/* * arch/microblaze/mm/fault.c * * Copyright (C) 2007 Xilinx, Inc. All rights reserved. * * Derived from "arch/ppc/mm/fault.c" * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Derived from "arch/i386/mm/fault.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Modified by Cort Dougan and Paul Mackerras. * * This file is subject to the terms and conditions of the GNU General * Public License. See the file COPYING in the main directory of this * archive for more details. * */ #include <linux/module.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/ptrace.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/mmu.h> #include <asm/mmu_context.h> #include <asm/system.h> #include <linux/uaccess.h> #include <asm/exceptions.h> static unsigned long pte_misses; /* updated by do_page_fault() */ static unsigned long pte_errors; /* updated by do_page_fault() */ /* * Check whether the instruction at regs->pc is a store using * an update addressing form which will update r1. */ static int store_updates_sp(struct pt_regs *regs) { unsigned int inst; if (get_user(inst, (unsigned int *)regs->pc)) return 0; /* check for 1 in the rD field */ if (((inst >> 21) & 0x1f) != 1) return 0; /* check for store opcodes */ if ((inst & 0xd0000000) == 0xd0000000) return 1; return 0; } /* * bad_page_fault is called when we have a bad access from the kernel. * It is called from do_page_fault above and from some of the procedures * in traps.c. */ void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) { const struct exception_table_entry *fixup; /* MS: no context */ /* Are we prepared to handle this fault? */ fixup = search_exception_tables(regs->pc); if (fixup) { regs->pc = fixup->fixup; return; } /* kernel has accessed a bad area */ die("kernel access of bad area", regs, sig); } /* * The error_code parameter is ESR for a data fault, * 0 for an instruction fault. */ void do_page_fault(struct pt_regs *regs, unsigned long address, unsigned long error_code) { struct vm_area_struct *vma; struct mm_struct *mm = current->mm; siginfo_t info; int code = SEGV_MAPERR; int is_write = error_code & ESR_S; int fault; regs->ear = address; regs->esr = error_code; /* On a kernel SLB miss we can only check for a valid exception entry */ if (unlikely(kernel_mode(regs) && (address >= TASK_SIZE))) { printk(KERN_WARNING "kernel task_size exceed"); _exception(SIGSEGV, regs, code, address); } /* for instr TLB miss and instr storage exception ESR_S is undefined */ if ((error_code & 0x13) == 0x13 || (error_code & 0x11) == 0x11) is_write = 0; if (unlikely(in_atomic() || !mm)) { if (kernel_mode(regs)) goto bad_area_nosemaphore; /* in_atomic() in user mode is really bad, as is current->mm == NULL. */ printk(KERN_EMERG "Page fault in user mode with " "in_atomic(), mm = %p\n", mm); printk(KERN_EMERG "r15 = %lx MSR = %lx\n", regs->r15, regs->msr); die("Weird page fault", regs, SIGSEGV); } /* When running in the kernel we expect faults to occur only to * addresses in user space. All other faults represent errors in the * kernel and should generate an OOPS. Unfortunately, in the case of an * erroneous fault occurring in a code path which already holds mmap_sem * we will deadlock attempting to validate the fault against the * address space. Luckily the kernel only validly references user * space from well defined areas of code, which are listed in the * exceptions table. * * As the vast majority of faults will be valid we will only perform * the source reference check when there is a possibility of a deadlock. * Attempt to lock the address space, if we cannot we then validate the * source. If this is invalid we can skip the address space check, * thus avoiding the deadlock. */ if (unlikely(!down_read_trylock(&mm->mmap_sem))) { if (kernel_mode(regs) && !search_exception_tables(regs->pc)) goto bad_area_nosemaphore; down_read(&mm->mmap_sem); } vma = find_vma(mm, address); if (unlikely(!vma)) goto bad_area; if (vma->vm_start <= address) goto good_area; if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) goto bad_area; if (unlikely(!is_write)) goto bad_area; /* * N.B. The ABI allows programs to access up to * a few hundred bytes below the stack pointer (TBD). * The kernel signal delivery code writes up to about 1.5kB * below the stack pointer (r1) before decrementing it. * The exec code can write slightly over 640kB to the stack * before setting the user r1. Thus we allow the stack to * expand to 1MB without further checks. */ if (unlikely(address + 0x100000 < vma->vm_end)) { /* get user regs even if this fault is in kernel mode */ struct pt_regs *uregs = current->thread.regs; if (uregs == NULL) goto bad_area; /* * A user-mode access to an address a long way below * the stack pointer is only valid if the instruction * is one which would update the stack pointer to the * address accessed if the instruction completed, * i.e. either stwu rs,n(r1) or stwux rs,r1,rb * (or the byte, halfword, float or double forms). * * If we don't check this then any write to the area * between the last mapped region and the stack will * expand the stack rather than segfaulting. */ if (address + 2048 < uregs->r1 && (kernel_mode(regs) || !store_updates_sp(regs))) goto bad_area; } if (expand_stack(vma, address)) goto bad_area; good_area: code = SEGV_ACCERR; /* a write */ if (unlikely(is_write)) { if (unlikely(!(vma->vm_flags & VM_WRITE))) goto bad_area; /* a read */ } else { /* protection fault */ if (unlikely(error_code & 0x08000000)) goto bad_area; if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC)))) goto bad_area; } /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(mm, vma, address, is_write ? FAULT_FLAG_WRITE : 0); if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGBUS) goto do_sigbus; BUG(); } if (unlikely(fault & VM_FAULT_MAJOR)) current->maj_flt++; else current->min_flt++; up_read(&mm->mmap_sem); /* * keep track of tlb+htab misses that are good addrs but * just need pte's created via handle_mm_fault() * -- Cort */ pte_misses++; return; bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: pte_errors++; /* User mode accesses cause a SIGSEGV */ if (user_mode(regs)) { _exception(SIGSEGV, regs, code, address); /* info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = code; info.si_addr = (void *) address; force_sig_info(SIGSEGV, &info, current);*/ return; } bad_page_fault(regs, address, SIGSEGV); return; /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (!user_mode(regs)) bad_page_fault(regs, address, SIGKILL); else pagefault_out_of_memory(); return; do_sigbus: up_read(&mm->mmap_sem); if (user_mode(regs)) { info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void __user *)address; force_sig_info(SIGBUS, &info, current); return; } bad_page_fault(regs, address, SIGBUS); }