/* * sun4m irq support * * djhr: Hacked out of irq.c into a CPU dependent version. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) * Copyright (C) 1995 Pete A. Zaitcev (zaitcev@yahoo.com) * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk) */ #include #include #include #include #include #include #include #include "irq.h" #include "kernel.h" /* Sample sun4m IRQ layout: * * 0x22 - Power * 0x24 - ESP SCSI * 0x26 - Lance ethernet * 0x2b - Floppy * 0x2c - Zilog uart * 0x32 - SBUS level 0 * 0x33 - Parallel port, SBUS level 1 * 0x35 - SBUS level 2 * 0x37 - SBUS level 3 * 0x39 - Audio, Graphics card, SBUS level 4 * 0x3b - SBUS level 5 * 0x3d - SBUS level 6 * * Each interrupt source has a mask bit in the interrupt registers. * When the mask bit is set, this blocks interrupt deliver. So you * clear the bit to enable the interrupt. * * Interrupts numbered less than 0x10 are software triggered interrupts * and unused by Linux. * * Interrupt level assignment on sun4m: * * level source * ------------------------------------------------------------ * 1 softint-1 * 2 softint-2, VME/SBUS level 1 * 3 softint-3, VME/SBUS level 2 * 4 softint-4, onboard SCSI * 5 softint-5, VME/SBUS level 3 * 6 softint-6, onboard ETHERNET * 7 softint-7, VME/SBUS level 4 * 8 softint-8, onboard VIDEO * 9 softint-9, VME/SBUS level 5, Module Interrupt * 10 softint-10, system counter/timer * 11 softint-11, VME/SBUS level 6, Floppy * 12 softint-12, Keyboard/Mouse, Serial * 13 softint-13, VME/SBUS level 7, ISDN Audio * 14 softint-14, per-processor counter/timer * 15 softint-15, Asynchronous Errors (broadcast) * * Each interrupt source is masked distinctly in the sun4m interrupt * registers. The PIL level alone is therefore ambiguous, since multiple * interrupt sources map to a single PIL. * * This ambiguity is resolved in the 'intr' property for device nodes * in the OF device tree. Each 'intr' property entry is composed of * two 32-bit words. The first word is the IRQ priority value, which * is what we're intersted in. The second word is the IRQ vector, which * is unused. * * The low 4 bits of the IRQ priority indicate the PIL, and the upper * 4 bits indicate onboard vs. SBUS leveled vs. VME leveled. 0x20 * means onboard, 0x30 means SBUS leveled, and 0x40 means VME leveled. * * For example, an 'intr' IRQ priority value of 0x24 is onboard SCSI * whereas a value of 0x33 is SBUS level 2. Here are some sample * 'intr' property IRQ priority values from ss4, ss5, ss10, ss20, and * Tadpole S3 GX systems. * * esp: 0x24 onboard ESP SCSI * le: 0x26 onboard Lance ETHERNET * p9100: 0x32 SBUS level 1 P9100 video * bpp: 0x33 SBUS level 2 BPP parallel port device * DBRI: 0x39 SBUS level 5 DBRI ISDN audio * SUNW,leo: 0x39 SBUS level 5 LEO video * pcmcia: 0x3b SBUS level 6 PCMCIA controller * uctrl: 0x3b SBUS level 6 UCTRL device * modem: 0x3d SBUS level 7 MODEM * zs: 0x2c onboard keyboard/mouse/serial * floppy: 0x2b onboard Floppy * power: 0x22 onboard power device (XXX unknown mask bit XXX) */ /* Code in entry.S needs to get at these register mappings. */ struct sun4m_irq_percpu __iomem *sun4m_irq_percpu[SUN4M_NCPUS]; struct sun4m_irq_global __iomem *sun4m_irq_global; struct sun4m_handler_data { bool percpu; long mask; }; /* Dave Redman (djhr@tadpole.co.uk) * The sun4m interrupt registers. */ #define SUN4M_INT_ENABLE 0x80000000 #define SUN4M_INT_E14 0x00000080 #define SUN4M_INT_E10 0x00080000 #define SUN4M_HARD_INT(x) (0x000000001 << (x)) #define SUN4M_SOFT_INT(x) (0x000010000 << (x)) #define SUN4M_INT_MASKALL 0x80000000 /* mask all interrupts */ #define SUN4M_INT_MODULE_ERR 0x40000000 /* module error */ #define SUN4M_INT_M2S_WRITE_ERR 0x20000000 /* write buffer error */ #define SUN4M_INT_ECC_ERR 0x10000000 /* ecc memory error */ #define SUN4M_INT_VME_ERR 0x08000000 /* vme async error */ #define SUN4M_INT_FLOPPY 0x00400000 /* floppy disk */ #define SUN4M_INT_MODULE 0x00200000 /* module interrupt */ #define SUN4M_INT_VIDEO 0x00100000 /* onboard video */ #define SUN4M_INT_REALTIME 0x00080000 /* system timer */ #define SUN4M_INT_SCSI 0x00040000 /* onboard scsi */ #define SUN4M_INT_AUDIO 0x00020000 /* audio/isdn */ #define SUN4M_INT_ETHERNET 0x00010000 /* onboard ethernet */ #define SUN4M_INT_SERIAL 0x00008000 /* serial ports */ #define SUN4M_INT_KBDMS 0x00004000 /* keyboard/mouse */ #define SUN4M_INT_SBUSBITS 0x00003F80 /* sbus int bits */ #define SUN4M_INT_VMEBITS 0x0000007F /* vme int bits */ #define SUN4M_INT_ERROR (SUN4M_INT_MODULE_ERR | \ SUN4M_INT_M2S_WRITE_ERR | \ SUN4M_INT_ECC_ERR | \ SUN4M_INT_VME_ERR) #define SUN4M_INT_SBUS(x) (1 << (x+7)) #define SUN4M_INT_VME(x) (1 << (x)) /* Interrupt levels used by OBP */ #define OBP_INT_LEVEL_SOFT 0x10 #define OBP_INT_LEVEL_ONBOARD 0x20 #define OBP_INT_LEVEL_SBUS 0x30 #define OBP_INT_LEVEL_VME 0x40 #define SUN4M_TIMER_IRQ (OBP_INT_LEVEL_ONBOARD | 10) #define SUN4M_PROFILE_IRQ (OBP_INT_LEVEL_ONBOARD | 14) static unsigned long sun4m_imask[0x50] = { /* 0x00 - SMP */ 0, SUN4M_SOFT_INT(1), SUN4M_SOFT_INT(2), SUN4M_SOFT_INT(3), SUN4M_SOFT_INT(4), SUN4M_SOFT_INT(5), SUN4M_SOFT_INT(6), SUN4M_SOFT_INT(7), SUN4M_SOFT_INT(8), SUN4M_SOFT_INT(9), SUN4M_SOFT_INT(10), SUN4M_SOFT_INT(11), SUN4M_SOFT_INT(12), SUN4M_SOFT_INT(13), SUN4M_SOFT_INT(14), SUN4M_SOFT_INT(15), /* 0x10 - soft */ 0, SUN4M_SOFT_INT(1), SUN4M_SOFT_INT(2), SUN4M_SOFT_INT(3), SUN4M_SOFT_INT(4), SUN4M_SOFT_INT(5), SUN4M_SOFT_INT(6), SUN4M_SOFT_INT(7), SUN4M_SOFT_INT(8), SUN4M_SOFT_INT(9), SUN4M_SOFT_INT(10), SUN4M_SOFT_INT(11), SUN4M_SOFT_INT(12), SUN4M_SOFT_INT(13), SUN4M_SOFT_INT(14), SUN4M_SOFT_INT(15), /* 0x20 - onboard */ 0, 0, 0, 0, SUN4M_INT_SCSI, 0, SUN4M_INT_ETHERNET, 0, SUN4M_INT_VIDEO, SUN4M_INT_MODULE, SUN4M_INT_REALTIME, SUN4M_INT_FLOPPY, (SUN4M_INT_SERIAL | SUN4M_INT_KBDMS), SUN4M_INT_AUDIO, SUN4M_INT_E14, SUN4M_INT_MODULE_ERR, /* 0x30 - sbus */ 0, 0, SUN4M_INT_SBUS(0), SUN4M_INT_SBUS(1), 0, SUN4M_INT_SBUS(2), 0, SUN4M_INT_SBUS(3), 0, SUN4M_INT_SBUS(4), 0, SUN4M_INT_SBUS(5), 0, SUN4M_INT_SBUS(6), 0, 0, /* 0x40 - vme */ 0, 0, SUN4M_INT_VME(0), SUN4M_INT_VME(1), 0, SUN4M_INT_VME(2), 0, SUN4M_INT_VME(3), 0, SUN4M_INT_VME(4), 0, SUN4M_INT_VME(5), 0, SUN4M_INT_VME(6), 0, 0 }; static void sun4m_mask_irq(struct irq_data *data) { struct sun4m_handler_data *handler_data = data->handler_data; int cpu = smp_processor_id(); if (handler_data->mask) { unsigned long flags; local_irq_save(flags); if (handler_data->percpu) { sbus_writel(handler_data->mask, &sun4m_irq_percpu[cpu]->set); } else { sbus_writel(handler_data->mask, &sun4m_irq_global->mask_set); } local_irq_restore(flags); } } static void sun4m_unmask_irq(struct irq_data *data) { struct sun4m_handler_data *handler_data = data->handler_data; int cpu = smp_processor_id(); if (handler_data->mask) { unsigned long flags; local_irq_save(flags); if (handler_data->percpu) { sbus_writel(handler_data->mask, &sun4m_irq_percpu[cpu]->clear); } else { sbus_writel(handler_data->mask, &sun4m_irq_global->mask_clear); } local_irq_restore(flags); } } static unsigned int sun4m_startup_irq(struct irq_data *data) { irq_link(data->irq); sun4m_unmask_irq(data); return 0; } static void sun4m_shutdown_irq(struct irq_data *data) { sun4m_mask_irq(data); irq_unlink(data->irq); } static struct irq_chip sun4m_irq = { .name = "sun4m", .irq_startup = sun4m_startup_irq, .irq_shutdown = sun4m_shutdown_irq, .irq_mask = sun4m_mask_irq, .irq_unmask = sun4m_unmask_irq, }; static unsigned int sun4m_build_device_irq(struct platform_device *op, unsigned int real_irq) { struct sun4m_handler_data *handler_data; unsigned int irq; unsigned int pil; if (real_irq >= OBP_INT_LEVEL_VME) { prom_printf("Bogus sun4m IRQ %u\n", real_irq); prom_halt(); } pil = (real_irq & 0xf); irq = irq_alloc(real_irq, pil); if (irq == 0) goto out; handler_data = irq_get_handler_data(irq); if (unlikely(handler_data)) goto out; handler_data = kzalloc(sizeof(struct sun4m_handler_data), GFP_ATOMIC); if (unlikely(!handler_data)) { prom_printf("IRQ: kzalloc(sun4m_handler_data) failed.\n"); prom_halt(); } handler_data->mask = sun4m_imask[real_irq]; handler_data->percpu = real_irq < OBP_INT_LEVEL_ONBOARD; irq_set_chip_and_handler_name(irq, &sun4m_irq, handle_level_irq, "level"); irq_set_handler_data(irq, handler_data); out: return irq; } #ifdef CONFIG_SMP static void sun4m_send_ipi(int cpu, int level) { sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set); } static void sun4m_clear_ipi(int cpu, int level) { sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->clear); } static void sun4m_set_udt(int cpu) { sbus_writel(cpu, &sun4m_irq_global->interrupt_target); } #endif struct sun4m_timer_percpu { u32 l14_limit; u32 l14_count; u32 l14_limit_noclear; u32 user_timer_start_stop; }; static struct sun4m_timer_percpu __iomem *timers_percpu[SUN4M_NCPUS]; struct sun4m_timer_global { u32 l10_limit; u32 l10_count; u32 l10_limit_noclear; u32 reserved; u32 timer_config; }; static struct sun4m_timer_global __iomem *timers_global; unsigned int lvl14_resolution = (((1000000/HZ) + 1) << 10); static void sun4m_clear_clock_irq(void) { sbus_readl(&timers_global->l10_limit); } void sun4m_nmi(struct pt_regs *regs) { unsigned long afsr, afar, si; printk(KERN_ERR "Aieee: sun4m NMI received!\n"); /* XXX HyperSparc hack XXX */ __asm__ __volatile__("mov 0x500, %%g1\n\t" "lda [%%g1] 0x4, %0\n\t" "mov 0x600, %%g1\n\t" "lda [%%g1] 0x4, %1\n\t" : "=r" (afsr), "=r" (afar)); printk(KERN_ERR "afsr=%08lx afar=%08lx\n", afsr, afar); si = sbus_readl(&sun4m_irq_global->pending); printk(KERN_ERR "si=%08lx\n", si); if (si & SUN4M_INT_MODULE_ERR) printk(KERN_ERR "Module async error\n"); if (si & SUN4M_INT_M2S_WRITE_ERR) printk(KERN_ERR "MBus/SBus async error\n"); if (si & SUN4M_INT_ECC_ERR) printk(KERN_ERR "ECC memory error\n"); if (si & SUN4M_INT_VME_ERR) printk(KERN_ERR "VME async error\n"); printk(KERN_ERR "you lose buddy boy...\n"); show_regs(regs); prom_halt(); } void sun4m_unmask_profile_irq(void) { unsigned long flags; local_irq_save(flags); sbus_writel(sun4m_imask[SUN4M_PROFILE_IRQ], &sun4m_irq_global->mask_clear); local_irq_restore(flags); } void sun4m_clear_profile_irq(int cpu) { sbus_readl(&timers_percpu[cpu]->l14_limit); } static void sun4m_load_profile_irq(int cpu, unsigned int limit) { sbus_writel(limit, &timers_percpu[cpu]->l14_limit); } static void __init sun4m_init_timers(irq_handler_t counter_fn) { struct device_node *dp = of_find_node_by_name(NULL, "counter"); int i, err, len, num_cpu_timers; unsigned int irq; const u32 *addr; if (!dp) { printk(KERN_ERR "sun4m_init_timers: No 'counter' node.\n"); return; } addr = of_get_property(dp, "address", &len); of_node_put(dp); if (!addr) { printk(KERN_ERR "sun4m_init_timers: No 'address' prop.\n"); return; } num_cpu_timers = (len / sizeof(u32)) - 1; for (i = 0; i < num_cpu_timers; i++) { timers_percpu[i] = (void __iomem *) (unsigned long) addr[i]; } timers_global = (void __iomem *) (unsigned long) addr[num_cpu_timers]; /* Every per-cpu timer works in timer mode */ sbus_writel(0x00000000, &timers_global->timer_config); sbus_writel((((1000000/HZ) + 1) << 10), &timers_global->l10_limit); master_l10_counter = &timers_global->l10_count; irq = sun4m_build_device_irq(NULL, SUN4M_TIMER_IRQ); err = request_irq(irq, counter_fn, IRQF_TIMER, "timer", NULL); if (err) { printk(KERN_ERR "sun4m_init_timers: Register IRQ error %d.\n", err); return; } for (i = 0; i < num_cpu_timers; i++) sbus_writel(0, &timers_percpu[i]->l14_limit); if (num_cpu_timers == 4) sbus_writel(SUN4M_INT_E14, &sun4m_irq_global->mask_set); #ifdef CONFIG_SMP { unsigned long flags; struct tt_entry *trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (14 - 1)]; /* For SMP we use the level 14 ticker, however the bootup code * has copied the firmware's level 14 vector into the boot cpu's * trap table, we must fix this now or we get squashed. */ local_irq_save(flags); trap_table->inst_one = lvl14_save[0]; trap_table->inst_two = lvl14_save[1]; trap_table->inst_three = lvl14_save[2]; trap_table->inst_four = lvl14_save[3]; local_flush_cache_all(); local_irq_restore(flags); } #endif } void __init sun4m_init_IRQ(void) { struct device_node *dp = of_find_node_by_name(NULL, "interrupt"); int len, i, mid, num_cpu_iregs; const u32 *addr; if (!dp) { printk(KERN_ERR "sun4m_init_IRQ: No 'interrupt' node.\n"); return; } addr = of_get_property(dp, "address", &len); of_node_put(dp); if (!addr) { printk(KERN_ERR "sun4m_init_IRQ: No 'address' prop.\n"); return; } num_cpu_iregs = (len / sizeof(u32)) - 1; for (i = 0; i < num_cpu_iregs; i++) { sun4m_irq_percpu[i] = (void __iomem *) (unsigned long) addr[i]; } sun4m_irq_global = (void __iomem *) (unsigned long) addr[num_cpu_iregs]; local_irq_disable(); sbus_writel(~SUN4M_INT_MASKALL, &sun4m_irq_global->mask_set); for (i = 0; !cpu_find_by_instance(i, NULL, &mid); i++) sbus_writel(~0x17fff, &sun4m_irq_percpu[mid]->clear); if (num_cpu_iregs == 4) sbus_writel(0, &sun4m_irq_global->interrupt_target); BTFIXUPSET_CALL(clear_clock_irq, sun4m_clear_clock_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(load_profile_irq, sun4m_load_profile_irq, BTFIXUPCALL_NORM); sparc_config.init_timers = sun4m_init_timers; sparc_config.build_device_irq = sun4m_build_device_irq; #ifdef CONFIG_SMP BTFIXUPSET_CALL(set_cpu_int, sun4m_send_ipi, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(clear_cpu_int, sun4m_clear_ipi, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(set_irq_udt, sun4m_set_udt, BTFIXUPCALL_NORM); #endif /* Cannot enable interrupts until OBP ticker is disabled. */ }