_status = BNX2_LINK_STATUS_LINK_DOWN; REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status); } static void bnx2_report_link(struct bnx2 *bp) { if (bp->link_up) { netif_carrier_on(bp->dev); printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name); printk("%d Mbps ", bp->line_speed); if (bp->duplex == DUPLEX_FULL) printk("full duplex"); else printk("half duplex"); if (bp->flow_ctrl) { if (bp->flow_ctrl & FLOW_CTRL_RX) { printk(", receive "); if (bp->flow_ctrl & FLOW_CTRL_TX) printk("& transmit "); } else { printk(", transmit "); } printk("flow control ON"); } printk("\n"); } else { netif_carrier_off(bp->dev); printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name); } bnx2_report_fw_link(bp); } static void bnx2_resolve_flow_ctrl(struct bnx2 *bp) { u32 local_adv, remote_adv; bp->flow_ctrl = 0; if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) != (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) { if (bp->duplex == DUPLEX_FULL) { bp->flow_ctrl = bp->req_flow_ctrl; } return; } if (bp->duplex != DUPLEX_FULL) { return; } if ((bp->phy_flags & PHY_SERDES_FLAG) && (CHIP_NUM(bp) == CHIP_NUM_5708)) { u32 val; bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val); if (val & BCM5708S_1000X_STAT1_TX_PAUSE) bp->flow_ctrl |= FLOW_CTRL_TX; if (val & BCM5708S_1000X_STAT1_RX_PAUSE) bp->flow_ctrl |= FLOW_CTRL_RX; return; } bnx2_read_phy(bp, MII_ADVERTISE, &local_adv); bnx2_read_phy(bp, MII_LPA, &remote_adv); if (bp->phy_flags & PHY_SERDES_FLAG) { u32 new_local_adv = 0; u32 new_remote_adv = 0; if (local_adv & ADVERTISE_1000XPAUSE) new_local_adv |= ADVERTISE_PAUSE_CAP; if (local_adv & ADVERTISE_1000XPSE_ASYM) new_local_adv |= ADVERTISE_PAUSE_ASYM; if (remote_adv & ADVERTISE_1000XPAUSE) new_remote_adv |= ADVERTISE_PAUSE_CAP; if (remote_adv & ADVERTISE_1000XPSE_ASYM) new_remote_adv |= ADVERTISE_PAUSE_ASYM; local_adv = new_local_adv; remote_adv = new_remote_adv; } /* See Table 28B-3 of 802.3ab-1999 spec. */ if (local_adv & ADVERTISE_PAUSE_CAP) { if(local_adv & ADVERTISE_PAUSE_ASYM) { if (remote_adv & ADVERTISE_PAUSE_CAP) { bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX; } else if (remote_adv & ADVERTISE_PAUSE_ASYM) { bp->flow_ctrl = FLOW_CTRL_RX; } } else { if (remote_adv & ADVERTISE_PAUSE_CAP) { bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX; } } } else if (local_adv & ADVERTISE_PAUSE_ASYM) { if ((remote_adv & ADVERTISE_PAUSE_CAP) && (remote_adv & ADVERTISE_PAUSE_ASYM)) { bp->flow_ctrl = FLOW_CTRL_TX; } } } static int bnx2_5708s_linkup(struct bnx2 *bp) { u32 val; bp->link_up = 1; bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val); switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) { case BCM5708S_1000X_STAT1_SPEED_10: bp->line_speed = SPEED_10; break; case BCM5708S_1000X_STAT1_SPEED_100: bp->line_speed = SPEED_100; break; case BCM5708S_1000X_STAT1_SPEED_1G: bp->line_speed = SPEED_1000; break; case BCM5708S_1000X_STAT1_SPEED_2G5: bp->line_speed = SPEED_2500; break; } if (val & BCM5708S_1000X_STAT1_FD) bp->duplex = DUPLEX_FULL; else bp->duplex = DUPLEX_HALF; return 0; } static int bnx2_5706s_linkup(struct bnx2 *bp) { u32 bmcr, local_adv, remote_adv, common; bp->link_up = 1; bp->line_speed = SPEED_1000; bnx2_read_phy(bp, MII_BMCR, &bmcr); if (bmcr & BMCR_FULLDPLX) { bp->duplex = DUPLEX_FULL; } else { bp->duplex = DUPLEX_HALF; } if (!(bmcr & BMCR_ANENABLE)) { return 0; } bnx2_read_phy(bp, MII_ADVERTISE, &local_adv); bnx2_read_phy(bp, MII_LPA, &remote_adv); common = local_adv & remote_adv; if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) { if (common & ADVERTISE_1000XFULL) { bp->duplex = DUPLEX_FULL; } else { bp->duplex = DUPLEX_HALF; } } return 0; } static int bnx2_copper_linkup(struct bnx2 *bp) { u32 bmcr; bnx2_read_phy(bp, MII_BMCR, &bmcr); if (bmcr & BMCR_ANENABLE) { u32 local_adv, remote_adv, common; bnx2_read_phy(bp, MII_CTRL1000, &local_adv); bnx2_read_phy(bp, MII_STAT1000, &remote_adv); common = local_adv & (remote_adv >> 2); if (common & ADVERTISE_1000FULL) { bp->line_speed = SPEED_1000; bp->duplex = DUPLEX_FULL; } else if (common & ADVERTISE_1000HALF) { bp->line_speed = SPEED_1000; bp->duplex = DUPLEX_HALF; } else { bnx2_read_phy(bp, MII_ADVERTISE, &local_adv); bnx2_read_phy(bp, MII_LPA, &remote_adv); common = local_adv & remote_adv; if (common & ADVERTISE_100FULL) { bp->line_speed = SPEED_100; bp->duplex = DUPLEX_FULL; } else if (common & ADVERTISE_100HALF) { bp->line_speed = SPEED_100; bp->duplex = DUPLEX_HALF; } else if (common & ADVERTISE_10FULL) { bp->line_speed = SPEED_10; bp->duplex = DUPLEX_FULL; } else if (common & ADVERTISE_10HALF) { bp->line_speed = SPEED_10; bp->duplex = DUPLEX_HALF; } else { bp->line_speed = 0; bp->link_up = 0; } } } else { if (bmcr & BMCR_SPEED100) { bp->line_speed = SPEED_100; } else { bp->line_speed = SPEED_10; } if (bmcr & BMCR_FULLDPLX) { bp->duplex = DUPLEX_FULL; } else { bp->duplex = DUPLEX_HALF; } } return 0; } static int bnx2_set_mac_link(struct bnx2 *bp) { u32 val; REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620); if (bp->link_up && (bp->line_speed == SPEED_1000) && (bp->duplex == DUPLEX_HALF)) { REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff); } /* Configure the EMAC mode register. */ val = REG_RD(bp, BNX2_EMAC_MODE); val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX | BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK | BNX2_EMAC_MODE_25G); if (bp->link_up) { switch (bp->line_speed) { case SPEED_10: if (CHIP_NUM(bp) == CHIP_NUM_5708) { val |= BNX2_EMAC_MODE_PORT_MII_10; break; } /* fall through */ case SPEED_100: val |= BNX2_EMAC_MODE_PORT_MII; break; case SPEED_2500: val |= BNX2_EMAC_MODE_25G; /* fall through */ case SPEED_1000: val |= BNX2_EMAC_MODE_PORT_GMII; break; } } else { val |= BNX2_EMAC_MODE_PORT_GMII; } /* Set the MAC to operate in the appropriate duplex mode. */ if (bp->duplex == DUPLEX_HALF) val |= BNX2_EMAC_MODE_HALF_DUPLEX; REG_WR(bp, BNX2_EMAC_MODE, val); /* Enable/disable rx PAUSE. */ bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN; if (bp->flow_ctrl & FLOW_CTRL_RX) bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN; REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode); /* Enable/disable tx PAUSE. */ val = REG_RD(bp, BNX2_EMAC_TX_MODE); val &= ~BNX2_EMAC_TX_MODE_FLOW_EN; if (bp->flow_ctrl & FLOW_CTRL_TX) val |= BNX2_EMAC_TX_MODE_FLOW_EN; REG_WR(bp, BNX2_EMAC_TX_MODE, val); /* Acknowledge the interrupt. */ REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE); return 0; } static int bnx2_set_link(struct bnx2 *bp) { u32 bmsr; u8 link_up; if (bp->loopback == MAC_LOOPBACK) { bp->link_up = 1; return 0; } link_up = bp->link_up; bnx2_read_phy(bp, MII_BMSR, &bmsr); bnx2_read_phy(bp, MII_BMSR, &bmsr); if ((bp->phy_flags & PHY_SERDES_FLAG) && (CHIP_NUM(bp) == CHIP_NUM_5706)) { u32 val; val = REG_RD(bp, BNX2_EMAC_STATUS); if (val & BNX2_EMAC_STATUS_LINK) bmsr |= BMSR_LSTATUS; else bmsr &= ~BMSR_LSTATUS; } if (bmsr & BMSR_LSTATUS) { bp->link_up = 1; if (bp->phy_flags & PHY_SERDES_FLAG) { if (CHIP_NUM(bp) == CHIP_NUM_5706) bnx2_5706s_linkup(bp); else if (CHIP_NUM(bp) == CHIP_NUM_5708) bnx2_5708s_linkup(bp); } else { bnx2_copper_linkup(bp); } bnx2_resolve_flow_ctrl(bp); } else { if ((bp->phy_flags & PHY_SERDES_FLAG) && (bp->autoneg & AUTONEG_SPEED)) { u32 bmcr; bnx2_read_phy(bp, MII_BMCR, &bmcr); if (!(bmcr & BMCR_ANENABLE)) { bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANENABLE); } } bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG; bp->link_up = 0; } if (bp->link_up != link_up) { bnx2_report_link(bp); } bnx2_set_mac_link(bp); return 0; } static int bnx2_reset_phy(struct bnx2 *bp) { int i; u32 reg; bnx2_write_phy(bp, MII_BMCR, BMCR_RESET); #define PHY_RESET_MAX_WAIT 100 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) { udelay(10); bnx2_read_phy(bp, MII_BMCR, ®); if (!(reg & BMCR_RESET)) { udelay(20); break; } } if (i == PHY_RESET_MAX_WAIT) { return -EBUSY; } return 0; } static u32 bnx2_phy_get_pause_adv(struct bnx2 *bp) { u32 adv = 0; if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) == (FLOW_CTRL_RX | FLOW_CTRL_TX)) { if (bp->phy_flags & PHY_SERDES_FLAG) { adv = ADVERTISE_1000XPAUSE; } else { adv = ADVERTISE_PAUSE_CAP; } } else if (bp->req_flow_ctrl & FLOW_CTRL_TX) { if (bp->phy_flags & PHY_SERDES_FLAG) { adv = ADVERTISE_1000XPSE_ASYM; } else { adv = ADVERTISE_PAUSE_ASYM; } } else if (bp->req_flow_ctrl & FLOW_CTRL_RX) { if (bp->phy_flags & PHY_SERDES_FLAG) { adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM; } else { adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; } } return adv; } static int bnx2_setup_serdes_phy(struct bnx2 *bp) { u32 adv, bmcr, up1; u32 new_adv = 0; if (!(bp->autoneg & AUTONEG_SPEED)) { u32 new_bmcr; int force_link_down = 0; if (CHIP_NUM(bp) == CHIP_NUM_5708) { bnx2_read_phy(bp, BCM5708S_UP1, &up1); if (up1 & BCM5708S_UP1_2G5) { up1 &= ~BCM5708S_UP1_2G5; bnx2_write_phy(bp, BCM5708S_UP1, up1); force_link_down = 1; } } bnx2_read_phy(bp, MII_ADVERTISE, &adv); adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF); bnx2_read_phy(bp, MII_BMCR, &bmcr); new_bmcr = bmcr & ~BMCR_ANENABLE; new_bmcr |= BMCR_SPEED1000; if (bp->req_duplex == DUPLEX_FULL) { adv |= ADVERTISE_1000XFULL; new_bmcr |= BMCR_FULLDPLX; } else { adv |= ADVERTISE_1000XHALF; new_bmcr &= ~BMCR_FULLDPLX; } if ((new_bmcr != bmcr) || (force_link_down)) { /* Force a link down visible on the other side */ if (bp->link_up) { bnx2_write_phy(bp, MII_ADVERTISE, adv & ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF)); bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE); bp->link_up = 0; netif_carrier_off(bp->dev); bnx2_write_phy(bp, MII_BMCR, new_bmcr); } bnx2_write_phy(bp, MII_ADVERTISE, adv); bnx2_write_phy(bp, MII_BMCR, new_bmcr); } return 0; } if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) { bnx2_read_phy(bp, BCM5708S_UP1, &up1); up1 |= BCM5708S_UP1_2G5; bnx2_write_phy(bp, BCM5708S_UP1, up1); } if (bp->advertising & ADVERTISED_1000baseT_Full) new_adv |= ADVERTISE_1000XFULL; new_adv |= bnx2_phy_get_pause_adv(bp); bnx2_read_phy(bp, MII_ADVERTISE, &adv); bnx2_read_phy(bp, MII_BMCR, &bmcr); bp->serdes_an_pending = 0; if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) { /* Force a link down visible on the other side */ if (bp->link_up) { int i; bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK); for (i = 0; i < 110; i++) { udelay(100); } } bnx2_write_phy(bp, MII_ADVERTISE, new_adv); bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE); if (CHIP_NUM(bp) == CHIP_NUM_5706) { /* Speed up link-up time when the link partner * does not autonegotiate which is very common * in blade servers. Some blade servers use * IPMI for kerboard input and it's important * to minimize link disruptions. Autoneg. involves * exchanging base pages plus 3 next pages and * normally completes in about 120 msec. */ bp->current_interval = SERDES_AN_TIMEOUT; bp->serdes_an_pending = 1; mod_timer(&bp->timer, jiffies + bp->current_interval); } } return 0; } #define ETHTOOL_ALL_FIBRE_SPEED \ (ADVERTISED_1000baseT_Full) #define ETHTOOL_ALL_COPPER_SPEED \ (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ ADVERTISED_1000baseT_Full) #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \ ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA) #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL) static int bnx2_setup_copper_phy(struct bnx2 *bp) { u32 bmcr; u32 new_bmcr; bnx2_read_phy(bp, MII_BMCR, &bmcr); if (bp->autoneg & AUTONEG_SPEED) { u32 adv_reg, adv1000_reg; u32 new_adv_reg = 0; u32 new_adv1000_reg = 0; bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg); adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg); adv1000_reg &= PHY_ALL_1000_SPEED; if (bp->advertising & ADVERTISED_10baseT_Half) new_adv_reg |= ADVERTISE_10HALF; if (bp->advertising & ADVERTISED_10baseT_Full) new_adv_reg |= ADVERTISE_10FULL; if (bp->advertising & ADVERTISED_100baseT_Half) new_adv_reg |= ADVERTISE_100HALF; if (bp->advertising & ADVERTISED_100baseT_Full) new_adv_reg |= ADVERTISE_100FULL; if (bp->advertising & ADVERTISED_1000baseT_Full) new_adv1000_reg |= ADVERTISE_1000FULL; new_adv_reg |= ADVERTISE_CSMA; new_adv_reg |= bnx2_phy_get_pause_adv(bp); if ((adv1000_reg != new_adv1000_reg) || (adv_reg != new_adv_reg) || ((bmcr & BMCR_ANENABLE) == 0)) { bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg); bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg); bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART | BMCR_ANENABLE); } else if (bp->link_up) { /* Flow ctrl may have changed from auto to forced */ /* or vice-versa. */ bnx2_resolve_flow_ctrl(bp); bnx2_set_mac_link(bp); } return 0; } new_bmcr = 0; if (bp->req_line_speed == SPEED_100) { new_bmcr |= BMCR_SPEED100; } if (bp->req_duplex == DUPLEX_FULL) { new_bmcr |= BMCR_FULLDPLX; } if (new_bmcr != bmcr) { u32 bmsr; int i = 0; bnx2_read_phy(bp, MII_BMSR, &bmsr); bnx2_read_phy(bp, MII_BMSR, &bmsr); if (bmsr & BMSR_LSTATUS) { /* Force link down */ bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK); do { udelay(100); bnx2_read_phy(bp, MII_BMSR, &bmsr); bnx2_read_phy(bp, MII_BMSR, &bmsr); i++; } while ((bmsr & BMSR_LSTATUS) && (i < 620)); } bnx2_write_phy(bp, MII_BMCR, new_bmcr); /* Normally, the new speed is setup after the link has * gone down and up again. In some cases, link will not go * down so we need to set up the new speed here. */ if (bmsr & BMSR_LSTATUS) { bp->line_speed = bp->req_line_speed; bp->duplex = bp->req_duplex; bnx2_resolve_flow_ctrl(bp); bnx2_set_mac_link(bp); } } return 0; } static int bnx2_setup_phy(struct bnx2 *bp) { if (bp->loopback == MAC_LOOPBACK) return 0; if (bp->phy_flags & PHY_SERDES_FLAG) { return (bnx2_setup_serdes_phy(bp)); } else { return (bnx2_setup_copper_phy(bp)); } } static int bnx2_init_5708s_phy(struct bnx2 *bp) { u32 val; bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3); bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE); bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG); bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val); val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN; bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val); bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val); val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN; bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val); if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) { bnx2_read_phy(bp, BCM5708S_UP1, &val); val |= BCM5708S_UP1_2G5; bnx2_write_phy(bp, BCM5708S_UP1, val); } if ((CHIP_ID(bp) == CHIP_ID_5708_A0) || (CHIP_ID(bp) == CHIP_ID_5708_B0) || (CHIP_ID(bp) == CHIP_ID_5708_B1)) { /* increase tx signal amplitude */ bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_TX_MISC); bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val); val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM; bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val); bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG); } val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) & BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK; if (val) { u32 is_backplane; is_backplane = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG); if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) { bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_TX_MISC); bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val); bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG); } } return 0; } static int bnx2_init_5706s_phy(struct bnx2 *bp) { bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG; if (CHIP_NUM(bp) == CHIP_NUM_5706) { REG_WR(bp, BNX2_MISC_UNUSED0, 0x300); } if (bp->dev->mtu > 1500) { u32 val; /* Set extended packet length bit */ bnx2_write_phy(bp, 0x18, 0x7); bnx2_read_phy(bp, 0x18, &val); bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000); bnx2_write_phy(bp, 0x1c, 0x6c00); bnx2_read_phy(bp, 0x1c, &val); bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02); } else { u32 val; bnx2_write_phy(bp, 0x18, 0x7); bnx2_read_phy(bp, 0x18, &val); bnx2_write_phy(bp, 0x18, val & ~0x4007); bnx2_write_phy(bp, 0x1c, 0x6c00); bnx2_read_phy(bp, 0x1c, &val); bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00); } return 0; } static int bnx2_init_copper_phy(struct bnx2 *bp) { u32 val; bp->phy_flags |= PHY_CRC_FIX_FLAG; if (bp->phy_flags & PHY_CRC_FIX_FLAG) { bnx2_write_phy(bp, 0x18, 0x0c00); bnx2_write_phy(bp, 0x17, 0x000a); bnx2_write_phy(bp, 0x15, 0x310b); bnx2_write_phy(bp, 0x17, 0x201f); bnx2_write_phy(bp, 0x15, 0x9506); bnx2_write_phy(bp, 0x17, 0x401f); bnx2_write_phy(bp, 0x15, 0x14e2); bnx2_write_phy(bp, 0x18, 0x0400); } if (bp->dev->mtu > 1500) { /* Set extended packet length bit */ bnx2_write_phy(bp, 0x18, 0x7); bnx2_read_phy(bp, 0x18, &val); bnx2_write_phy(bp, 0x18, val | 0x4000); bnx2_read_phy(bp, 0x10, &val); bnx2_write_phy(bp, 0x10, val | 0x1); } else { bnx2_write_phy(bp, 0x18, 0x7); bnx2_read_phy(bp, 0x18, &val); bnx2_write_phy(bp, 0x18, val & ~0x4007); bnx2_read_phy(bp, 0x10, &val); bnx2_write_phy(bp, 0x10, val & ~0x1); } /* ethernet@wirespeed */ bnx2_write_phy(bp, 0x18, 0x7007); bnx2_read_phy(bp, 0x18, &val); bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4)); return 0; } static int bnx2_init_phy(struct bnx2 *bp) { u32 val; int rc = 0; bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG; bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG; REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK); bnx2_reset_phy(bp); bnx2_read_phy(bp, MII_PHYSID1, &val); bp->phy_id = val << 16; bnx2_read_phy(bp, MII_PHYSID2, &val); bp->phy_id |= val & 0xffff; if (bp->phy_flags & PHY_SERDES_FLAG) { if (CHIP_NUM(bp) == CHIP_NUM_5706) rc = bnx2_init_5706s_phy(bp); else if (CHIP_NUM(bp) == CHIP_NUM_5708) rc = bnx2_init_5708s_phy(bp); } else { rc = bnx2_init_copper_phy(bp); } bnx2_setup_phy(bp); return rc; } static int bnx2_set_mac_loopback(struct bnx2 *bp) { u32 mac_mode; mac_mode = REG_RD(bp, BNX2_EMAC_MODE); mac_mode &= ~BNX2_EMAC_MODE_PORT; mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK; REG_WR(bp, BNX2_EMAC_MODE, mac_mode); bp->link_up = 1; return 0; } static int bnx2_test_link(struct bnx2 *); static int bnx2_set_phy_loopback(struct bnx2 *bp) { u32 mac_mode; int rc, i; spin_lock_bh(&bp->phy_lock); rc = bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000); spin_unlock_bh(&bp->phy_lock); if (rc) return rc; for (i = 0; i < 10; i++) { if (bnx2_test_link(bp) == 0) break; udelay(10); } mac_mode = REG_RD(bp, BNX2_EMAC_MODE); mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX | BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK | BNX2_EMAC_MODE_25G); mac_mode |= BNX2_EMAC_MODE_PORT_GMII; REG_WR(bp, BNX2_EMAC_MODE, mac_mode); bp->link_up = 1; return 0; } static int bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent) { int i; u32 val; bp->fw_wr_seq++; msg_data |= bp->fw_wr_seq; REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data); /* wait for an acknowledgement. */ for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) { msleep(10); val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB); if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ)) break; } if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0) return 0; /* If we timed out, inform the firmware that this is the case. */ if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) { if (!silent) printk(KERN_ERR PFX "fw sync timeout, reset code = " "%x\n", msg_data); msg_data &= ~BNX2_DRV_MSG_CODE; msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT; REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data); return -EBUSY; } if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK) return -EIO; return 0; } static void bnx2_init_context(struct bnx2 *bp) { u32 vcid; vcid = 96; while (vcid) { u32 vcid_addr, pcid_addr, offset; vcid--; if (CHIP_ID(bp) == CHIP_ID_5706_A0) { u32 new_vcid; vcid_addr = GET_PCID_ADDR(vcid); if (vcid & 0x8) { new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7); } else { new_vcid = vcid; } pcid_addr = GET_PCID_ADDR(new_vcid); } else { vcid_addr = GET_CID_ADDR(vcid); pcid_addr = vcid_addr; } REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00); REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr); /* Zero out the context. */ for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) { CTX_WR(bp, 0x00, offset, 0); } REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr); REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr); } } static int bnx2_alloc_bad_rbuf(struct bnx2 *bp) { u16 *good_mbuf; u32 good_mbuf_cnt; u32 val; good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL); if (good_mbuf == NULL) { printk(KERN_ERR PFX "Failed to allocate memory in " "bnx2_alloc_bad_rbuf\n"); return -ENOMEM; } REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE); good_mbuf_cnt = 0; /* Allocate a bunch of mbufs and save the good ones in an array. */ val = REG_RD_IND(bp, BNX2_RBUF_STATUS1); while (val & BNX2_RBUF_STATUS1_FREE_COUNT) { REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ); val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC); val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE; /* The addresses with Bit 9 set are bad memory blocks. */ if (!(val & (1 << 9))) { good_mbuf[good_mbuf_cnt] = (u16) val; good_mbuf_cnt++; } val = REG_RD_IND(bp, BNX2_RBUF_STATUS1); } /* Free the good ones back to the mbuf pool thus discarding * all the bad ones. */ while (good_mbuf_cnt) { good_mbuf_cnt--; val = good_mbuf[good_mbuf_cnt]; val = (val << 9) | val | 1; REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val); } kfree(good_mbuf); return 0; } static void bnx2_set_mac_addr(struct bnx2 *bp) { u32 val; u8 *mac_addr = bp->dev->dev_addr; val = (mac_addr[0] << 8) | mac_addr[1]; REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val); val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | (mac_addr[4] << 8) | mac_addr[5]; REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val); } static inline int bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index) { struct sk_buff *skb; struct sw_bd *rx_buf = &bp->rx_buf_ring[index]; dma_addr_t mapping; struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)]; unsigned long align; skb = dev_alloc_skb(bp->rx_buf_size); if (skb == NULL) { return -ENOMEM; } if (unlikely((align = (unsigned long) skb->data & 0x7))) { skb_reserve(skb, 8 - align); } skb->dev = bp->dev; mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size, PCI_DMA_FROMDEVICE); rx_buf->skb = skb; pci_unmap_addr_set(rx_buf, mapping, mapping); rxbd->rx_bd_haddr_hi = (u64) mapping >> 32; rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff; bp->rx_prod_bseq += bp->rx_buf_use_size; return 0; } static void bnx2_phy_int(struct bnx2 *bp) { u32 new_link_state, old_link_state; new_link_state = bp->status_blk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE; old_link_state = bp->status_blk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE; if (new_link_state != old_link_state) { if (new_link_state) { REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, STATUS_ATTN_BITS_LINK_STATE); } else { REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, STATUS_ATTN_BITS_LINK_STATE); } bnx2_set_link(bp); } } static void bnx2_tx_int(struct bnx2 *bp) { struct status_block *sblk = bp->status_blk; u16 hw_cons, sw_cons, sw_ring_cons; int tx_free_bd = 0; hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0; if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) { hw_cons++; } sw_cons = bp->tx_cons; while (sw_cons != hw_cons) { struct sw_bd *tx_buf; struct sk_buff *skb; int i, last; sw_ring_cons = TX_RING_IDX(sw_cons); tx_buf = &bp->tx_buf_ring[sw_ring_cons]; skb = tx_buf->skb; #ifdef BCM_TSO /* partial BD completions possible with TSO packets */ if (skb_shinfo(skb)->tso_size) { u16 last_idx, last_ring_idx; last_idx = sw_cons + skb_shinfo(skb)->nr_frags + 1; last_ring_idx = sw_ring_cons + skb_shinfo(skb)->nr_frags + 1; if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) { last_idx++; } if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) { break; } } #endif pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping), skb_headlen(skb), PCI_DMA_TODEVICE); tx_buf->skb = NULL; last = skb_shinfo(skb)->nr_frags; for (i = 0; i < last; i++) { sw_cons = NEXT_TX_BD(sw_cons); pci_unmap_page(bp->pdev, pci_unmap_addr( &bp->tx_buf_ring[TX_RING_IDX(sw_cons)], mapping), skb_shinfo(skb)->frags[i].size, PCI_DMA_TODEVICE); } sw_cons = NEXT_TX_BD(sw_cons); tx_free_bd += last + 1; dev_kfree_skb_irq(skb); hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0; if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) { hw_cons++; } } bp->tx_cons = sw_cons; if (unlikely(netif_queue_stopped(bp->dev))) { spin_lock(&bp->tx_lock); if ((netif_queue_stopped(bp->dev)) && (bnx2_tx_avail(bp) > MAX_SKB_FRAGS)) { netif_wake_queue(bp->dev); } spin_unlock(&bp->tx_lock); } } static inline void bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb, u16 cons, u16 prod) { struct sw_bd *cons_rx_buf, *prod_rx_buf; struct rx_bd *cons_bd, *prod_bd; cons_rx_buf = &bp->rx_buf_ring[cons]; prod_rx_buf = &bp->rx_buf_ring[prod]; pci_dma_sync_single_for_device(bp->pdev, pci_unmap_addr(cons_rx_buf, mapping), bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE); bp->rx_prod_bseq += bp->rx_buf_use_size; prod_rx_buf->skb = skb; if (cons == prod) return; pci_unmap_addr_set(prod_rx_buf, mapping, pci_unmap_addr(cons_rx_buf, mapping)); cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi; prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo; } static int bnx2_rx_int(struct bnx2 *bp, int budget) { struct status_block *sblk = bp->status_blk; u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod; struct l2_fhdr *rx_hdr; int rx_pkt = 0; hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0; if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) { hw_cons++; } sw_cons = bp->rx_cons; sw_prod = bp->rx_prod; /* Memory barrier necessary as speculative reads of the rx * buffer can be ahead of the index in the status block */ rmb(); while (sw_cons != hw_cons) { unsigned int len; u32 status; struct sw_bd *rx_buf; struct sk_buff *skb; dma_addr_t dma_addr; sw_ring_cons = RX_RING_IDX(sw_cons); sw_ring_prod = RX_RING_IDX(sw_prod); rx_buf = &bp->rx_buf_ring[sw_ring_cons]; skb = rx_buf->skb; rx_buf->skb = NULL; dma_addr = pci_unmap_addr(rx_buf, mapping); pci_dma_sync_single_for_cpu(bp->pdev, dma_addr, bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE); rx_hdr = (struct l2_fhdr *) skb->data; len = rx_hdr->l2_fhdr_pkt_len - 4; if ((status = rx_hdr->l2_fhdr_status) & (L2_FHDR_ERRORS_BAD_CRC | L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { goto reuse_rx; } /* Since we don't have a jumbo ring, copy small packets * if mtu > 1500 */ if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) { struct sk_buff *new_skb; new_skb = dev_alloc_skb(len + 2); if (new_skb == NULL) goto reuse_rx; /* aligned copy */ memcpy(new_skb->data, skb->data + bp->rx_offset - 2, len + 2); skb_reserve(new_skb, 2); skb_put(new_skb, len); new_skb->dev = bp->dev; bnx2_reuse_rx_skb(bp, skb, sw_ring_cons, sw_ring_prod); skb = new_skb; } else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) { pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size, PCI_DMA_FROMDEVICE); skb_reserve(skb, bp->rx_offset); skb_put(skb, len); } else { reuse_rx: bnx2_reuse_rx_skb(bp, skb, sw_ring_cons, sw_ring_prod); goto next_rx; } skb->protocol = eth_type_trans(skb, bp->dev); if ((len > (bp->dev->mtu + ETH_HLEN)) && (htons(skb->protocol) != 0x8100)) { dev_kfree_skb_irq(skb); goto next_rx; } skb->ip_summed = CHECKSUM_NONE; if (bp->rx_csum && (status & (L2_FHDR_STATUS_TCP_SEGMENT | L2_FHDR_STATUS_UDP_DATAGRAM))) { if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM | L2_FHDR_ERRORS_UDP_XSUM)) == 0)) skb->ip_summed = CHECKSUM_UNNECESSARY; } #ifdef BCM_VLAN if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) { vlan_hwaccel_receive_skb(skb, bp->vlgrp, rx_hdr->l2_fhdr_vlan_tag); } else #endif netif_receive_skb(skb); bp->dev->last_rx = jiffies; rx_pkt++; next_rx: sw_cons = NEXT_RX_BD(sw_cons); sw_prod = NEXT_RX_BD(sw_prod); if ((rx_pkt == budget)) break; /* Refresh hw_cons to see if there is new work */ if (sw_cons == hw_cons) { hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0; if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) hw_cons++; rmb(); } } bp->rx_cons = sw_cons; bp->rx_prod = sw_prod; REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod); REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq); mmiowb(); return rx_pkt; } /* MSI ISR - The only difference between this and the INTx ISR * is that the MSI interrupt is always serviced. */ static irqreturn_t bnx2_msi(int irq, void *dev_instance, struct pt_regs *regs) { struct net_device *dev = dev_instance; struct bnx2 *bp = netdev_priv(dev); prefetch(bp->status_blk); REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | BNX2_PCICFG_INT_ACK_CMD_MASK_INT); /* Return here if interrupt is disabled. */ if (unlikely(atomic_read(&bp->intr_sem) != 0)) return IRQ_HANDLED; netif_rx_schedule(dev); return IRQ_HANDLED; } static irqreturn_t bnx2_interrupt(int irq, void *dev_instance, struct pt_regs *regs) { struct net_device *dev = dev_instance; struct bnx2 *bp = netdev_priv(dev); /* When using INTx, it is possible for the interrupt to arrive * at the CPU before the status block posted prior to the * interrupt. Reading a register will flush the status block. * When using MSI, the MSI message will always complete after * the status block write. */ if ((bp->status_blk->status_idx == bp->last_status_idx) && (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) & BNX2_PCICFG_MISC_STATUS_INTA_VALUE)) return IRQ_NONE; REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | BNX2_PCICFG_INT_ACK_CMD_MASK_INT); /* Return here if interrupt is shared and is disabled. */ if (unlikely(atomic_read(&bp->intr_sem) != 0)) return IRQ_HANDLED; netif_rx_schedule(dev); return IRQ_HANDLED; } static inline int bnx2_has_work(struct bnx2 *bp) { struct status_block *sblk = bp->status_blk; if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) || (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)) return 1; if (((sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) != bp->link_up) return 1; return 0; } static int bnx2_poll(struct net_device *dev, int *budget) { struct bnx2 *bp = netdev_priv(dev); if ((bp->status_blk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != (bp->status_blk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) { spin_lock(&bp->phy_lock); bnx2_phy_int(bp); spin_unlock(&bp->phy_lock); /* This is needed to take care of transient status * during link changes. */ REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); REG_RD(bp, BNX2_HC_COMMAND); } if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons) bnx2_tx_int(bp); if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) { int orig_budget = *budget; int work_done; if (orig_budget > dev->quota) orig_budget = dev->quota; work_done = bnx2_rx_int(bp, orig_budget); *budget -= work_done; dev->quota -= work_done; } bp->last_status_idx = bp->status_blk->status_idx; rmb(); if (!bnx2_has_work(bp)) { netif_rx_complete(dev); if (likely(bp->flags & USING_MSI_FLAG)) { REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx); return 0; } REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx); REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx); return 0; } return 1; } /* Called with rtnl_lock from vlan functions and also dev->xmit_lock * from set_multicast. */ static void bnx2_set_rx_mode(struct net_device *dev) { struct bnx2 *bp = netdev_priv(dev); u32 rx_mode, sort_mode; int i; spin_lock_bh(&bp->phy_lock); rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS | BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG); sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN; #ifdef BCM_VLAN if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG)) rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG; #else if (!(bp->flags & ASF_ENABLE_FLAG)) rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG; #endif if (dev->flags & IFF_PROMISC) { /* Promiscuous mode. */ rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS; sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN; } else if (dev->flags & IFF_ALLMULTI) { for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); } sort_mode |= BNX2_RPM_SORT_USER0_MC_EN; } else { /* Accept one or more multicast(s). */ struct dev_mc_list *mclist; u32 mc_filter[NUM_MC_HASH_REGISTERS]; u32 regidx; u32 bit; u32 crc; memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS); for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr); bit = crc & 0xff; regidx = (bit & 0xe0) >> 5; bit &= 0x1f; mc_filter[regidx] |= (1 << bit); } for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4), mc_filter[i]); } sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN; } if (rx_mode != bp->rx_mode) { bp->rx_mode = rx_mode; REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode); } REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0); REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode); REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA); spin_unlock_bh(&bp->phy_lock); } static void load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len, u32 rv2p_proc) { int i; u32 val; for (i = 0; i < rv2p_code_len; i += 8) { REG_WR(bp, BNX2_RV2P_INSTR_HIGH, *rv2p_code); rv2p_code++; REG_WR(bp, BNX2_RV2P_INSTR_LOW, *rv2p_code); rv2p_code++; if (rv2p_proc == RV2P_PROC1) { val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR; REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val); } else { val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR; REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val); } } /* Reset the processor, un-stall is done later. */ if (rv2p_proc == RV2P_PROC1) { REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET); } else { REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET); } } static void load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw) { u32 offset; u32 val; /* Halt the CPU. */ val = REG_RD_IND(bp, cpu_reg->mode); val |= cpu_reg->mode_value_halt; REG_WR_IND(bp, cpu_reg->mode, val); REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear); /* Load the Text area. */ offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); if (fw->text) { int j; for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { REG_WR_IND(bp, offset, fw->text[j]); } } /* Load the Data area. */ offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); if (fw->data) { int j; for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { REG_WR_IND(bp, offset, fw->data[j]); } } /* Load the SBSS area. */ offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); if (fw->sbss) { int j; for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { REG_WR_IND(bp, offset, fw->sbss[j]); } } /* Load the BSS area. */ offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); if (fw->bss) { int j; for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { REG_WR_IND(bp, offset, fw->bss[j]); } } /* Load the Read-Only area. */ offset = cpu_reg->spad_base + (fw->rodata_addr - cpu_reg->mips_view_base); if (fw->rodata) { int j; for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { REG_WR_IND(bp, offset, fw->rodata[j]); } } /* Clear the pre-fetch instruction. */ REG_WR_IND(bp, cpu_reg->inst, 0); REG_WR_IND(bp, cpu_reg->pc, fw->start_addr); /* Start the CPU. */ val = REG_RD_IND(bp, cpu_reg->mode); val &= ~cpu_reg->mode_value_halt; REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear); REG_WR_IND(bp, cpu_reg->mode, val); } static void bnx2_init_cpus(struct bnx2 *bp) { struct cpu_reg cpu_reg; struct fw_info fw; /* Initialize the RV2P processor. */ load_rv2p_fw(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), RV2P_PROC1); load_rv2p_fw(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), RV2P_PROC2); /* Initialize the RX Processor. */ cpu_reg.mode = BNX2_RXP_CPU_MODE; cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA; cpu_reg.state = BNX2_RXP_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE; cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK; cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER; cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION; cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BNX2_RXP_SCRATCH; cpu_reg.mips_view_base = 0x8000000; fw.ver_major = bnx2_RXP_b06FwReleaseMajor; fw.ver_minor = bnx2_RXP_b06FwReleaseMinor; fw.ver_fix = bnx2_RXP_b06FwReleaseFix; fw.start_addr = bnx2_RXP_b06FwStartAddr; fw.text_addr = bnx2_RXP_b06FwTextAddr; fw.text_len = bnx2_RXP_b06FwTextLen; fw.text_index = 0; fw.text = bnx2_RXP_b06FwText; fw.data_addr = bnx2_RXP_b06FwDataAddr; fw.data_len = bnx2_RXP_b06FwDataLen; fw.data_index = 0; fw.data = bnx2_RXP_b06FwData; fw.sbss_addr = bnx2_RXP_b06FwSbssAddr; fw.sbss_len = bnx2_RXP_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bnx2_RXP_b06FwSbss; fw.bss_addr = bnx2_RXP_b06FwBssAddr; fw.bss_len = bnx2_RXP_b06FwBssLen; fw.bss_index = 0; fw.bss = bnx2_RXP_b06FwBss; fw.rodata_addr = bnx2_RXP_b06FwRodataAddr; fw.rodata_len = bnx2_RXP_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bnx2_RXP_b06FwRodata; load_cpu_fw(bp, &cpu_reg, &fw); /* Initialize the TX Processor. */ cpu_reg.mode = BNX2_TXP_CPU_MODE; cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA; cpu_reg.state = BNX2_TXP_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE; cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK; cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER; cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION; cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BNX2_TXP_SCRATCH; cpu_reg.mips_view_base = 0x8000000; fw.ver_major = bnx2_TXP_b06FwReleaseMajor; fw.ver_minor = bnx2_TXP_b06FwReleaseMinor; fw.ver_fix = bnx2_TXP_b06FwReleaseFix; fw.start_addr = bnx2_TXP_b06FwStartAddr; fw.text_addr = bnx2_TXP_b06FwTextAddr; fw.text_len = bnx2_TXP_b06FwTextLen; fw.text_index = 0; fw.text = bnx2_TXP_b06FwText; fw.data_addr = bnx2_TXP_b06FwDataAddr; fw.data_len = bnx2_TXP_b06FwDataLen; fw.data_index = 0; fw.data = bnx2_TXP_b06FwData; fw.sbss_addr = bnx2_TXP_b06FwSbssAddr; fw.sbss_len = bnx2_TXP_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bnx2_TXP_b06FwSbss; fw.bss_addr = bnx2_TXP_b06FwBssAddr; fw.bss_len = bnx2_TXP_b06FwBssLen; fw.bss_index = 0; fw.bss = bnx2_TXP_b06FwBss; fw.rodata_addr = bnx2_TXP_b06FwRodataAddr; fw.rodata_len = bnx2_TXP_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bnx2_TXP_b06FwRodata; load_cpu_fw(bp, &cpu_reg, &fw); /* Initialize the TX Patch-up Processor. */ cpu_reg.mode = BNX2_TPAT_CPU_MODE; cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA; cpu_reg.state = BNX2_TPAT_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE; cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK; cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER; cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION; cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BNX2_TPAT_SCRATCH; cpu_reg.mips_view_base = 0x8000000; fw.ver_major = bnx2_TPAT_b06FwReleaseMajor; fw.ver_minor = bnx2_TPAT_b06FwReleaseMinor; fw.ver_fix = bnx2_TPAT_b06FwReleaseFix; fw.start_addr = bnx2_TPAT_b06FwStartAddr; fw.text_addr = bnx2_TPAT_b06FwTextAddr; fw.text_len = bnx2_TPAT_b06FwTextLen; fw.text_index = 0; fw.text = bnx2_TPAT_b06FwText; fw.data_addr = bnx2_TPAT_b06FwDataAddr; fw.data_len = bnx2_TPAT_b06FwDataLen; fw.data_index = 0; fw.data = bnx2_TPAT_b06FwData; fw.sbss_addr = bnx2_TPAT_b06FwSbssAddr; fw.sbss_len = bnx2_TPAT_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bnx2_TPAT_b06FwSbss; fw.bss_addr = bnx2_TPAT_b06FwBssAddr; fw.bss_len = bnx2_TPAT_b06FwBssLen; fw.bss_index = 0; fw.bss = bnx2_TPAT_b06FwBss; fw.rodata_addr = bnx2_TPAT_b06FwRodataAddr; fw.rodata_len = bnx2_TPAT_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bnx2_TPAT_b06FwRodata; load_cpu_fw(bp, &cpu_reg, &fw); /* Initialize the Completion Processor. */ cpu_reg.mode = BNX2_COM_CPU_MODE; cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA; cpu_reg.state = BNX2_COM_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE; cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK; cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER; cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION; cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BNX2_COM_SCRATCH; cpu_reg.mips_view_base = 0x8000000; fw.ver_major = bnx2_COM_b06FwReleaseMajor; fw.ver_minor = bnx2_COM_b06FwReleaseMinor; fw.ver_fix = bnx2_COM_b06FwReleaseFix; fw.start_addr = bnx2_COM_b06FwStartAddr; fw.text_addr = bnx2_COM_b06FwTextAddr; fw.text_len = bnx2_COM_b06FwTextLen; fw.text_index = 0; fw.text = bnx2_COM_b06FwText; fw.data_addr = bnx2_COM_b06FwDataAddr; fw.data_len = bnx2_COM_b06FwDataLen; fw.data_index = 0; fw.data = bnx2_COM_b06FwData; fw.sbss_addr = bnx2_COM_b06FwSbssAddr; fw.sbss_len = bnx2_COM_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bnx2_COM_b06FwSbss; fw.bss_addr = bnx2_COM_b06FwBssAddr; fw.bss_len = bnx2_COM_b06FwBssLen; fw.bss_index = 0; fw.bss = bnx2_COM_b06FwBss; fw.rodata_addr = bnx2_COM_b06FwRodataAddr; fw.rodata_len = bnx2_COM_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bnx2_COM_b06FwRodata; load_cpu_fw(bp, &cpu_reg, &fw); } static int bnx2_set_power_state(struct bnx2 *bp, pci_power_t state) { u16 pmcsr; pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr); switch (state) { case PCI_D0: { u32 val; pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, (pmcsr & ~PCI_PM_CTRL_STATE_MASK) | PCI_PM_CTRL_PME_STATUS); if (pmcsr & PCI_PM_CTRL_STATE_MASK) /* delay required during transition out of D3hot */ msleep(20); val = REG_RD(bp, BNX2_EMAC_MODE); val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD; val &= ~BNX2_EMAC_MODE_MPKT; REG_WR(bp, BNX2_EMAC_MODE, val); val = REG_RD(bp, BNX2_RPM_CONFIG); val &= ~BNX2_RPM_CONFIG_ACPI_ENA; REG_WR(bp, BNX2_RPM_CONFIG, val); break; } case PCI_D3hot: { int i; u32 val, wol_msg; if (bp->wol) { u32 advertising; u8 autoneg; autoneg = bp->autoneg; advertising = bp->advertising; bp->autoneg = AUTONEG_SPEED; bp->advertising = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | ADVERTISED_Autoneg; bnx2_setup_copper_phy(bp); bp->autoneg = autoneg; bp->advertising = advertising; bnx2_set_mac_addr(bp); val = REG_RD(bp, BNX2_EMAC_MODE); /* Enable port mode. */ val &= ~BNX2_EMAC_MODE_PORT; val |= BNX2_EMAC_MODE_PORT_MII | BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD | BNX2_EMAC_MODE_MPKT; REG_WR(bp, BNX2_EMAC_MODE, val); /* receive all multicast */ for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); } REG_WR(bp, BNX2_EMAC_RX_MODE, BNX2_EMAC_RX_MODE_SORT_MODE); val = 1 | BNX2_RPM_SORT_USER0_BC_EN | BNX2_RPM_SORT_USER0_MC_EN; REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0); REG_WR(bp, BNX2_RPM_SORT_USER0, val); REG_WR(bp, BNX2_RPM_SORT_USER0, val | BNX2_RPM_SORT_USER0_ENA); /* Need to enable EMAC and RPM for WOL. */ REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE | BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE | BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE); val = REG_RD(bp, BNX2_RPM_CONFIG); val &= ~BNX2_RPM_CONFIG_ACPI_ENA; REG_WR(bp, BNX2_RPM_CONFIG, val); wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL; } else { wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL; } if (!(bp->flags & NO_WOL_FLAG)) bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0); pmcsr &= ~PCI_PM_CTRL_STATE_MASK; if ((CHIP_ID(bp) == CHIP_ID_5706_A0) || (CHIP_ID(bp) == CHIP_ID_5706_A1)) { if (bp->wol) pmcsr |= 3; } else { pmcsr |= 3; } if (bp->wol) { pmcsr |= PCI_PM_CTRL_PME_ENABLE; } pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmcsr); /* No more memory access after this point until * device is brought back to D0. */ udelay(50); break; } default: return -EINVAL; } return 0; } static int bnx2_acquire_nvram_lock(struct bnx2 *bp) { u32 val; int j; /* Request access to the flash interface. */ REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2); for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { val = REG_RD(bp, BNX2_NVM_SW_ARB); if (val & BNX2_NVM_SW_ARB_ARB_ARB2) break; udelay(5); } if (j >= NVRAM_TIMEOUT_COUNT) return -EBUSY; return 0; } static int bnx2_release_nvram_lock(struct bnx2 *bp) { int j; u32 val; /* Relinquish nvram interface. */ REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2); for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { val = REG_RD(bp, BNX2_NVM_SW_ARB); if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2)) break; udelay(5); } if (j >= NVRAM_TIMEOUT_COUNT) return -EBUSY; return 0; } static int bnx2_enable_nvram_write(struct bnx2 *bp) { u32 val; val = REG_RD(bp, BNX2_MISC_CFG); REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI); if (!bp->flash_info->buffered) { int j; REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT); for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { udelay(5); val = REG_RD(bp, BNX2_NVM_COMMAND); if (val & BNX2_NVM_COMMAND_DONE) break; } if (j >= NVRAM_TIMEOUT_COUNT) return -EBUSY; } return 0; } static void bnx2_disable_nvram_write(struct bnx2 *bp) { u32 val; val = REG_RD(bp, BNX2_MISC_CFG); REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN); } static void bnx2_enable_nvram_access(struct bnx2 *bp) { u32 val; val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE); /* Enable both bits, even on read. */ REG_WR(bp, BNX2_NVM_ACCESS_ENABLE, val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN); } static void bnx2_disable_nvram_access(struct bnx2 *bp) { u32 val; val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE); /* Disable both bits, even after read. */ REG_WR(bp, BNX2_NVM_ACCESS_ENABLE, val & ~(BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN)); } static int bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset) { u32 cmd; int j; if (bp->flash_info->buffered) /* Buffered flash, no erase needed */ return 0; /* Build an erase command */ cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR | BNX2_NVM_COMMAND_DOIT; /* Need to clear DONE bit separately. */ REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); /* Address of the NVRAM to read from. */ REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE); /* Issue an erase command. */ REG_WR(bp, BNX2_NVM_COMMAND, cmd); /* Wait for completion. */ for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { u32 val; udelay(5); val = REG_RD(bp, BNX2_NVM_COMMAND); if (val & BNX2_NVM_COMMAND_DONE) break; } if (j >= NVRAM_TIMEOUT_COUNT) return -EBUSY; return 0; } static int bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags) { u32 cmd; int j; /* Build the command word. */ cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags; /* Calculate an offset of a buffered flash. */ if (bp->flash_info->buffered) { offset = ((offset / bp->flash_info->page_size) << bp->flash_info->page_bits) + (offset % bp->flash_info->page_size); } /* Need to clear DONE bit separately. */ REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); /* Address of the NVRAM to read from. */ REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE); /* Issue a read command. */ REG_WR(bp, BNX2_NVM_COMMAND, cmd); /* Wait for completion. */ for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { u32 val; udelay(5); val = REG_RD(bp, BNX2_NVM_COMMAND); if (val & BNX2_NVM_COMMAND_DONE) { val = REG_RD(bp, BNX2_NVM_READ); val = be32_to_cpu(val); memcpy(ret_val, &val, 4); break; } } if (j >= NVRAM_TIMEOUT_COUNT) return -EBUSY; return 0; } static int bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags) { u32 cmd, val32; int j; /* Build the command word. */ cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags; /* Calculate an offset of a buffered flash. */ if (bp->flash_info->buffered) { offset = ((offset / bp->flash_info->page_size) << bp->flash_info->page_bits) + (offset % bp->flash_info->page_size); } /* Need to clear DONE bit separately. */ REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); memcpy(&val32, val, 4); val32 = cpu_to_be32(val32); /* Write the data. */ REG_WR(bp, BNX2_NVM_WRITE, val32); /* Address of the NVRAM to write to. */ REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE); /* Issue the write command. */ REG_WR(bp, BNX2_NVM_COMMAND, cmd); /* Wait for completion. */ for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { udelay(5); if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE) break; } if (j >= NVRAM_TIMEOUT_COUNT) return -EBUSY; return 0; } static int bnx2_init_nvram(struct bnx2 *bp) { u32 val; int j, entry_count, rc; struct flash_spec *flash; /* Determine the selected interface. */ val = REG_RD(bp, BNX2_NVM_CFG1); entry_count = sizeof(flash_table) / sizeof(struct flash_spec); rc = 0; if (val & 0x40000000) { /* Flash interface has been reconfigured */ for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { if ((val & FLASH_BACKUP_STRAP_MASK) == (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { bp->flash_info = flash; break; } } } else { u32 mask; /* Not yet been reconfigured */ if (val & (1 << 23)) mask = FLASH_BACKUP_STRAP_MASK; else mask = FLASH_STRAP_MASK; for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { if ((val & mask) == (flash->strapping & mask)) { bp->flash_info = flash; /* Request access to the flash interface. */ if ((rc = bnx2_acquire_nvram_lock(bp)) != 0) return rc; /* Enable access to flash interface */ bnx2_enable_nvram_access(bp); /* Reconfigure the flash interface */ REG_WR(bp, BNX2_NVM_CFG1, flash->config1); REG_WR(bp, BNX2_NVM_CFG2, flash->config2); REG_WR(bp, BNX2_NVM_CFG3, flash->config3); REG_WR(bp, BNX2_NVM_WRITE1, flash->write1); /* Disable access to flash interface */ bnx2_disable_nvram_access(bp); bnx2_release_nvram_lock(bp); break; } } } /* if (val & 0x40000000) */ if (j == entry_count) { bp->flash_info = NULL; printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n"); return -ENODEV; } val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2); val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK; if (val) bp->flash_size = val; else bp->flash_size = bp->flash_info->total_size; return rc; } static int bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf, int buf_size) { int rc = 0; u32 cmd_flags, offset32, len32, extra; if (buf_size == 0) return 0; /* Request access to the flash interface. */ if ((rc = bnx2_acquire_nvram_lock(bp)) != 0) return rc; /* Enable access to flash interface */ bnx2_enable_nvram_access(bp); len32 = buf_size; offset32 = offset; extra = 0; cmd_flags = 0; if (offset32 & 3) { u8 buf[4]; u32 pre_len; offset32 &= ~3; pre_len = 4 - (offset & 3); if (pre_len >= len32) { pre_len = len32; cmd_flags = BNX2_NVM_COMMAND_FIRST | BNX2_NVM_COMMAND_LAST; } else { cmd_flags = BNX2_NVM_COMMAND_FIRST; } rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags); if (rc) return rc; memcpy(ret_buf, buf + (offset & 3), pre_len); offset32 += 4; ret_buf += pre_len; len32 -= pre_len; } if (len32 & 3) { extra = 4 - (len32 & 3); len32 = (len32 + 4) & ~3; } if (len32 == 4) { u8 buf[4]; if (cmd_flags) cmd_flags = BNX2_NVM_COMMAND_LAST; else cmd_flags = BNX2_NVM_COMMAND_FIRST | BNX2_NVM_COMMAND_LAST; rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags); memcpy(ret_buf, buf, 4 - extra); } else if (len32 > 0) { u8 buf[4]; /* Read the first word. */ if (cmd_flags) cmd_flags = 0; else cmd_flags = BNX2_NVM_COMMAND_FIRST; rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags); /* Advance to the next dword. */ offset32 += 4; ret_buf += 4; len32 -= 4; while (len32 > 4 && rc == 0) { rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0); /* Advance to the next dword. */ offset32 += 4; ret_buf += 4; len32 -= 4; } if (rc) return rc; cmd_flags = BNX2_NVM_COMMAND_LAST; rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags); memcpy(ret_buf, buf, 4 - extra); } /* Disable access to flash interface */ bnx2_disable_nvram_access(bp); bnx2_release_nvram_lock(bp); return rc; } static int bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf, int buf_size) { u32 written, offset32, len32; u8 *buf, start[4], end[4]; int rc = 0; int align_start, align_end; buf = data_buf; offset32 = offset; len32 = buf_size; align_start = align_end = 0; if ((align_start = (offset32 & 3))) { offset32 &= ~3; len32 += align_start; if ((rc = bnx2_nvram_read(bp, offset32, start, 4))) return rc; } if (len32 & 3) { if ((len32 > 4) || !align_start) { align_end = 4 - (len32 & 3); len32 += align_end; if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4))) { return rc; } } } if (align_start || align_end) { buf = kmalloc(len32, GFP_KERNEL); if (buf == 0) return -ENOMEM; if (align_start) { memcpy(buf, start, 4); } if (align_end) { memcpy(buf + len32 - 4, end, 4); } memcpy(buf + align_start, data_buf, buf_size); } written = 0; while ((written < len32) && (rc == 0)) { u32 page_start, page_end, data_start, data_end; u32 addr, cmd_flags; int i; u8 flash_buffer[264]; /* Find the page_start addr */ page_start = offset32 + written; page_start -= (page_start % bp->flash_info->page_size); /* Find the page_end addr */ page_end = page_start + bp->flash_info->page_size; /* Find the data_start addr */ data_start = (written == 0) ? offset32 : page_start; /* Find the data_end addr */ data_end = (page_end > offset32 + len32) ? (offset32 + len32) : page_end; /* Request access to the flash interface. */ if ((rc = bnx2_acquire_nvram_lock(bp)) != 0) goto nvram_write_end; /* Enable access to flash interface */ bnx2_enable_nvram_access(bp); cmd_flags = BNX2_NVM_COMMAND_FIRST; if (bp->flash_info->buffered == 0) { int j; /* Read the whole page into the buffer * (non-buffer flash only) */ for (j = 0; j < bp->flash_info->page_size; j += 4) { if (j == (bp->flash_info->page_size - 4)) { cmd_flags |= BNX2_NVM_COMMAND_LAST; } rc = bnx2_nvram_read_dword(bp, page_start + j, &flash_buffer[j], cmd_flags); if (rc) goto nvram_write_end; cmd_flags = 0; } } /* Enable writes to flash interface (unlock write-protect) */ if ((rc = bnx2_enable_nvram_write(bp)) != 0) goto nvram_write_end; /* Erase the page */ if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0) goto nvram_write_end; /* Re-enable the write again for the actual write */ bnx2_enable_nvram_write(bp); /* Loop to write back the buffer data from page_start to * data_start */ i = 0; if (bp->flash_info->buffered == 0) { for (addr = page_start; addr < data_start; addr += 4, i += 4) { rc = bnx2_nvram_write_dword(bp, addr, &flash_buffer[i], cmd_flags); if (rc != 0) goto nvram_write_end; cmd_flags = 0; } } /* Loop to write the new data from data_start to data_end */ for (addr = data_start; addr < data_end; addr += 4, i++) { if ((addr == page_end - 4) || ((bp->flash_info->buffered) && (addr == data_end - 4))) { cmd_flags |= BNX2_NVM_COMMAND_LAST; } rc = bnx2_nvram_write_dword(bp, addr, buf, cmd_flags); if (rc != 0) goto nvram_write_end; cmd_flags = 0; buf += 4; } /* Loop to write back the buffer data from data_end * to page_end */ if (bp->flash_info->buffered == 0) { for (addr = data_end; addr < page_end; addr += 4, i += 4) { if (addr == page_end-4) { cmd_flags = BNX2_NVM_COMMAND_LAST; } rc = bnx2_nvram_write_dword(bp, addr, &flash_buffer[i], cmd_flags); if (rc != 0) goto nvram_write_end; cmd_flags = 0; } } /* Disable writes to flash interface (lock write-protect) */ bnx2_disable_nvram_write(bp); /* Disable access to flash interface */ bnx2_disable_nvram_access(bp); bnx2_release_nvram_lock(bp); /* Increment written */ written += data_end - data_start; } nvram_write_end: if (align_start || align_end) kfree(buf); return rc; } static int bnx2_reset_chip(struct bnx2 *bp, u32 reset_code) { u32 val; int i, rc = 0; /* Wait for the current PCI transaction to complete before * issuing a reset. */ REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS, BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS); udelay(5); /* Wait for the firmware to tell us it is ok to issue a reset. */ bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1); /* Deposit a driver reset signature so the firmware knows that * this is a soft reset. */ REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE, BNX2_DRV_RESET_SIGNATURE_MAGIC); /* Do a dummy read to force the chip to complete all current transaction * before we issue a reset. */ val = REG_RD(bp, BNX2_MISC_ID); val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ | BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; /* Chip reset. */ REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val); if ((CHIP_ID(bp) == CHIP_ID_5706_A0) || (CHIP_ID(bp) == CHIP_ID_5706_A1)) msleep(15); /* Reset takes approximate 30 usec */ for (i = 0; i < 10; i++) { val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG); if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ | BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { break; } udelay(10); } if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ | BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { printk(KERN_ERR PFX "Chip reset did not complete\n"); return -EBUSY; } /* Make sure byte swapping is properly configured. */ val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0); if (val != 0x01020304) { printk(KERN_ERR PFX "Chip not in correct endian mode\n"); return -ENODEV; } /* Wait for the firmware to finish its initialization. */ rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0); if (rc) return rc; if (CHIP_ID(bp) == CHIP_ID_5706_A0) { /* Adjust the voltage regular to two steps lower. The default * of this register is 0x0000000e. */ REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa); /* Remove bad rbuf memory from the free pool. */ rc = bnx2_alloc_bad_rbuf(bp); } return rc; } static int bnx2_init_chip(struct bnx2 *bp) { u32 val; int rc; /* Make sure the interrupt is not active. */ REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT); val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP | BNX2_DMA_CONFIG_DATA_WORD_SWAP | #ifdef __BIG_ENDIAN BNX2_DMA_CONFIG_CNTL_BYTE_SWAP | #endif BNX2_DMA_CONFIG_CNTL_WORD_SWAP | DMA_READ_CHANS << 12 | DMA_WRITE_CHANS << 16; val |= (0x2 << 20) | (1 << 11); if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133)) val |= (1 << 23); if ((CHIP_NUM(bp) == CHIP_NUM_5706) && (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG)) val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA; REG_WR(bp, BNX2_DMA_CONFIG, val); if (CHIP_ID(bp) == CHIP_ID_5706_A0) { val = REG_RD(bp, BNX2_TDMA_CONFIG); val |= BNX2_TDMA_CONFIG_ONE_DMA; REG_WR(bp, BNX2_TDMA_CONFIG, val); } if (bp->flags & PCIX_FLAG) { u16 val16; pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD, &val16); pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD, val16 & ~PCI_X_CMD_ERO); } REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); /* Initialize context mapping and zero out the quick contexts. The * context block must have already been enabled. */ bnx2_init_context(bp); bnx2_init_cpus(bp); bnx2_init_nvram(bp); bnx2_set_mac_addr(bp); val = REG_RD(bp, BNX2_MQ_CONFIG); val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE; val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; REG_WR(bp, BNX2_MQ_CONFIG, val); val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val); REG_WR(bp, BNX2_MQ_KNL_WIND_END, val); val = (BCM_PAGE_BITS - 8) << 24; REG_WR(bp, BNX2_RV2P_CONFIG, val); /* Configure page size. */ val = REG_RD(bp, BNX2_TBDR_CONFIG); val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE; val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; REG_WR(bp, BNX2_TBDR_CONFIG, val); val = bp->mac_addr[0] + (bp->mac_addr[1] << 8) + (bp->mac_addr[2] << 16) + bp->mac_addr[3] + (bp->mac_addr[4] << 8) + (bp->mac_addr[5] << 16); REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val); /* Program the MTU. Also include 4 bytes for CRC32. */ val = bp->dev->mtu + ETH_HLEN + 4; if (val > (MAX_ETHERNET_PACKET_SIZE + 4)) val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA; REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val); bp->last_status_idx = 0; bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE; /* Set up how to generate a link change interrupt. */ REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK); REG_WR(bp, BNX2_HC_STATUS_ADDR_L, (u64) bp->status_blk_mapping & 0xffffffff); REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32); REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L, (u64) bp->stats_blk_mapping & 0xffffffff); REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H, (u64) bp->stats_blk_mapping >> 32); REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP, (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip); REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP, (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip); REG_WR(bp, BNX2_HC_COMP_PROD_TRIP, (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip); REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks); REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks); REG_WR(bp, BNX2_HC_COM_TICKS, (bp->com_ticks_int << 16) | bp->com_ticks); REG_WR(bp, BNX2_HC_CMD_TICKS, (bp->cmd_ticks_int << 16) | bp->cmd_ticks); REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00); REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ if (CHIP_ID(bp) == CHIP_ID_5706_A1) REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS); else { REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE | BNX2_HC_CONFIG_COLLECT_STATS); } /* Clear internal stats counters. */ REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW); REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) & BNX2_PORT_FEATURE_ASF_ENABLED) bp->flags |= ASF_ENABLE_FLAG; /* Initialize the receive filter. */ bnx2_set_rx_mode(bp->dev); rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET, 0); REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff); REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS); udelay(20); bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND); return rc; } static void bnx2_init_tx_ring(struct bnx2 *bp) { struct tx_bd *txbd; u32 val; txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT]; txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32; txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff; bp->tx_prod = 0; bp->tx_cons = 0; bp->hw_tx_cons = 0; bp->tx_prod_bseq = 0; val = BNX2_L2CTX_TYPE_TYPE_L2; val |= BNX2_L2CTX_TYPE_SIZE_L2; CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TYPE, val); val = BNX2_L2CTX_CMD_TYPE_TYPE_L2; val |= 8 << 16; CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_CMD_TYPE, val); val = (u64) bp->tx_desc_mapping >> 32; CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_HI, val); val = (u64) bp->tx_desc_mapping & 0xffffffff; CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_LO, val); } static void bnx2_init_rx_ring(struct bnx2 *bp) { struct rx_bd *rxbd; int i; u16 prod, ring_prod; u32 val; /* 8 for CRC and VLAN */ bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8; /* 8 for alignment */ bp->rx_buf_size = bp->rx_buf_use_size + 8; ring_prod = prod = bp->rx_prod = 0; bp->rx_cons = 0; bp->hw_rx_cons = 0; bp->rx_prod_bseq = 0; for (i = 0; i < bp->rx_max_ring; i++) { int j; rxbd = &bp->rx_desc_ring[i][0]; for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) { rxbd->rx_bd_len = bp->rx_buf_use_size; rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END; } if (i == (bp->rx_max_ring - 1)) j = 0; else j = i + 1; rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32; rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] & 0xffffffff; } val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE; val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2; val |= 0x02 << 8; CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val); val = (u64) bp->rx_desc_mapping[0] >> 32; CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val); val = (u64) bp->rx_desc_mapping[0] & 0xffffffff; CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val); for (i = 0; i < bp->rx_ring_size; i++) { if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) { break; } prod = NEXT_RX_BD(prod); ring_prod = RX_RING_IDX(prod); } bp->rx_prod = prod; REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod); REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq); } static void bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size) { u32 num_rings, max; bp->rx_ring_size = size; num_rings = 1; while (size > MAX_RX_DESC_CNT) { size -= MAX_RX_DESC_CNT; num_rings++; } /* round to next power of 2 */ max = MAX_RX_RINGS; while ((max & num_rings) == 0) max >>= 1; if (num_rings != max) max <<= 1; bp->rx_max_ring = max; bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1; } static void bnx2_free_tx_skbs(struct bnx2 *bp) { int i; if (bp->tx_buf_ring == NULL) return; for (i = 0; i < TX_DESC_CNT; ) { struct sw_bd *tx_buf = &bp->tx_buf_ring[i]; struct sk_buff *skb = tx_buf->skb; int j, last; if (skb == NULL) { i++; continue; } pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping), skb_headlen(skb), PCI_DMA_TODEVICE); tx_buf->skb = NULL; last = skb_shinfo(skb)->nr_frags; for (j = 0; j < last; j++) { tx_buf = &bp->tx_buf_ring[i + j + 1]; pci_unmap_page(bp->pdev, pci_unmap_addr(tx_buf, mapping), skb_shinfo(skb)->frags[j].size, PCI_DMA_TODEVICE); } dev_kfree_skb_any(skb); i += j + 1; } } static void bnx2_free_rx_skbs(struct bnx2 *bp) { int i; if (bp->rx_buf_ring == NULL) return; for (i = 0; i < bp->rx_max_ring_idx; i++) { struct sw_bd *rx_buf = &bp->rx_buf_ring[i]; struct sk_buff *skb = rx_buf->skb; if (skb == NULL) continue; pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping), bp->rx_buf_use_size, PCI_DMA_FROMDEVICE); rx_buf->skb = NULL; dev_kfree_skb_any(skb); } } static void bnx2_free_skbs(struct bnx2 *bp) { bnx2_free_tx_skbs(bp); bnx2_free_rx_skbs(bp); } static int bnx2_reset_nic(struct bnx2 *bp, u32 reset_code) { int rc; rc = bnx2_reset_chip(bp, reset_code); bnx2_free_skbs(bp); if (rc) return rc; bnx2_init_chip(bp); bnx2_init_tx_ring(bp); bnx2_init_rx_ring(bp); return 0; } static int bnx2_init_nic(struct bnx2 *bp) { int rc; if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0) return rc; bnx2_init_phy(bp); bnx2_set_link(bp); return 0; } static int bnx2_test_registers(struct bnx2 *bp) { int ret; int i; static const struct { u16 offset; u16 flags; u32 rw_mask; u32 ro_mask; } reg_tbl[] = { { 0x006c, 0, 0x00000000, 0x0000003f }, { 0x0090, 0, 0xffffffff, 0x00000000 }, { 0x0094, 0, 0x00000000, 0x00000000 }, { 0x0404, 0, 0x00003f00, 0x00000000 }, { 0x0418, 0, 0x00000000, 0xffffffff }, { 0x041c, 0, 0x00000000, 0xffffffff }, { 0x0420, 0, 0x00000000, 0x80ffffff }, { 0x0424, 0, 0x00000000, 0x00000000 }, { 0x0428, 0, 0x00000000, 0x00000001 }, { 0x0450, 0, 0x00000000, 0x0000ffff }, { 0x0454, 0, 0x00000000, 0xffffffff }, { 0x0458, 0, 0x00000000, 0xffffffff }, { 0x0808, 0, 0x00000000, 0xffffffff }, { 0x0854, 0, 0x00000000, 0xffffffff }, { 0x0868, 0, 0x00000000, 0x77777777 }, { 0x086c, 0, 0x00000000, 0x77777777 }, { 0x0870, 0, 0x00000000, 0x77777777 }, { 0x0874, 0, 0x00000000, 0x77777777 }, { 0x0c00, 0, 0x00000000, 0x00000001 }, { 0x0c04, 0, 0x00000000, 0x03ff0001 }, { 0x0c08, 0, 0x0f0ff073, 0x00000000 }, { 0x1000, 0, 0x00000000, 0x00000001 }, { 0x1004, 0, 0x00000000, 0x000f0001 }, { 0x1408, 0, 0x01c00800, 0x00000000 }, { 0x149c, 0, 0x8000ffff, 0x00000000 }, { 0x14a8, 0, 0x00000000, 0x000001ff }, { 0x14ac, 0, 0x0fffffff, 0x10000000 }, { 0x14b0, 0, 0x00000002, 0x00000001 }, { 0x14b8, 0, 0x00000000, 0x00000000 }, { 0x14c0, 0, 0x00000000, 0x00000009 }, { 0x14c4, 0, 0x00003fff, 0x00000000 }, { 0x14cc, 0, 0x00000000, 0x00000001 }, { 0x14d0, 0, 0xffffffff, 0x00000000 }, { 0x1800, 0, 0x00000000, 0x00000001 }, { 0x1804, 0, 0x00000000, 0x00000003 }, { 0x2800, 0, 0x00000000, 0x00000001 }, { 0x2804, 0, 0x00000000, 0x00003f01 }, { 0x2808, 0, 0x0f3f3f03, 0x00000000 }, { 0x2810, 0, 0xffff0000, 0x00000000 }, { 0x2814, 0, 0xffff0000, 0x00000000 }, { 0x2818, 0, 0xffff0000, 0x00000000 }, { 0x281c, 0, 0xffff0000, 0x00000000 }, { 0x2834, 0, 0xffffffff, 0x00000000 }, { 0x2840, 0, 0x00000000, 0xffffffff }, { 0x2844, 0, 0x00000000, 0xffffffff }, { 0x2848, 0, 0xffffffff, 0x00000000 }, { 0x284c, 0, 0xf800f800, 0x07ff07ff }, { 0x2c00, 0, 0x00000000, 0x00000011 }, { 0x2c04, 0, 0x00000000, 0x00030007 }, { 0x3c00, 0, 0x00000000, 0x00000001 }, { 0x3c04, 0, 0x00000000, 0x00070000 }, { 0x3c08, 0, 0x00007f71, 0x07f00000 }, { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 }, { 0x3c10, 0, 0xffffffff, 0x00000000 }, { 0x3c14, 0, 0x00000000, 0xffffffff }, { 0x3c18, 0, 0x00000000, 0xffffffff }, { 0x3c1c, 0, 0xfffff000, 0x00000000 }, { 0x3c20, 0, 0xffffff00, 0x00000000 }, { 0x5004, 0, 0x00000000, 0x0000007f }, { 0x5008, 0, 0x0f0007ff, 0x00000000 }, { 0x500c, 0, 0xf800f800, 0x07ff07ff }, { 0x5c00, 0, 0x00000000, 0x00000001 }, { 0x5c04, 0, 0x00000000, 0x0003000f }, { 0x5c08, 0, 0x00000003, 0x00000000 }, { 0x5c0c, 0, 0x0000fff8, 0x00000000 }, { 0x5c10, 0, 0x00000000, 0xffffffff }, { 0x5c80, 0, 0x00000000, 0x0f7113f1 }, { 0x5c84, 0, 0x00000000, 0x0000f333 }, { 0x5c88, 0, 0x00000000, 0x00077373 }, { 0x5c8c, 0, 0x00000000, 0x0007f737 }, { 0x6808, 0, 0x0000ff7f, 0x00000000 }, { 0x680c, 0, 0xffffffff, 0x00000000 }, { 0x6810, 0, 0xffffffff, 0x00000000 }, { 0x6814, 0, 0xffffffff, 0x00000000 }, { 0x6818, 0, 0xffffffff, 0x00000000 }, { 0x681c, 0, 0xffffffff, 0x00000000 }, { 0x6820, 0, 0x00ff00ff, 0x00000000 }, { 0x6824, 0, 0x00ff00ff, 0x00000000 }, { 0x6828, 0, 0x00ff00ff, 0x00000000 }, { 0x682c, 0, 0x03ff03ff, 0x00000000 }, { 0x6830, 0, 0x03ff03ff, 0x00000000 }, { 0x6834, 0, 0x03ff03ff, 0x00000000 }, { 0x6838, 0, 0x03ff03ff, 0x00000000 }, { 0x683c, 0, 0x0000ffff, 0x00000000 }, { 0x6840, 0, 0x00000ff0, 0x00000000 }, { 0x6844, 0, 0x00ffff00, 0x00000000 }, { 0x684c, 0, 0xffffffff, 0x00000000 }, { 0x6850, 0, 0x7f7f7f7f, 0x00000000 }, { 0x6854, 0, 0x7f7f7f7f, 0x00000000 }, { 0x6858, 0, 0x7f7f7f7f, 0x00000000 }, { 0x685c, 0, 0x7f7f7f7f, 0x00000000 }, { 0x6908, 0, 0x00000000, 0x0001ff0f }, { 0x690c, 0, 0x00000000, 0x0ffe00f0 }, { 0xffff, 0, 0x00000000, 0x00000000 }, }; ret = 0; for (i = 0; reg_tbl[i].offset != 0xffff; i++) { u32 offset, rw_mask, ro_mask, save_val, val; offset = (u32) reg_tbl[i].offset; rw_mask = reg_tbl[i].rw_mask; ro_mask = reg_tbl[i].ro_mask; save_val = readl(bp->regview + offset); writel(0, bp->regview + offset); val = readl(bp->regview + offset); if ((val & rw_mask) != 0) { goto reg_test_err; } if ((val & ro_mask) != (save_val & ro_mask)) { goto reg_test_err; } writel(0xffffffff, bp->regview + offset); val = readl(bp->regview + offset); if ((val & rw_mask) != rw_mask) { goto reg_test_err; } if ((val & ro_mask) != (save_val & ro_mask)) { goto reg_test_err; } writel(save_val, bp->regview + offset); continue; reg_test_err: writel(save_val, bp->regview + offset); ret = -ENODEV; break; } return ret; } static int bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size) { static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555, 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa }; int i; for (i = 0; i < sizeof(test_pattern) / 4; i++) { u32 offset; for (offset = 0; offset < size; offset += 4) { REG_WR_IND(bp, start + offset, test_pattern[i]); if (REG_RD_IND(bp, start + offset) != test_pattern[i]) { return -ENODEV; } } } return 0; } static int bnx2_test_memory(struct bnx2 *bp) { int ret = 0; int i; static const struct { u32 offset; u32 len; } mem_tbl[] = { { 0x60000, 0x4000 }, { 0xa0000, 0x3000 }, { 0xe0000, 0x4000 }, { 0x120000, 0x4000 }, { 0x1a0000, 0x4000 }, { 0x160000, 0x4000 }, { 0xffffffff, 0 }, }; for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) { if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset, mem_tbl[i].len)) != 0) { return ret; } } return ret; } #define BNX2_MAC_LOOPBACK 0 #define BNX2_PHY_LOOPBACK 1 static int bnx2_run_loopback(struct bnx2 *bp, int loopback_mode) { unsigned int pkt_size, num_pkts, i; struct sk_buff *skb, *rx_skb; unsigned char *packet; u16 rx_start_idx, rx_idx; dma_addr_t map; struct tx_bd *txbd; struct sw_bd *rx_buf; struct l2_fhdr *rx_hdr; int ret = -ENODEV; if (loopback_mode == BNX2_MAC_LOOPBACK) { bp->loopback = MAC_LOOPBACK; bnx2_set_mac_loopback(bp); } else if (loopback_mode == BNX2_PHY_LOOPBACK) { bp->loopback = 0; bnx2_set_phy_loopback(bp); } else return -EINVAL; pkt_size = 1514; skb = dev_alloc_skb(pkt_size); if (!skb) return -ENOMEM; packet = skb_put(skb, pkt_size); memcpy(packet, bp->mac_addr, 6); memset(packet + 6, 0x0, 8); for (i = 14; i < pkt_size; i++) packet[i] = (unsigned char) (i & 0xff); map = pci_map_single(bp->pdev, skb->data, pkt_size, PCI_DMA_TODEVICE); REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); REG_RD(bp, BNX2_HC_COMMAND); udelay(5); rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0; num_pkts = 0; txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)]; txbd->tx_bd_haddr_hi = (u64) map >> 32; txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff; txbd->tx_bd_mss_nbytes = pkt_size; txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END; num_pkts++; bp->tx_prod = NEXT_TX_BD(bp->tx_prod); bp->tx_prod_bseq += pkt_size; REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, bp->tx_prod); REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq); udelay(100); REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); REG_RD(bp, BNX2_HC_COMMAND); udelay(5); pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE); dev_kfree_skb_irq(skb); if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) { goto loopback_test_done; } rx_idx = bp->status_blk->status_rx_quick_consumer_index0; if (rx_idx != rx_start_idx + num_pkts) { goto loopback_test_done; } rx_buf = &bp->rx_buf_ring[rx_start_idx]; rx_skb = rx_buf->skb; rx_hdr = (struct l2_fhdr *) rx_skb->data; skb_reserve(rx_skb, bp->rx_offset); pci_dma_sync_single_for_cpu(bp->pdev, pci_unmap_addr(rx_buf, mapping), bp->rx_buf_size, PCI_DMA_FROMDEVICE); if (rx_hdr->l2_fhdr_status & (L2_FHDR_ERRORS_BAD_CRC | L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { goto loopback_test_done; } if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) { goto loopback_test_done; } for (i = 14; i < pkt_size; i++) { if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) { goto loopback_test_done; } } ret = 0; loopback_test_done: bp->loopback = 0; return ret; } #define BNX2_MAC_LOOPBACK_FAILED 1 #define BNX2_PHY_LOOPBACK_FAILED 2 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \ BNX2_PHY_LOOPBACK_FAILED) static int bnx2_test_loopback(struct bnx2 *bp) { int rc = 0; if (!netif_running(bp->dev)) return BNX2_LOOPBACK_FAILED; bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET); spin_lock_bh(&bp->phy_lock); bnx2_init_phy(bp); spin_unlock_bh(&bp->phy_lock); if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK)) rc |= BNX2_MAC_LOOPBACK_FAILED; if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK)) rc |= BNX2_PHY_LOOPBACK_FAILED; return rc; } #define NVRAM_SIZE 0x200 #define CRC32_RESIDUAL 0xdebb20e3 static int bnx2_test_nvram(struct bnx2 *bp) { u32 buf[NVRAM_SIZE / 4]; u8 *data = (u8 *) buf; int rc = 0; u32 magic, csum; if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0) goto test_nvram_done; magic = be32_to_cpu(buf[0]); if (magic != 0x669955aa) { rc = -ENODEV; goto test_nvram_done; } if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0) goto test_nvram_done; csum = ether_crc_le(0x100, data); if (csum != CRC32_RESIDUAL) { rc = -ENODEV; goto test_nvram_done; } csum = ether_crc_le(0x100, data + 0x100); if (csum != CRC32_RESIDUAL) { rc = -ENODEV; } test_nvram_done: return rc; } static int bnx2_test_link(struct bnx2 *bp) { u32 bmsr; spin_lock_bh(&bp->phy_lock); bnx2_read_phy(bp, MII_BMSR, &bmsr); bnx2_read_phy(bp, MII_BMSR, &bmsr); spin_unlock_bh(&bp->phy_lock); if (bmsr & BMSR_LSTATUS) { return 0; } return -ENODEV; } static int bnx2_test_intr(struct bnx2 *bp) { int i; u16 status_idx; if (!netif_running(bp->dev)) return -ENODEV; status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff; /* This register is not touched during run-time. */ REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW); REG_RD(bp, BNX2_HC_COMMAND); for (i = 0; i < 10; i++) { if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) != status_idx) { break; } msleep_interruptible(10); } if (i < 10) return 0; return -ENODEV; } static void bnx2_timer(unsigned long data) { struct bnx2 *bp = (struct bnx2 *) data; u32 msg; if (!netif_running(bp->dev)) return; if (atomic_read(&bp->intr_sem) != 0) goto bnx2_restart_timer; msg = (u32) ++bp->fw_drv_pulse_wr_seq; REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg); if ((bp->phy_flags & PHY_SERDES_FLAG) && (CHIP_NUM(bp) == CHIP_NUM_5706)) { spin_lock(&bp->phy_lock); if (bp->serdes_an_pending) { bp->serdes_an_pending--; } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) { u32 bmcr; bp->current_interval = bp->timer_interval; bnx2_read_phy(bp, MII_BMCR, &bmcr); if (bmcr & BMCR_ANENABLE) { u32 phy1, phy2; bnx2_write_phy(bp, 0x1c, 0x7c00); bnx2_read_phy(bp, 0x1c, &phy1); bnx2_write_phy(bp, 0x17, 0x0f01); bnx2_read_phy(bp, 0x15, &phy2); bnx2_write_phy(bp, 0x17, 0x0f01); bnx2_read_phy(bp, 0x15, &phy2); if ((phy1 & 0x10) && /* SIGNAL DETECT */ !(phy2 & 0x20)) { /* no CONFIG */ bmcr &= ~BMCR_ANENABLE; bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX; bnx2_write_phy(bp, MII_BMCR, bmcr); bp->phy_flags |= PHY_PARALLEL_DETECT_FLAG; } } } else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) && (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) { u32 phy2; bnx2_write_phy(bp, 0x17, 0x0f01); bnx2_read_phy(bp, 0x15, &phy2); if (phy2 & 0x20) { u32 bmcr; bnx2_read_phy(bp, MII_BMCR, &bmcr); bmcr |= BMCR_ANENABLE; bnx2_write_phy(bp, MII_BMCR, bmcr); bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG; } } else bp->current_interval = bp->timer_interval; spin_unlock(&bp->phy_lock); } bnx2_restart_timer: mod_timer(&bp->timer, jiffies + bp->current_interval); } /* Called with rtnl_lock */ static int bnx2_open(struct net_device *dev) { struct bnx2 *bp = netdev_priv(dev); int rc; bnx2_set_power_state(bp, PCI_D0); bnx2_disable_int(bp); rc = bnx2_alloc_mem(bp); if (rc) return rc; if ((CHIP_ID(bp) != CHIP_ID_5706_A0) && (CHIP_ID(bp) != CHIP_ID_5706_A1) && !disable_msi) { if (pci_enable_msi(bp->pdev) == 0) { bp->flags |= USING_MSI_FLAG; rc = request_irq(bp->pdev->irq, bnx2_msi, 0, dev->name, dev); } else { rc = request_irq(bp->pdev->irq, bnx2_interrupt, SA_SHIRQ, dev->name, dev); } } else { rc = request_irq(bp->pdev->irq, bnx2_interrupt, SA_SHIRQ, dev->name, dev); } if (rc) { bnx2_free_mem(bp); return rc; } rc = bnx2_init_nic(bp); if (rc) { free_irq(bp->pdev->irq, dev); if (bp->flags & USING_MSI_FLAG) { pci_disable_msi(bp->pdev); bp->flags &= ~USING_MSI_FLAG; } bnx2_free_skbs(bp); bnx2_free_mem(bp); return rc; } mod_timer(&bp->timer, jiffies + bp->current_interval); atomic_set(&bp->intr_sem, 0); bnx2_enable_int(bp); if (bp->flags & USING_MSI_FLAG) { /* Test MSI to make sure it is working * If MSI test fails, go back to INTx mode */ if (bnx2_test_intr(bp) != 0) { printk(KERN_WARNING PFX "%s: No interrupt was generated" " using MSI, switching to INTx mode. Please" " report this failure to the PCI maintainer" " and include system chipset information.\n", bp->dev->name); bnx2_disable_int(bp); free_irq(bp->pdev->irq, dev); pci_disable_msi(bp->pdev); bp->flags &= ~USING_MSI_FLAG; rc = bnx2_init_nic(bp); if (!rc) { rc = request_irq(bp->pdev->irq, bnx2_interrupt, SA_SHIRQ, dev->name, dev); } if (rc) { bnx2_free_skbs(bp); bnx2_free_mem(bp); del_timer_sync(&bp->timer); return rc; } bnx2_enable_int(bp); } } if (bp->flags & USING_MSI_FLAG) { printk(KERN_INFO PFX "%s: using MSI\n", dev->name); } netif_start_queue(dev); return 0; } static void bnx2_reset_task(void *data) { struct bnx2 *bp = data; if (!netif_running(bp->dev)) return; bp->in_reset_task = 1; bnx2_netif_stop(bp); bnx2_init_nic(bp); atomic_set(&bp->intr_sem, 1); bnx2_netif_start(bp); bp->in_reset_task = 0; } static void bnx2_tx_timeout(struct net_device *dev) { struct bnx2 *bp = netdev_priv(dev); /* This allows the netif to be shutdown gracefully before resetting */ schedule_work(&bp->reset_task); } #ifdef BCM_VLAN /* Called with rtnl_lock */ static void bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp) { struct bnx2 *bp = netdev_priv(dev); bnx2_netif_stop(bp); bp->vlgrp = vlgrp; bnx2_set_rx_mode(dev); bnx2_netif_start(bp); } /* Called with rtnl_lock */ static void bnx2_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid) { struct bnx2 *bp = netdev_priv(dev); bnx2_netif_stop(bp); if (bp->vlgrp) bp->vlgrp->vlan_devices[vid] = NULL; bnx2_set_rx_mode(dev); bnx2_netif_start(bp); } #endif /* Called with dev->xmit_lock. * hard_start_xmit is pseudo-lockless - a lock is only required when * the tx queue is full. This way, we get the benefit of lockless * operations most of the time without the complexities to handle * netif_stop_queue/wake_queue race conditions. */ static int bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct bnx2 *bp = netdev_priv(dev); dma_addr_t mapping; struct tx_bd *txbd; struct sw_bd *tx_buf; u32 len, vlan_tag_flags, last_frag, mss; u16 prod, ring_prod; int i; if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) { netif_stop_queue(dev); printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n", dev->name); return NETDEV_TX_BUSY; } len = skb_headlen(skb); prod = bp->tx_prod; ring_prod = TX_RING_IDX(prod); vlan_tag_flags = 0; if (skb->ip_summed == CHECKSUM_HW) { vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; } if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) { vlan_tag_flags |= (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16)); } #ifdef BCM_TSO if ((mss = skb_shinfo(skb)->tso_size) && (skb->len > (bp->dev->mtu + ETH_HLEN))) { u32 tcp_opt_len, ip_tcp_len; if (skb_header_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) { dev_kfree_skb(skb); return NETDEV_TX_OK; } tcp_opt_len = ((skb->h.th->doff - 5) * 4); vlan_tag_flags |= TX_BD_FLAGS_SW_LSO; tcp_opt_len = 0; if (skb->h.th->doff > 5) { tcp_opt_len = (skb->h.th->doff - 5) << 2; } ip_tcp_len = (skb->nh.iph->ihl << 2) + sizeof(struct tcphdr); skb->nh.iph->check = 0; skb->nh.iph->tot_len = ntohs(mss + ip_tcp_len + tcp_opt_len); skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr, skb->nh.iph->daddr, 0, IPPROTO_TCP, 0); if (tcp_opt_len || (skb->nh.iph->ihl > 5)) { vlan_tag_flags |= ((skb->nh.iph->ihl - 5) + (tcp_opt_len >> 2)) << 8; } } else #endif { mss = 0; } mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE); tx_buf = &bp->tx_buf_ring[ring_prod]; tx_buf->skb = skb; pci_unmap_addr_set(tx_buf, mapping, mapping); txbd = &bp->tx_desc_ring[ring_prod]; txbd->tx_bd_haddr_hi = (u64) mapping >> 32; txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff; txbd->tx_bd_mss_nbytes = len | (mss << 16); txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START; last_frag = skb_shinfo(skb)->nr_frags; for (i = 0; i < last_frag; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; prod = NEXT_TX_BD(prod); ring_prod = TX_RING_IDX(prod); txbd = &bp->tx_desc_ring[ring_prod]; len = frag->size; mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset, len, PCI_DMA_TODEVICE); pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod], mapping, mapping); txbd->tx_bd_haddr_hi = (u64) mapping >> 32; txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff; txbd->tx_bd_mss_nbytes = len | (mss << 16); txbd->tx_bd_vlan_tag_flags = vlan_tag_flags; } txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END; prod = NEXT_TX_BD(prod); bp->tx_prod_bseq += skb->len; REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, prod); REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq); mmiowb(); bp->tx_prod = prod; dev->trans_start = jiffies; if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) { spin_lock(&bp->tx_lock); netif_stop_queue(dev); if (bnx2_tx_avail(bp) > MAX_SKB_FRAGS) netif_wake_queue(dev); spin_unlock(&bp->tx_lock); } return NETDEV_TX_OK; } /* Called with rtnl_lock */ static int bnx2_close(struct net_device *dev) { struct bnx2 *bp = netdev_priv(dev); u32 reset_code; /* Calling flush_scheduled_work() may deadlock because * linkwatch_event() may be on the workqueue and it will try to get * the rtnl_lock which we are holding. */ while (bp->in_reset_task) msleep(1); bnx2_netif_stop(bp); del_timer_sync(&bp->timer); if (bp->flags & NO_WOL_FLAG) reset_code = BNX2_DRV_MSG_CODE_UNLOAD; else if (bp->wol) reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL; else reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL; bnx2_reset_chip(bp, reset_code); free_irq(bp->pdev->irq, dev); if (bp->flags & USING_MSI_FLAG) { pci_disable_msi(bp->pdev); bp->flags &= ~USING_MSI_FLAG; } bnx2_free_skbs(bp); bnx2_free_mem(bp); bp->link_up = 0; netif_carrier_off(bp->dev); bnx2_set_power_state(bp, PCI_D3hot); return 0; } #define GET_NET_STATS64(ctr) \ (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \ (unsigned long) (ctr##_lo) #define GET_NET_STATS32(ctr) \ (ctr##_lo) #if (BITS_PER_LONG == 64) #define GET_NET_STATS GET_NET_STATS64 #else #define GET_NET_STATS GET_NET_STATS32 #endif static struct net_device_stats * bnx2_get_stats(struct net_device *dev) { struct bnx2 *bp = netdev_priv(dev); struct statistics_block *stats_blk = bp->stats_blk; struct net_device_stats *net_stats = &bp->net_stats; if (bp->stats_blk == NULL) { return net_stats; } net_stats->rx_packets = GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) + GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) + GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts); net_stats->tx_packets = GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) + GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) + GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts); net_stats->rx_bytes = GET_NET_STATS(stats_blk->stat_IfHCInOctets); net_stats->tx_bytes = GET_NET_STATS(stats_blk->stat_IfHCOutOctets); net_stats->multicast = GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts); net_stats->collisions = (unsigned long) stats_blk->stat_EtherStatsCollisions; net_stats->rx_length_errors = (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts + stats_blk->stat_EtherStatsOverrsizePkts); net_stats->rx_over_errors = (unsigned long) stats_blk->stat_IfInMBUFDiscards; net_stats->rx_frame_errors = (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors; net_stats->rx_crc_errors = (unsigned long) stats_blk->stat_Dot3StatsFCSErrors; net_stats->rx_errors = net_stats->rx_length_errors + net_stats->rx_over_errors + net_stats->rx_frame_errors + net_stats->rx_crc_errors; net_stats->tx_aborted_errors = (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions + stats_blk->stat_Dot3StatsLateCollisions); if ((CHIP_NUM(bp) == CHIP_NUM_5706) || (CHIP_ID(bp) == CHIP_ID_5708_A0)) net_stats->tx_carrier_errors = 0; else { net_stats->tx_carrier_errors = (unsigned long) stats_blk->stat_Dot3StatsCarrierSenseErrors; } net_stats->tx_errors = (unsigned long) stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + net_stats->tx_aborted_errors + net_stats->tx_carrier_errors; return net_stats; } /* All ethtool functions called with rtnl_lock */ static int bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct bnx2 *bp = netdev_priv(dev); cmd->supported = SUPPORTED_Autoneg; if (bp->phy_flags & PHY_SERDES_FLAG) { cmd->supported |= SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE; cmd->port = PORT_FIBRE; } else { cmd->supported |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_TP; cmd->port = PORT_TP; } cmd->advertising = bp->advertising; if (bp->autoneg & AUTONEG_SPEED) { cmd->autoneg = AUTONEG_ENABLE; } else { cmd->autoneg = AUTONEG_DISABLE; } if (netif_carrier_ok(dev)) { cmd->speed = bp->line_speed; cmd->duplex = bp->duplex; } else { cmd->speed = -1; cmd->duplex = -1; } cmd->transceiver = XCVR_INTERNAL; cmd->phy_address = bp->phy_addr; return 0; } static int bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct bnx2 *bp = netdev_priv(dev); u8 autoneg = bp->autoneg; u8 req_duplex = bp->req_duplex; u16 req_line_speed = bp->req_line_speed; u32 advertising = bp->advertising; if (cmd->autoneg == AUTONEG_ENABLE) { autoneg |= AUTONEG_SPEED; cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED; /* allow advertising 1 speed */ if ((cmd->advertising == ADVERTISED_10baseT_Half) || (cmd->advertising == ADVERTISED_10baseT_Full) || (cmd->advertising == ADVERTISED_100baseT_Half) || (cmd->advertising == ADVERTISED_100baseT_Full)) { if (bp->phy_flags & PHY_SERDES_FLAG) return -EINVAL; advertising = cmd->advertising; } else if (cmd->advertising == ADVERTISED_1000baseT_Full) { advertising = cmd->advertising; } else if (cmd->advertising == ADVERTISED_1000baseT_Half) { return -EINVAL; } else { if (bp->phy_flags & PHY_SERDES_FLAG) { advertising = ETHTOOL_ALL_FIBRE_SPEED; } else { advertising = ETHTOOL_ALL_COPPER_SPEED; } } advertising |= ADVERTISED_Autoneg; } else { if (bp->phy_flags & PHY_SERDES_FLAG) { if ((cmd->speed != SPEED_1000) || (cmd->duplex != DUPLEX_FULL)) { return -EINVAL; } } else if (cmd->speed == SPEED_1000) { return -EINVAL; } autoneg &= ~AUTONEG_SPEED; req_line_speed = cmd->speed; req_duplex = cmd->duplex; advertising = 0; } bp->autoneg = autoneg; bp->advertising = advertising; bp->req_line_speed = req_line_speed; bp->req_duplex = req_duplex; spin_lock_bh(&bp->phy_lock); bnx2_setup_phy(bp); spin_unlock_bh(&bp->phy_lock); return 0; } static void bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct bnx2 *bp = netdev_priv(dev); strcpy(info->driver, DRV_MODULE_NAME); strcpy(info->version, DRV_MODULE_VERSION); strcpy(info->bus_info, pci_name(bp->pdev)); info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0'; info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0'; info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0'; info->fw_version[1] = info->fw_version[3] = '.'; info->fw_version[5] = 0; } #define BNX2_REGDUMP_LEN (32 * 1024) static int bnx2_get_regs_len(struct net_device *dev) { return BNX2_REGDUMP_LEN; } static void bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p) { u32 *p = _p, i, offset; u8 *orig_p = _p; struct bnx2 *bp = netdev_priv(dev); u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c, 0x0800, 0x0880, 0x0c00, 0x0c10, 0x0c30, 0x0d08, 0x1000, 0x101c, 0x1040, 0x1048, 0x1080, 0x10a4, 0x1400, 0x1490, 0x1498, 0x14f0, 0x1500, 0x155c, 0x1580, 0x15dc, 0x1600, 0x1658, 0x1680, 0x16d8, 0x1800, 0x1820, 0x1840, 0x1854, 0x1880, 0x1894, 0x1900, 0x1984, 0x1c00, 0x1c0c, 0x1c40, 0x1c54, 0x1c80, 0x1c94, 0x1d00, 0x1d84, 0x2000, 0x2030, 0x23c0, 0x2400, 0x2800, 0x2820, 0x2830, 0x2850, 0x2b40, 0x2c10, 0x2fc0, 0x3058, 0x3c00, 0x3c94, 0x4000, 0x4010, 0x4080, 0x4090, 0x43c0, 0x4458, 0x4c00, 0x4c18, 0x4c40, 0x4c54, 0x4fc0, 0x5010, 0x53c0, 0x5444, 0x5c00, 0x5c18, 0x5c80, 0x5c90, 0x5fc0, 0x6000, 0x6400, 0x6428, 0x6800, 0x6848, 0x684c, 0x6860, 0x6888, 0x6910, 0x8000 }; regs->version = 0; memset(p, 0, BNX2_REGDUMP_LEN); if (!netif_running(bp->dev)) return; i = 0; offset = reg_boundaries[0]; p += offset; while (offset < BNX2_REGDUMP_LEN) { *p++ = REG_RD(bp, offset); offset += 4; if (offset == reg_boundaries[i + 1]) { offset = reg_boundaries[i + 2]; p = (u32 *) (orig_p + offset); i += 2; } } } static void bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct bnx2 *bp = netdev_priv(dev); if (bp->flags & NO_WOL_FLAG) { wol->supported = 0; wol->wolopts = 0; } else { wol->supported = WAKE_MAGIC; if (bp->wol) wol->wolopts = WAKE_MAGIC; else wol->wolopts = 0; } memset(&wol->sopass, 0, sizeof(wol->sopass)); } static int bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct bnx2 *bp = netdev_priv(dev); if (wol->wolopts & ~WAKE_MAGIC) return -EINVAL; if (wol->wolopts & WAKE_MAGIC) { if (bp->flags & NO_WOL_FLAG) return -EINVAL; bp->wol = 1; } else { bp->wol = 0; } return 0; } static int bnx2_nway_reset(struct net_device *dev) { struct bnx2 *bp = netdev_priv(dev); u32 bmcr; if (!(bp->autoneg & AUTONEG_SPEED)) { return -EINVAL; } spin_lock_bh(&bp->phy_lock); /* Force a link down visible on the other side */ if (bp->phy_flags & PHY_SERDES_FLAG) { bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK); spin_unlock_bh(&bp->phy_lock); msleep(20); spin_lock_bh(&bp->phy_lock); if (CHIP_NUM(bp) == CHIP_NUM_5706) { bp->current_interval = SERDES_AN_TIMEOUT; bp->serdes_an_pending = 1; mod_timer(&bp->timer, jiffies + bp->current_interval); } } bnx2_read_phy(bp, MII_BMCR, &bmcr); bmcr &= ~BMCR_LOOPBACK; bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE); spin_unlock_bh(&bp->phy_lock); return 0; } static int bnx2_get_eeprom_len(struct net_device *dev) { struct bnx2 *bp = netdev_priv(dev); if (bp->flash_info == NULL) return 0; return (int) bp->flash_size; } static int bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *eebuf) { struct bnx2 *bp = netdev_priv(dev); int rc; /* parameters already validated in ethtool_get_eeprom */ rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len); return rc; } static int bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *eebuf) { struct bnx2 *bp = netdev_priv(dev); int rc; /* parameters already validated in ethtool_set_eeprom */ rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len); return rc; } static int bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal) { struct bnx2 *bp = netdev_priv(dev); memset(coal, 0, sizeof(struct ethtool_coalesce)); coal->rx_coalesce_usecs = bp->rx_ticks; coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip; coal->rx_coalesce_usecs_irq = bp->rx_ticks_int; coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int; coal->tx_coalesce_usecs = bp->tx_ticks; coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip; coal->tx_coalesce_usecs_irq = bp->tx_ticks_int; coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int; coal->stats_block_coalesce_usecs = bp->stats_ticks; return 0; } static int bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal) { struct bnx2 *bp = netdev_priv(dev); bp->rx_ticks = (u16) coal->rx_coalesce_usecs; if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff; bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames; if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff; bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq; if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff; bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq; if (bp->rx_quick_cons_trip_int > 0xff) bp->rx_quick_cons_trip_int = 0xff; bp->tx_ticks = (u16) coal->tx_coalesce_usecs; if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff; bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames; if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff; bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq; if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff; bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq; if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int = 0xff; bp->stats_ticks = coal->stats_block_coalesce_usecs; if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00; bp->stats_ticks &= 0xffff00; if (netif_running(bp->dev)) { bnx2_netif_stop(bp); bnx2_init_nic(bp); bnx2_netif_start(bp); } return 0; } static void bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct bnx2 *bp = netdev_priv(dev); ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT; ering->rx_mini_max_pending = 0; ering->rx_jumbo_max_pending = 0; ering->rx_pending = bp->rx_ring_size; ering->rx_mini_pending = 0; ering->rx_jumbo_pending = 0; ering->tx_max_pending = MAX_TX_DESC_CNT; ering->tx_pending = bp->tx_ring_size; } static int bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct bnx2 *bp = netdev_priv(dev); if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) || (ering->tx_pending > MAX_TX_DESC_CNT) || (ering->tx_pending <= MAX_SKB_FRAGS)) { return -EINVAL; } if (netif_running(bp->dev)) { bnx2_netif_stop(bp); bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET); bnx2_free_skbs(bp); bnx2_free_mem(bp); } bnx2_set_rx_ring_size(bp, ering->rx_pending); bp->tx_ring_size = ering->tx_pending; if (netif_running(bp->dev)) { int rc; rc = bnx2_alloc_mem(bp); if (rc) return rc; bnx2_init_nic(bp); bnx2_netif_start(bp); } return 0; } static void bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct bnx2 *bp = netdev_priv(dev); epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0); epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0); epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0); } static int bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct bnx2 *bp = netdev_priv(dev); bp->req_flow_ctrl = 0; if (epause->rx_pause) bp->req_flow_ctrl |= FLOW_CTRL_RX; if (epause->tx_pause) bp->req_flow_ctrl |= FLOW_CTRL_TX; if (epause->autoneg) { bp->autoneg |= AUTONEG_FLOW_CTRL; } else { bp->autoneg &= ~AUTONEG_FLOW_CTRL; } spin_lock_bh(&bp->phy_lock); bnx2_setup_phy(bp); spin_unlock_bh(&bp->phy_lock); return 0; } static u32 bnx2_get_rx_csum(struct net_device *dev) { struct bnx2 *bp = netdev_priv(dev); return bp->rx_csum; } static int bnx2_set_rx_csum(struct net_device *dev, u32 data) { struct bnx2 *bp = netdev_priv(dev); bp->rx_csum = data; return 0; } #define BNX2_NUM_STATS 45 static struct { char string[ETH_GSTRING_LEN]; } bnx2_stats_str_arr[BNX2_NUM_STATS] = { { "rx_bytes" }, { "rx_error_bytes" }, { "tx_bytes" }, { "tx_error_bytes" }, { "rx_ucast_packets" }, { "rx_mcast_packets" }, { "rx_bcast_packets" }, { "tx_ucast_packets" }, { "tx_mcast_packets" }, { "tx_bcast_packets" }, { "tx_mac_errors" }, { "tx_carrier_errors" }, { "rx_crc_errors" }, { "rx_align_errors" }, { "tx_single_collisions" }, { "tx_multi_collisions" }, { "tx_deferred" }, { "tx_excess_collisions" }, { "tx_late_collisions" }, { "tx_total_collisions" }, { "rx_fragments" }, { "rx_jabbers" }, { "rx_undersize_packets" }, { "rx_oversize_packets" }, { "rx_64_byte_packets" }, { "rx_65_to_127_byte_packets" }, { "rx_128_to_255_byte_packets" }, { "rx_256_to_511_byte_packets" }, { "rx_512_to_1023_byte_packets" }, { "rx_1024_to_1522_byte_packets" }, { "rx_1523_to_9022_byte_packets" }, { "tx_64_byte_packets" }, { "tx_65_to_127_byte_packets" }, { "tx_128_to_255_byte_packets" }, { "tx_256_to_511_byte_packets" }, { "tx_512_to_1023_byte_packets" }, { "tx_1024_to_1522_byte_packets" }, { "tx_1523_to_9022_byte_packets" }, { "rx_xon_frames" }, { "rx_xoff_frames" }, { "tx_xon_frames" }, { "tx_xoff_frames" }, { "rx_mac_ctrl_frames" }, { "rx_filtered_packets" }, { "rx_discards" }, }; #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4) static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = { STATS_OFFSET32(stat_IfHCInOctets_hi), STATS_OFFSET32(stat_IfHCInBadOctets_hi), STATS_OFFSET32(stat_IfHCOutOctets_hi), STATS_OFFSET32(stat_IfHCOutBadOctets_hi), STATS_OFFSET32(stat_IfHCInUcastPkts_hi), STATS_OFFSET32(stat_IfHCInMulticastPkts_hi), STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi), STATS_OFFSET32(stat_IfHCOutUcastPkts_hi), STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi), STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi), STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors), STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors), STATS_OFFSET32(stat_Dot3StatsFCSErrors), STATS_OFFSET32(stat_Dot3StatsAlignmentErrors), STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames), STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames), STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions), STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions), STATS_OFFSET32(stat_Dot3StatsLateCollisions), STATS_OFFSET32(stat_EtherStatsCollisions), STATS_OFFSET32(stat_EtherStatsFragments), STATS_OFFSET32(stat_EtherStatsJabbers), STATS_OFFSET32(stat_EtherStatsUndersizePkts), STATS_OFFSET32(stat_EtherStatsOverrsizePkts), STATS_OFFSET32(stat_EtherStatsPktsRx64Octets), STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets), STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets), STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets), STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets), STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets), STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets), STATS_OFFSET32(stat_EtherStatsPktsTx64Octets), STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets), STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets), STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets), STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets), STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets), STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets), STATS_OFFSET32(stat_XonPauseFramesReceived), STATS_OFFSET32(stat_XoffPauseFramesReceived), STATS_OFFSET32(stat_OutXonSent), STATS_OFFSET32(stat_OutXoffSent), STATS_OFFSET32(stat_MacControlFramesReceived), STATS_OFFSET32(stat_IfInFramesL2FilterDiscards), STATS_OFFSET32(stat_IfInMBUFDiscards), }; /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are * skipped because of errata. */ static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = { 8,0,8,8,8,8,8,8,8,8, 4,0,4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4, }; static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = { 8,0,8,8,8,8,8,8,8,8, 4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4, }; #define BNX2_NUM_TESTS 6 static struct { char string[ETH_GSTRING_LEN]; } bnx2_tests_str_arr[BNX2_NUM_TESTS] = { { "register_test (offline)" }, { "memory_test (offline)" }, { "loopback_test (offline)" }, { "nvram_test (online)" }, { "interrupt_test (online)" }, { "link_test (online)" }, }; static int bnx2_self_test_count(struct net_device *dev) { return BNX2_NUM_TESTS; } static void bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf) { struct bnx2 *bp = netdev_priv(dev); memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS); if (etest->flags & ETH_TEST_FL_OFFLINE) { bnx2_netif_stop(bp); bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG); bnx2_free_skbs(bp); if (bnx2_test_registers(bp) != 0) { buf[0] = 1; etest->flags |= ETH_TEST_FL_FAILED; } if (bnx2_test_memory(bp) != 0) { buf[1] = 1; etest->flags |= ETH_TEST_FL_FAILED; } if ((buf[2] = bnx2_test_loopback(bp)) != 0) etest->flags |= ETH_TEST_FL_FAILED; if (!netif_running(bp->dev)) { bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET); } else { bnx2_init_nic(bp); bnx2_netif_start(bp); } /* wait for link up */ msleep_interruptible(3000); if ((!bp->link_up) && !(bp->phy_flags & PHY_SERDES_FLAG)) msleep_interruptible(4000); } if (bnx2_test_nvram(bp) != 0) { buf[3] = 1; etest->flags |= ETH_TEST_FL_FAILED; } if (bnx2_test_intr(bp) != 0) { buf[4] = 1; etest->flags |= ETH_TEST_FL_FAILED; } if (bnx2_test_link(bp) != 0) { buf[5] = 1; etest->flags |= ETH_TEST_FL_FAILED; } } static void bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf) { switch (stringset) { case ETH_SS_STATS: memcpy(buf, bnx2_stats_str_arr, sizeof(bnx2_stats_str_arr)); break; case ETH_SS_TEST: memcpy(buf, bnx2_tests_str_arr, sizeof(bnx2_tests_str_arr)); break; } } static int bnx2_get_stats_count(struct net_device *dev) { return BNX2_NUM_STATS; } static void bnx2_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *buf) { struct bnx2 *bp = netdev_priv(dev); int i; u32 *hw_stats = (u32 *) bp->stats_blk; u8 *stats_len_arr = NULL; if (hw_stats == NULL) { memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS); return; } if ((CHIP_ID(bp) == CHIP_ID_5706_A0) || (CHIP_ID(bp) == CHIP_ID_5706_A1) || (CHIP_ID(bp) == CHIP_ID_5706_A2) || (CHIP_ID(bp) == CHIP_ID_5708_A0)) stats_len_arr = bnx2_5706_stats_len_arr; else stats_len_arr = bnx2_5708_stats_len_arr; for (i = 0; i < BNX2_NUM_STATS; i++) { if (stats_len_arr[i] == 0) { /* skip this counter */ buf[i] = 0; continue; } if (stats_len_arr[i] == 4) { /* 4-byte counter */ buf[i] = (u64) *(hw_stats + bnx2_stats_offset_arr[i]); continue; } /* 8-byte counter */ buf[i] = (((u64) *(hw_stats + bnx2_stats_offset_arr[i])) << 32) + *(hw_stats + bnx2_stats_offset_arr[i] + 1); } } static int bnx2_phys_id(struct net_device *dev, u32 data) { struct bnx2 *bp = netdev_priv(dev); int i; u32 save; if (data == 0) data = 2; save = REG_RD(bp, BNX2_MISC_CFG); REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC); for (i = 0; i < (data * 2); i++) { if ((i % 2) == 0) { REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE); } else { REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE | BNX2_EMAC_LED_1000MB_OVERRIDE | BNX2_EMAC_LED_100MB_OVERRIDE | BNX2_EMAC_LED_10MB_OVERRIDE | BNX2_EMAC_LED_TRAFFIC_OVERRIDE | BNX2_EMAC_LED_TRAFFIC); } msleep_interruptible(500); if (signal_pending(current)) break; } REG_WR(bp, BNX2_EMAC_LED, 0); REG_WR(bp, BNX2_MISC_CFG, save); return 0; } static struct ethtool_ops bnx2_ethtool_ops = { .get_settings = bnx2_get_settings, .set_settings = bnx2_set_settings, .get_drvinfo = bnx2_get_drvinfo, .get_regs_len = bnx2_get_regs_len, .get_regs = bnx2_get_regs, .get_wol = bnx2_get_wol, .set_wol = bnx2_set_wol, .nway_reset = bnx2_nway_reset, .get_link = ethtool_op_get_link, .get_eeprom_len = bnx2_get_eeprom_len, .get_eeprom = bnx2_get_eeprom, .set_eeprom = bnx2_set_eeprom, .get_coalesce = bnx2_get_coalesce, .set_coalesce = bnx2_set_coalesce, .get_ringparam = bnx2_get_ringparam, .set_ringparam = bnx2_set_ringparam, .get_pauseparam = bnx2_get_pauseparam, .set_pauseparam = bnx2_set_pauseparam, .get_rx_csum = bnx2_get_rx_csum, .set_rx_csum = bnx2_set_rx_csum, .get_tx_csum = ethtool_op_get_tx_csum, .set_tx_csum = ethtool_op_set_tx_csum, .get_sg = ethtool_op_get_sg, .set_sg = ethtool_op_set_sg, #ifdef BCM_TSO .get_tso = ethtool_op_get_tso, .set_tso = ethtool_op_set_tso, #endif .self_test_count = bnx2_self_test_count, .self_test = bnx2_self_test, .get_strings = bnx2_get_strings, .phys_id = bnx2_phys_id, .get_stats_count = bnx2_get_stats_count, .get_ethtool_stats = bnx2_get_ethtool_stats, .get_perm_addr = ethtool_op_get_perm_addr, }; /* Called with rtnl_lock */ static int bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mii_ioctl_data *data = if_mii(ifr); struct bnx2 *bp = netdev_priv(dev); int err; switch(cmd) { case SIOCGMIIPHY: data->phy_id = bp->phy_addr; /* fallthru */ case SIOCGMIIREG: { u32 mii_regval; spin_lock_bh(&bp->phy_lock); err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval); spin_unlock_bh(&bp->phy_lock); data->val_out = mii_regval; return err; } case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) return -EPERM; spin_lock_bh(&bp->phy_lock); err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in); spin_unlock_bh(&bp->phy_lock); return err; default: /* do nothing */ break; } return -EOPNOTSUPP; } /* Called with rtnl_lock */ static int bnx2_change_mac_addr(struct net_device *dev, void *p) { struct sockaddr *addr = p; struct bnx2 *bp = netdev_priv(dev); if (!is_valid_ether_addr(addr->sa_data)) return -EINVAL; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); if (netif_running(dev)) bnx2_set_mac_addr(bp); return 0; } /* Called with rtnl_lock */ static int bnx2_change_mtu(struct net_device *dev, int new_mtu) { struct bnx2 *bp = netdev_priv(dev); if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) || ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE)) return -EINVAL; dev->mtu = new_mtu; if (netif_running(dev)) { bnx2_netif_stop(bp); bnx2_init_nic(bp); bnx2_netif_start(bp); } return 0; } #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER) static void poll_bnx2(struct net_device *dev) { struct bnx2 *bp = netdev_priv(dev); disable_irq(bp->pdev->irq); bnx2_interrupt(bp->pdev->irq, dev, NULL); enable_irq(bp->pdev->irq); } #endif static int __devinit bnx2_init_board(struct pci_dev *pdev, struct net_device *dev) { struct bnx2 *bp; unsigned long mem_len; int rc; u32 reg; SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); bp = netdev_priv(dev); bp->flags = 0; bp->phy_flags = 0; /* enable device (incl. PCI PM wakeup), and bus-mastering */ rc = pci_enable_device(pdev); if (rc) { printk(KERN_ERR PFX "Cannot enable PCI device, aborting."); goto err_out; } if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { printk(KERN_ERR PFX "Cannot find PCI device base address, " "aborting.\n"); rc = -ENODEV; goto err_out_disable; } rc = pci_request_regions(pdev, DRV_MODULE_NAME); if (rc) { printk(KERN_ERR PFX "Cannot obtain PCI resources, aborting.\n"); goto err_out_disable; } pci_set_master(pdev); bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); if (bp->pm_cap == 0) { printk(KERN_ERR PFX "Cannot find power management capability, " "aborting.\n"); rc = -EIO; goto err_out_release; } bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX); if (bp->pcix_cap == 0) { printk(KERN_ERR PFX "Cannot find PCIX capability, aborting.\n"); rc = -EIO; goto err_out_release; } if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0) { bp->flags |= USING_DAC_FLAG; if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) != 0) { printk(KERN_ERR PFX "pci_set_consistent_dma_mask " "failed, aborting.\n"); rc = -EIO; goto err_out_release; } } else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0) { printk(KERN_ERR PFX "System does not support DMA, aborting.\n"); rc = -EIO; goto err_out_release; } bp->dev = dev; bp->pdev = pdev; spin_lock_init(&bp->phy_lock); spin_lock_init(&bp->tx_lock); INIT_WORK(&bp->reset_task, bnx2_reset_task, bp); dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0); mem_len = MB_GET_CID_ADDR(17); dev->mem_end = dev->mem_start + mem_len; dev->irq = pdev->irq; bp->regview = ioremap_nocache(dev->base_addr, mem_len); if (!bp->regview) { printk(KERN_ERR PFX "Cannot map register space, aborting.\n"); rc = -ENOMEM; goto err_out_release; } /* Configure byte swap and enable write to the reg_window registers. * Rely on CPU to do target byte swapping on big endian systems * The chip's target access swapping will not swap all accesses */ pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP); bnx2_set_power_state(bp, PCI_D0); bp->chip_id = REG_RD(bp, BNX2_MISC_ID); /* Get bus information. */ reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS); if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) { u32 clkreg; bp->flags |= PCIX_FLAG; clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS); clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; switch (clkreg) { case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: bp->bus_speed_mhz = 133; break; case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: bp->bus_speed_mhz = 100; break; case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: bp->bus_speed_mhz = 66; break; case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: bp->bus_speed_mhz = 50; break; case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: bp->bus_speed_mhz = 33; break; } } else { if (reg & BNX2_PCICFG_MISC_STATUS_M66EN) bp->bus_speed_mhz = 66; else bp->bus_speed_mhz = 33; } if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET) bp->flags |= PCI_32BIT_FLAG; /* 5706A0 may falsely detect SERR and PERR. */ if (CHIP_ID(bp) == CHIP_ID_5706_A0) { reg = REG_RD(bp, PCI_COMMAND); reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY); REG_WR(bp, PCI_COMMAND, reg); } else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) && !(bp->flags & PCIX_FLAG)) { printk(KERN_ERR PFX "5706 A1 can only be used in a PCIX bus, " "aborting.\n"); goto err_out_unmap; } bnx2_init_nvram(bp); reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE); if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) == BNX2_SHM_HDR_SIGNATURE_SIG) bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0); else bp->shmem_base = HOST_VIEW_SHMEM_BASE; /* Get the permanent MAC address. First we need to make sure the * firmware is actually running. */ reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE); if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) != BNX2_DEV_INFO_SIGNATURE_MAGIC) { printk(KERN_ERR PFX "Firmware not running, aborting.\n"); rc = -ENODEV; goto err_out_unmap; } bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV); reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER); bp->mac_addr[0] = (u8) (reg >> 8); bp->mac_addr[1] = (u8) reg; reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER); bp->mac_addr[2] = (u8) (reg >> 24); bp->mac_addr[3] = (u8) (reg >> 16); bp->mac_addr[4] = (u8) (reg >> 8); bp->mac_addr[5] = (u8) reg; bp->tx_ring_size = MAX_TX_DESC_CNT; bnx2_set_rx_ring_size(bp, 100); bp->rx_csum = 1; bp->rx_offset = sizeof(struct l2_fhdr) + 2; bp->tx_quick_cons_trip_int = 20; bp->tx_quick_cons_trip = 20; bp->tx_ticks_int = 80; bp->tx_ticks = 80; bp->rx_quick_cons_trip_int = 6; bp->rx_quick_cons_trip = 6; bp->rx_ticks_int = 18; bp->rx_ticks = 18; bp->stats_ticks = 1000000 & 0xffff00; bp->timer_interval = HZ; bp->current_interval = HZ; bp->phy_addr = 1; /* Disable WOL support if we are running on a SERDES chip. */ if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT) { bp->phy_flags |= PHY_SERDES_FLAG; bp->flags |= NO_WOL_FLAG; if (CHIP_NUM(bp) == CHIP_NUM_5708) { bp->phy_addr = 2; reg = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG); if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G) bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG; } } if (CHIP_NUM(bp) == CHIP_NUM_5708) bp->flags |= NO_WOL_FLAG; if (CHIP_ID(bp) == CHIP_ID_5706_A0) { bp->tx_quick_cons_trip_int = bp->tx_quick_cons_trip; bp->tx_ticks_int = bp->tx_ticks; bp->rx_quick_cons_trip_int = bp->rx_quick_cons_trip; bp->rx_ticks_int = bp->rx_ticks; bp->comp_prod_trip_int = bp->comp_prod_trip; bp->com_ticks_int = bp->com_ticks; bp->cmd_ticks_int = bp->cmd_ticks; } bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL; bp->req_line_speed = 0; if (bp->phy_flags & PHY_SERDES_FLAG) { bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg; reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG); reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK; if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) { bp->autoneg = 0; bp->req_line_speed = bp->line_speed = SPEED_1000; bp->req_duplex = DUPLEX_FULL; } } else { bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg; } bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX; init_timer(&bp->timer); bp->timer.expires = RUN_AT(bp->timer_interval); bp->timer.data = (unsigned long) bp; bp->timer.function = bnx2_timer; return 0; err_out_unmap: if (bp->regview) { iounmap(bp->regview); bp->regview = NULL; } err_out_release: pci_release_regions(pdev); err_out_disable: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); err_out: return rc; } static int __devinit bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { static int version_printed = 0; struct net_device *dev = NULL; struct bnx2 *bp; int rc, i; if (version_printed++ == 0) printk(KERN_INFO "%s", version); /* dev zeroed in init_etherdev */ dev = alloc_etherdev(sizeof(*bp)); if (!dev) return -ENOMEM; rc = bnx2_init_board(pdev, dev); if (rc < 0) { free_netdev(dev); return rc; } dev->open = bnx2_open; dev->hard_start_xmit = bnx2_start_xmit; dev->stop = bnx2_close; dev->get_stats = bnx2_get_stats; dev->set_multicast_list = bnx2_set_rx_mode; dev->do_ioctl = bnx2_ioctl; dev->set_mac_address = bnx2_change_mac_addr; dev->change_mtu = bnx2_change_mtu; dev->tx_timeout = bnx2_tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; #ifdef BCM_VLAN dev->vlan_rx_register = bnx2_vlan_rx_register; dev->vlan_rx_kill_vid = bnx2_vlan_rx_kill_vid; #endif dev->poll = bnx2_poll; dev->ethtool_ops = &bnx2_ethtool_ops; dev->weight = 64; bp = netdev_priv(dev); #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER) dev->poll_controller = poll_bnx2; #endif if ((rc = register_netdev(dev))) { printk(KERN_ERR PFX "Cannot register net device\n"); if (bp->regview) iounmap(bp->regview); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); free_netdev(dev); return rc; } pci_set_drvdata(pdev, dev); memcpy(dev->dev_addr, bp->mac_addr, 6); memcpy(dev->perm_addr, bp->mac_addr, 6); bp->name = board_info[ent->driver_data].name, printk(KERN_INFO "%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, " "IRQ %d, ", dev->name, bp->name, ((CHIP_ID(bp) & 0xf000) >> 12) + 'A', ((CHIP_ID(bp) & 0x0ff0) >> 4), ((bp->flags & PCIX_FLAG) ? "-X" : ""), ((bp->flags & PCI_32BIT_FLAG) ? "32-bit" : "64-bit"), bp->bus_speed_mhz, dev->base_addr, bp->pdev->irq); printk("node addr "); for (i = 0; i < 6; i++) printk("%2.2x", dev->dev_addr[i]); printk("\n"); dev->features |= NETIF_F_SG; if (bp->flags & USING_DAC_FLAG) dev->features |= NETIF_F_HIGHDMA; dev->features |= NETIF_F_IP_CSUM; #ifdef BCM_VLAN dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; #endif #ifdef BCM_TSO dev->features |= NETIF_F_TSO; #endif netif_carrier_off(bp->dev); return 0; } static void __devexit bnx2_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct bnx2 *bp = netdev_priv(dev); flush_scheduled_work(); unregister_netdev(dev); if (bp->regview) iounmap(bp->regview); free_netdev(dev); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } static int bnx2_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *dev = pci_get_drvdata(pdev); struct bnx2 *bp = netdev_priv(dev); u32 reset_code; if (!netif_running(dev)) return 0; flush_scheduled_work(); bnx2_netif_stop(bp); netif_device_detach(dev); del_timer_sync(&bp->timer); if (bp->flags & NO_WOL_FLAG) reset_code = BNX2_DRV_MSG_CODE_UNLOAD; else if (bp->wol) reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL; else reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL; bnx2_reset_chip(bp, reset_code); bnx2_free_skbs(bp); bnx2_set_power_state(bp, pci_choose_state(pdev, state)); return 0; } static int bnx2_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct bnx2 *bp = netdev_priv(dev); if (!netif_running(dev)) return 0; bnx2_set_power_state(bp, PCI_D0); netif_device_attach(dev); bnx2_init_nic(bp); bnx2_netif_start(bp); return 0; } static struct pci_driver bnx2_pci_driver = { .name = DRV_MODULE_NAME, .id_table = bnx2_pci_tbl, .probe = bnx2_init_one, .remove = __devexit_p(bnx2_remove_one), .suspend = bnx2_suspend, .resume = bnx2_resume, }; static int __init bnx2_init(void) { return pci_module_init(&bnx2_pci_driver); } static void __exit bnx2_cleanup(void) { pci_unregister_driver(&bnx2_pci_driver); } module_init(bnx2_init); module_exit(bnx2_cleanup);