/* * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_trans_priv.h" #include "xfs_bmap_btree.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_inode_item.h" #include "xfs_error.h" #include "xfs_trace.h" kmem_zone_t *xfs_ili_zone; /* inode log item zone */ static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_inode_log_item, ili_item); } /* * This returns the number of iovecs needed to log the given inode item. * * We need one iovec for the inode log format structure, one for the * inode core, and possibly one for the inode data/extents/b-tree root * and one for the inode attribute data/extents/b-tree root. */ STATIC uint xfs_inode_item_size( struct xfs_log_item *lip) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; uint nvecs = 2; /* * Only log the data/extents/b-tree root if there is something * left to log. */ iip->ili_format.ilf_fields |= XFS_ILOG_CORE; switch (ip->i_d.di_format) { case XFS_DINODE_FMT_EXTENTS: iip->ili_format.ilf_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV | XFS_ILOG_UUID); if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && (ip->i_d.di_nextents > 0) && (ip->i_df.if_bytes > 0)) { ASSERT(ip->i_df.if_u1.if_extents != NULL); nvecs++; } else { iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; } break; case XFS_DINODE_FMT_BTREE: iip->ili_format.ilf_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV | XFS_ILOG_UUID); if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && (ip->i_df.if_broot_bytes > 0)) { ASSERT(ip->i_df.if_broot != NULL); nvecs++; } else { ASSERT(!(iip->ili_format.ilf_fields & XFS_ILOG_DBROOT)); #ifdef XFS_TRANS_DEBUG if (iip->ili_root_size > 0) { ASSERT(iip->ili_root_size == ip->i_df.if_broot_bytes); ASSERT(memcmp(iip->ili_orig_root, ip->i_df.if_broot, iip->ili_root_size) == 0); } else { ASSERT(ip->i_df.if_broot_bytes == 0); } #endif iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; } break; case XFS_DINODE_FMT_LOCAL: iip->ili_format.ilf_fields &= ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV | XFS_ILOG_UUID); if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && (ip->i_df.if_bytes > 0)) { ASSERT(ip->i_df.if_u1.if_data != NULL); ASSERT(ip->i_d.di_size > 0); nvecs++; } else { iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; } break; case XFS_DINODE_FMT_DEV: iip->ili_format.ilf_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT | XFS_ILOG_UUID); break; case XFS_DINODE_FMT_UUID: iip->ili_format.ilf_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT | XFS_ILOG_DEV); break; default: ASSERT(0); break; } /* * If there are no attributes associated with this file, * then there cannot be anything more to log. * Clear all attribute-related log flags. */ if (!XFS_IFORK_Q(ip)) { iip->ili_format.ilf_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); return nvecs; } /* * Log any necessary attribute data. */ switch (ip->i_d.di_aformat) { case XFS_DINODE_FMT_EXTENTS: iip->ili_format.ilf_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && (ip->i_d.di_anextents > 0) && (ip->i_afp->if_bytes > 0)) { ASSERT(ip->i_afp->if_u1.if_extents != NULL); nvecs++; } else { iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; } break; case XFS_DINODE_FMT_BTREE: iip->ili_format.ilf_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && (ip->i_afp->if_broot_bytes > 0)) { ASSERT(ip->i_afp->if_broot != NULL); nvecs++; } else { iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; } break; case XFS_DINODE_FMT_LOCAL: iip->ili_format.ilf_fields &= ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && (ip->i_afp->if_bytes > 0)) { ASSERT(ip->i_afp->if_u1.if_data != NULL); nvecs++; } else { iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; } break; default: ASSERT(0); break; } return nvecs; } /* * xfs_inode_item_format_extents - convert in-core extents to on-disk form * * For either the data or attr fork in extent format, we need to endian convert * the in-core extent as we place them into the on-disk inode. In this case, we * need to do this conversion before we write the extents into the log. Because * we don't have the disk inode to write into here, we allocate a buffer and * format the extents into it via xfs_iextents_copy(). We free the buffer in * the unlock routine after the copy for the log has been made. * * In the case of the data fork, the in-core and on-disk fork sizes can be * different due to delayed allocation extents. We only log on-disk extents * here, so always use the physical fork size to determine the size of the * buffer we need to allocate. */ STATIC void xfs_inode_item_format_extents( struct xfs_inode *ip, struct xfs_log_iovec *vecp, int whichfork, int type) { xfs_bmbt_rec_t *ext_buffer; ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP); if (whichfork == XFS_DATA_FORK) ip->i_itemp->ili_extents_buf = ext_buffer; else ip->i_itemp->ili_aextents_buf = ext_buffer; vecp->i_addr = ext_buffer; vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork); vecp->i_type = type; } /* * This is called to fill in the vector of log iovecs for the * given inode log item. It fills the first item with an inode * log format structure, the second with the on-disk inode structure, * and a possible third and/or fourth with the inode data/extents/b-tree * root and inode attributes data/extents/b-tree root. */ STATIC void xfs_inode_item_format( struct xfs_log_item *lip, struct xfs_log_iovec *vecp) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; uint nvecs; size_t data_bytes; xfs_mount_t *mp; vecp->i_addr = &iip->ili_format; vecp->i_len = sizeof(xfs_inode_log_format_t); vecp->i_type = XLOG_REG_TYPE_IFORMAT; vecp++; nvecs = 1; /* * Clear i_update_core if the timestamps (or any other * non-transactional modification) need flushing/logging * and we're about to log them with the rest of the core. * * This is the same logic as xfs_iflush() but this code can't * run at the same time as xfs_iflush because we're in commit * processing here and so we have the inode lock held in * exclusive mode. Although it doesn't really matter * for the timestamps if both routines were to grab the * timestamps or not. That would be ok. * * We clear i_update_core before copying out the data. * This is for coordination with our timestamp updates * that don't hold the inode lock. They will always * update the timestamps BEFORE setting i_update_core, * so if we clear i_update_core after they set it we * are guaranteed to see their updates to the timestamps * either here. Likewise, if they set it after we clear it * here, we'll see it either on the next commit of this * inode or the next time the inode gets flushed via * xfs_iflush(). This depends on strongly ordered memory * semantics, but we have that. We use the SYNCHRONIZE * macro to make sure that the compiler does not reorder * the i_update_core access below the data copy below. */ if (ip->i_update_core) { ip->i_update_core = 0; SYNCHRONIZE(); } /* * Make sure to get the latest timestamps from the Linux inode. */ xfs_synchronize_times(ip); vecp->i_addr = &ip->i_d; vecp->i_len = sizeof(struct xfs_icdinode); vecp->i_type = XLOG_REG_TYPE_ICORE; vecp++; nvecs++; iip->ili_format.ilf_fields |= XFS_ILOG_CORE; /* * If this is really an old format inode, then we need to * log it as such. This means that we have to copy the link * count from the new field to the old. We don't have to worry * about the new fields, because nothing trusts them as long as * the old inode version number is there. If the superblock already * has a new version number, then we don't bother converting back. */ mp = ip->i_mount; ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); if (ip->i_d.di_version == 1) { if (!xfs_sb_version_hasnlink(&mp->m_sb)) { /* * Convert it back. */ ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); ip->i_d.di_onlink = ip->i_d.di_nlink; } else { /* * The superblock version has already been bumped, * so just make the conversion to the new inode * format permanent. */ ip->i_d.di_version = 2; ip->i_d.di_onlink = 0; memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); } } switch (ip->i_d.di_format) { case XFS_DINODE_FMT_EXTENTS: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV | XFS_ILOG_UUID))); if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { ASSERT(ip->i_df.if_bytes > 0); ASSERT(ip->i_df.if_u1.if_extents != NULL); ASSERT(ip->i_d.di_nextents > 0); ASSERT(iip->ili_extents_buf == NULL); ASSERT((ip->i_df.if_bytes / (uint)sizeof(xfs_bmbt_rec_t)) > 0); #ifdef XFS_NATIVE_HOST if (ip->i_d.di_nextents == ip->i_df.if_bytes / (uint)sizeof(xfs_bmbt_rec_t)) { /* * There are no delayed allocation * extents, so just point to the * real extents array. */ vecp->i_addr = ip->i_df.if_u1.if_extents; vecp->i_len = ip->i_df.if_bytes; vecp->i_type = XLOG_REG_TYPE_IEXT; } else #endif { xfs_inode_item_format_extents(ip, vecp, XFS_DATA_FORK, XLOG_REG_TYPE_IEXT); } ASSERT(vecp->i_len <= ip->i_df.if_bytes); iip->ili_format.ilf_dsize = vecp->i_len; vecp++; nvecs++; } break; case XFS_DINODE_FMT_BTREE: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV | XFS_ILOG_UUID))); if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { ASSERT(ip->i_df.if_broot_bytes > 0); ASSERT(ip->i_df.if_broot != NULL); vecp->i_addr = ip->i_df.if_broot; vecp->i_len = ip->i_df.if_broot_bytes; vecp->i_type = XLOG_REG_TYPE_IBROOT; vecp++; nvecs++; iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; } break; case XFS_DINODE_FMT_LOCAL: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | XFS_ILOG_DEV | XFS_ILOG_UUID))); if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { ASSERT(ip->i_df.if_bytes > 0); ASSERT(ip->i_df.if_u1.if_data != NULL); ASSERT(ip->i_d.di_size > 0); vecp->i_addr = ip->i_df.if_u1.if_data; /* * Round i_bytes up to a word boundary. * The underlying memory is guaranteed to * to be there by xfs_idata_realloc(). */ data_bytes = roundup(ip->i_df.if_bytes, 4); ASSERT((ip->i_df.if_real_bytes == 0) || (ip->i_df.if_real_bytes == data_bytes)); vecp->i_len = (int)data_bytes; vecp->i_type = XLOG_REG_TYPE_ILOCAL; vecp++; nvecs++; iip->ili_format.ilf_dsize = (unsigned)data_bytes; } break; case XFS_DINODE_FMT_DEV: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | XFS_ILOG_DDATA | XFS_ILOG_UUID))); if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { iip->ili_format.ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev; } break; case XFS_DINODE_FMT_UUID: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | XFS_ILOG_DDATA | XFS_ILOG_DEV))); if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { iip->ili_format.ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid; } break; default: ASSERT(0); break; } /* * If there are no attributes associated with the file, * then we're done. * Assert that no attribute-related log flags are set. */ if (!XFS_IFORK_Q(ip)) { iip->ili_format.ilf_size = nvecs; ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); return; } switch (ip->i_d.di_aformat) { case XFS_DINODE_FMT_EXTENTS: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { #ifdef DEBUG int nrecs = ip->i_afp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); ASSERT(nrecs > 0); ASSERT(nrecs == ip->i_d.di_anextents); ASSERT(ip->i_afp->if_bytes > 0); ASSERT(ip->i_afp->if_u1.if_extents != NULL); ASSERT(ip->i_d.di_anextents > 0); #endif #ifdef XFS_NATIVE_HOST /* * There are not delayed allocation extents * for attributes, so just point at the array. */ vecp->i_addr = ip->i_afp->if_u1.if_extents; vecp->i_len = ip->i_afp->if_bytes; vecp->i_type = XLOG_REG_TYPE_IATTR_EXT; #else ASSERT(iip->ili_aextents_buf == NULL); xfs_inode_item_format_extents(ip, vecp, XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT); #endif iip->ili_format.ilf_asize = vecp->i_len; vecp++; nvecs++; } break; case XFS_DINODE_FMT_BTREE: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { ASSERT(ip->i_afp->if_broot_bytes > 0); ASSERT(ip->i_afp->if_broot != NULL); vecp->i_addr = ip->i_afp->if_broot; vecp->i_len = ip->i_afp->if_broot_bytes; vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT; vecp++; nvecs++; iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; } break; case XFS_DINODE_FMT_LOCAL: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { ASSERT(ip->i_afp->if_bytes > 0); ASSERT(ip->i_afp->if_u1.if_data != NULL); vecp->i_addr = ip->i_afp->if_u1.if_data; /* * Round i_bytes up to a word boundary. * The underlying memory is guaranteed to * to be there by xfs_idata_realloc(). */ data_bytes = roundup(ip->i_afp->if_bytes, 4); ASSERT((ip->i_afp->if_real_bytes == 0) || (ip->i_afp->if_real_bytes == data_bytes)); vecp->i_len = (int)data_bytes; vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL; vecp++; nvecs++; iip->ili_format.ilf_asize = (unsigned)data_bytes; } break; default: ASSERT(0); break; } iip->ili_format.ilf_size = nvecs; } /* * This is called to pin the inode associated with the inode log * item in memory so it cannot be written out. */ STATIC void xfs_inode_item_pin( struct xfs_log_item *lip) { struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); trace_xfs_inode_pin(ip, _RET_IP_); atomic_inc(&ip->i_pincount); } /* * This is called to unpin the inode associated with the inode log * item which was previously pinned with a call to xfs_inode_item_pin(). * * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. */ STATIC void xfs_inode_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; trace_xfs_inode_unpin(ip, _RET_IP_); ASSERT(atomic_read(&ip->i_pincount) > 0); if (atomic_dec_and_test(&ip->i_pincount)) wake_up(&ip->i_ipin_wait); } /* * This is called to attempt to lock the inode associated with this * inode log item, in preparation for the push routine which does the actual * iflush. Don't sleep on the inode lock or the flush lock. * * If the flush lock is already held, indicating that the inode has * been or is in the process of being flushed, then (ideally) we'd like to * see if the inode's buffer is still incore, and if so give it a nudge. * We delay doing so until the pushbuf routine, though, to avoid holding * the AIL lock across a call to the blackhole which is the buffer cache. * Also we don't want to sleep in any device strategy routines, which can happen * if we do the subsequent bawrite in here. */ STATIC uint xfs_inode_item_trylock( struct xfs_log_item *lip) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; if (xfs_ipincount(ip) > 0) return XFS_ITEM_PINNED; if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) return XFS_ITEM_LOCKED; if (!xfs_iflock_nowait(ip)) { /* * inode has already been flushed to the backing buffer, * leave it locked in shared mode, pushbuf routine will * unlock it. */ return XFS_ITEM_PUSHBUF; } /* Stale items should force out the iclog */ if (ip->i_flags & XFS_ISTALE) { xfs_ifunlock(ip); /* * we hold the AIL lock - notify the unlock routine of this * so it doesn't try to get the lock again. */ xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); return XFS_ITEM_PINNED; } #ifdef DEBUG if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { ASSERT(iip->ili_format.ilf_fields != 0); ASSERT(iip->ili_logged == 0); ASSERT(lip->li_flags & XFS_LI_IN_AIL); } #endif return XFS_ITEM_SUCCESS; } /* * Unlock the inode associated with the inode log item. * Clear the fields of the inode and inode log item that * are specific to the current transaction. If the * hold flags is set, do not unlock the inode. */ STATIC void xfs_inode_item_unlock( struct xfs_log_item *lip) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; unsigned short lock_flags; ASSERT(ip->i_itemp != NULL); ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); /* * If the inode needed a separate buffer with which to log * its extents, then free it now. */ if (iip->ili_extents_buf != NULL) { ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); ASSERT(ip->i_d.di_nextents > 0); ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); ASSERT(ip->i_df.if_bytes > 0); kmem_free(iip->ili_extents_buf); iip->ili_extents_buf = NULL; } if (iip->ili_aextents_buf != NULL) { ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); ASSERT(ip->i_d.di_anextents > 0); ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); ASSERT(ip->i_afp->if_bytes > 0); kmem_free(iip->ili_aextents_buf); iip->ili_aextents_buf = NULL; } lock_flags = iip->ili_lock_flags; iip->ili_lock_flags = 0; if (lock_flags) xfs_iunlock(ip, lock_flags); } /* * This is called to find out where the oldest active copy of the inode log * item in the on disk log resides now that the last log write of it completed * at the given lsn. Since we always re-log all dirty data in an inode, the * latest copy in the on disk log is the only one that matters. Therefore, * simply return the given lsn. * * If the inode has been marked stale because the cluster is being freed, we * don't want to (re-)insert this inode into the AIL. There is a race condition * where the cluster buffer may be unpinned before the inode is inserted into * the AIL during transaction committed processing. If the buffer is unpinned * before the inode item has been committed and inserted, then it is possible * for the buffer to be written and IO completes before the inode is inserted * into the AIL. In that case, we'd be inserting a clean, stale inode into the * AIL which will never get removed. It will, however, get reclaimed which * triggers an assert in xfs_inode_free() complaining about freein an inode * still in the AIL. * * To avoid this, just unpin the inode directly and return a LSN of -1 so the * transaction committed code knows that it does not need to do any further * processing on the item. */ STATIC xfs_lsn_t xfs_inode_item_committed( struct xfs_log_item *lip, xfs_lsn_t lsn) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; if (xfs_iflags_test(ip, XFS_ISTALE)) { xfs_inode_item_unpin(lip, 0); return -1; } return lsn; } /* * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK * failed to get the inode flush lock but did get the inode locked SHARED. * Here we're trying to see if the inode buffer is incore, and if so whether it's * marked delayed write. If that's the case, we'll promote it and that will * allow the caller to write the buffer by triggering the xfsbufd to run. */ STATIC bool xfs_inode_item_pushbuf( struct xfs_log_item *lip) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; struct xfs_buf *bp; bool ret = true; ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); /* * If a flush is not in progress anymore, chances are that the * inode was taken off the AIL. So, just get out. */ if (!xfs_isiflocked(ip) || !(lip->li_flags & XFS_LI_IN_AIL)) { xfs_iunlock(ip, XFS_ILOCK_SHARED); return true; } bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno, iip->ili_format.ilf_len, XBF_TRYLOCK); xfs_iunlock(ip, XFS_ILOCK_SHARED); if (!bp) return true; if (XFS_BUF_ISDELAYWRITE(bp)) xfs_buf_delwri_promote(bp); if (xfs_buf_ispinned(bp)) ret = false; xfs_buf_relse(bp); return ret; } /* * This is called to asynchronously write the inode associated with this * inode log item out to disk. The inode will already have been locked by * a successful call to xfs_inode_item_trylock(). */ STATIC void xfs_inode_item_push( struct xfs_log_item *lip) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); ASSERT(xfs_isiflocked(ip)); /* * Since we were able to lock the inode's flush lock and * we found it on the AIL, the inode must be dirty. This * is because the inode is removed from the AIL while still * holding the flush lock in xfs_iflush_done(). Thus, if * we found it in the AIL and were able to obtain the flush * lock without sleeping, then there must not have been * anyone in the process of flushing the inode. */ ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || iip->ili_format.ilf_fields != 0); /* * Push the inode to it's backing buffer. This will not remove the * inode from the AIL - a further push will be required to trigger a * buffer push. However, this allows all the dirty inodes to be pushed * to the buffer before it is pushed to disk. The buffer IO completion * will pull the inode from the AIL, mark it clean and unlock the flush * lock. */ (void) xfs_iflush(ip, SYNC_TRYLOCK); xfs_iunlock(ip, XFS_ILOCK_SHARED); } /* * XXX rcc - this one really has to do something. Probably needs * to stamp in a new field in the incore inode. */ STATIC void xfs_inode_item_committing( struct xfs_log_item *lip, xfs_lsn_t lsn) { INODE_ITEM(lip)->ili_last_lsn = lsn; } /* * This is the ops vector shared by all buf log items. */ static const struct xfs_item_ops xfs_inode_item_ops = { .iop_size = xfs_inode_item_size, .iop_format = xfs_inode_item_format, .iop_pin = xfs_inode_item_pin, .iop_unpin = xfs_inode_item_unpin, .iop_trylock = xfs_inode_item_trylock, .iop_unlock = xfs_inode_item_unlock, .iop_committed = xfs_inode_item_committed, .iop_push = xfs_inode_item_push, .iop_pushbuf = xfs_inode_item_pushbuf, .iop_committing = xfs_inode_item_committing }; /* * Initialize the inode log item for a newly allocated (in-core) inode. */ void xfs_inode_item_init( struct xfs_inode *ip, struct xfs_mount *mp) { struct xfs_inode_log_item *iip; ASSERT(ip->i_itemp == NULL); iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); iip->ili_inode = ip; xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, &xfs_inode_item_ops); iip->ili_format.ilf_type = XFS_LI_INODE; iip->ili_format.ilf_ino = ip->i_ino; iip->ili_format.ilf_blkno = ip->i_imap.im_blkno; iip->ili_format.ilf_len = ip->i_imap.im_len; iip->ili_format.ilf_boffset = ip->i_imap.im_boffset; } /* * Free the inode log item and any memory hanging off of it. */ void xfs_inode_item_destroy( xfs_inode_t *ip) { #ifdef XFS_TRANS_DEBUG if (ip->i_itemp->ili_root_size != 0) { kmem_free(ip->i_itemp->ili_orig_root); } #endif kmem_zone_free(xfs_ili_zone, ip->i_itemp); } /* * This is the inode flushing I/O completion routine. It is called * from interrupt level when the buffer containing the inode is * flushed to disk. It is responsible for removing the inode item * from the AIL if it has not been re-logged, and unlocking the inode's * flush lock. * * To reduce AIL lock traffic as much as possible, we scan the buffer log item * list for other inodes that will run this function. We remove them from the * buffer list so we can process all the inode IO completions in one AIL lock * traversal. */ void xfs_iflush_done( struct xfs_buf *bp, struct xfs_log_item *lip) { struct xfs_inode_log_item *iip; struct xfs_log_item *blip; struct xfs_log_item *next; struct xfs_log_item *prev; struct xfs_ail *ailp = lip->li_ailp; int need_ail = 0; /* * Scan the buffer IO completions for other inodes being completed and * attach them to the current inode log item. */ blip = bp->b_fspriv; prev = NULL; while (blip != NULL) { if (lip->li_cb != xfs_iflush_done) { prev = blip; blip = blip->li_bio_list; continue; } /* remove from list */ next = blip->li_bio_list; if (!prev) { bp->b_fspriv = next; } else { prev->li_bio_list = next; } /* add to current list */ blip->li_bio_list = lip->li_bio_list; lip->li_bio_list = blip; /* * while we have the item, do the unlocked check for needing * the AIL lock. */ iip = INODE_ITEM(blip); if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) need_ail++; blip = next; } /* make sure we capture the state of the initial inode. */ iip = INODE_ITEM(lip); if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) need_ail++; /* * We only want to pull the item from the AIL if it is * actually there and its location in the log has not * changed since we started the flush. Thus, we only bother * if the ili_logged flag is set and the inode's lsn has not * changed. First we check the lsn outside * the lock since it's cheaper, and then we recheck while * holding the lock before removing the inode from the AIL. */ if (need_ail) { struct xfs_log_item *log_items[need_ail]; int i = 0; spin_lock(&ailp->xa_lock); for (blip = lip; blip; blip = blip->li_bio_list) { iip = INODE_ITEM(blip); if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) { log_items[i++] = blip; } ASSERT(i <= need_ail); } /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ xfs_trans_ail_delete_bulk(ailp, log_items, i); } /* * clean up and unlock the flush lock now we are done. We can clear the * ili_last_fields bits now that we know that the data corresponding to * them is safely on disk. */ for (blip = lip; blip; blip = next) { next = blip->li_bio_list; blip->li_bio_list = NULL; iip = INODE_ITEM(blip); iip->ili_logged = 0; iip->ili_last_fields = 0; xfs_ifunlock(iip->ili_inode); } } /* * This is the inode flushing abort routine. It is called * from xfs_iflush when the filesystem is shutting down to clean * up the inode state. * It is responsible for removing the inode item * from the AIL if it has not been re-logged, and unlocking the inode's * flush lock. */ void xfs_iflush_abort( xfs_inode_t *ip) { xfs_inode_log_item_t *iip = ip->i_itemp; if (iip) { struct xfs_ail *ailp = iip->ili_item.li_ailp; if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { spin_lock(&ailp->xa_lock); if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { /* xfs_trans_ail_delete() drops the AIL lock. */ xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip); } else spin_unlock(&ailp->xa_lock); } iip->ili_logged = 0; /* * Clear the ili_last_fields bits now that we know that the * data corresponding to them is safely on disk. */ iip->ili_last_fields = 0; /* * Clear the inode logging fields so no more flushes are * attempted. */ iip->ili_format.ilf_fields = 0; } /* * Release the inode's flush lock since we're done with it. */ xfs_ifunlock(ip); } void xfs_istale_done( struct xfs_buf *bp, struct xfs_log_item *lip) { xfs_iflush_abort(INODE_ITEM(lip)->ili_inode); } /* * convert an xfs_inode_log_format struct from either 32 or 64 bit versions * (which can have different field alignments) to the native version */ int xfs_inode_item_format_convert( xfs_log_iovec_t *buf, xfs_inode_log_format_t *in_f) { if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { xfs_inode_log_format_32_t *in_f32 = buf->i_addr; in_f->ilf_type = in_f32->ilf_type; in_f->ilf_size = in_f32->ilf_size; in_f->ilf_fields = in_f32->ilf_fields; in_f->ilf_asize = in_f32->ilf_asize; in_f->ilf_dsize = in_f32->ilf_dsize; in_f->ilf_ino = in_f32->ilf_ino; /* copy biggest field of ilf_u */ memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, in_f32->ilf_u.ilfu_uuid.__u_bits, sizeof(uuid_t)); in_f->ilf_blkno = in_f32->ilf_blkno; in_f->ilf_len = in_f32->ilf_len; in_f->ilf_boffset = in_f32->ilf_boffset; return 0; } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ xfs_inode_log_format_64_t *in_f64 = buf->i_addr; in_f->ilf_type = in_f64->ilf_type; in_f->ilf_size = in_f64->ilf_size; in_f->ilf_fields = in_f64->ilf_fields; in_f->ilf_asize = in_f64->ilf_asize; in_f->ilf_dsize = in_f64->ilf_dsize; in_f->ilf_ino = in_f64->ilf_ino; /* copy biggest field of ilf_u */ memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, in_f64->ilf_u.ilfu_uuid.__u_bits, sizeof(uuid_t)); in_f->ilf_blkno = in_f64->ilf_blkno; in_f->ilf_len = in_f64->ilf_len; in_f->ilf_boffset = in_f64->ilf_boffset; return 0; } return EFSCORRUPTED; }