/* * Copyright (C) 2010-2011 Neil Brown * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved. * * This file is released under the GPL. */ #include #include #include "md.h" #include "raid1.h" #include "raid5.h" #include "raid10.h" #include "bitmap.h" #include #define DM_MSG_PREFIX "raid" #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ static bool devices_handle_discard_safely = false; /* * The following flags are used by dm-raid.c to set up the array state. * They must be cleared before md_run is called. */ #define FirstUse 10 /* rdev flag */ struct raid_dev { /* * Two DM devices, one to hold metadata and one to hold the * actual data/parity. The reason for this is to not confuse * ti->len and give more flexibility in altering size and * characteristics. * * While it is possible for this device to be associated * with a different physical device than the data_dev, it * is intended for it to be the same. * |--------- Physical Device ---------| * |- meta_dev -|------ data_dev ------| */ struct dm_dev *meta_dev; struct dm_dev *data_dev; struct md_rdev rdev; }; /* * Flags for rs->ctr_flags field. * * 1 = no flag value * 2 = flag with value */ #define CTR_FLAG_SYNC 0x1 /* 1 */ /* Not with raid0! */ #define CTR_FLAG_NOSYNC 0x2 /* 1 */ /* Not with raid0! */ #define CTR_FLAG_REBUILD 0x4 /* 2 */ /* Not with raid0! */ #define CTR_FLAG_DAEMON_SLEEP 0x8 /* 2 */ /* Not with raid0! */ #define CTR_FLAG_MIN_RECOVERY_RATE 0x10 /* 2 */ /* Not with raid0! */ #define CTR_FLAG_MAX_RECOVERY_RATE 0x20 /* 2 */ /* Not with raid0! */ #define CTR_FLAG_MAX_WRITE_BEHIND 0x40 /* 2 */ /* Only with raid1! */ #define CTR_FLAG_WRITE_MOSTLY 0x80 /* 2 */ /* Only with raid1! */ #define CTR_FLAG_STRIPE_CACHE 0x100 /* 2 */ /* Only with raid4/5/6! */ #define CTR_FLAG_REGION_SIZE 0x200 /* 2 */ /* Not with raid0! */ #define CTR_FLAG_RAID10_COPIES 0x400 /* 2 */ /* Only with raid10 */ #define CTR_FLAG_RAID10_FORMAT 0x800 /* 2 */ /* Only with raid10 */ /* New for v1.8.0 */ #define CTR_FLAG_DELTA_DISKS 0x1000 /* 2 */ /* Only with reshapable raid4/5/6/10! */ #define CTR_FLAG_DATA_OFFSET 0x2000 /* 2 */ /* Only with reshapable raid4/5/6/10! */ #define CTR_FLAG_RAID10_USE_NEAR_SETS 0x4000 /* 2 */ /* Only with raid10! */ /* * Definitions of various constructor flags to * be used in checks of valid / invalid flags * per raid level. */ /* Define all any sync flags */ #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) /* Define flags for options without argument (e.g. 'nosync') */ #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ CTR_FLAG_RAID10_USE_NEAR_SETS) /* Define flags for options with one argument (e.g. 'delta_disks +2') */ #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ CTR_FLAG_WRITE_MOSTLY | \ CTR_FLAG_DAEMON_SLEEP | \ CTR_FLAG_MIN_RECOVERY_RATE | \ CTR_FLAG_MAX_RECOVERY_RATE | \ CTR_FLAG_MAX_WRITE_BEHIND | \ CTR_FLAG_STRIPE_CACHE | \ CTR_FLAG_REGION_SIZE | \ CTR_FLAG_RAID10_COPIES | \ CTR_FLAG_RAID10_FORMAT | \ CTR_FLAG_DELTA_DISKS | \ CTR_FLAG_DATA_OFFSET) /* All ctr optional arguments */ #define ALL_CTR_FLAGS (CTR_FLAG_OPTIONS_NO_ARGS | \ CTR_FLAG_OPTIONS_ONE_ARG) /* Invalid options definitions per raid level... */ /* "raid0" does not accept any options */ #define RAID0_INVALID_FLAGS ALL_CTR_FLAGS /* "raid1" does not accept stripe cache or any raid10 options */ #define RAID1_INVALID_FLAGS (CTR_FLAG_STRIPE_CACHE | \ CTR_FLAG_RAID10_COPIES | \ CTR_FLAG_RAID10_FORMAT | \ CTR_FLAG_DELTA_DISKS | \ CTR_FLAG_DATA_OFFSET) /* "raid10" does not accept any raid1 or stripe cache options */ #define RAID10_INVALID_FLAGS (CTR_FLAG_WRITE_MOSTLY | \ CTR_FLAG_MAX_WRITE_BEHIND | \ CTR_FLAG_STRIPE_CACHE) /* * "raid4/5/6" do not accept any raid1 or raid10 specific options * * "raid6" does not accept "nosync", because it is not guaranteed * that both parity and q-syndrome are being written properly with * any writes */ #define RAID45_INVALID_FLAGS (CTR_FLAG_WRITE_MOSTLY | \ CTR_FLAG_MAX_WRITE_BEHIND | \ CTR_FLAG_RAID10_FORMAT | \ CTR_FLAG_RAID10_COPIES | \ CTR_FLAG_RAID10_USE_NEAR_SETS) #define RAID6_INVALID_FLAGS (CTR_FLAG_NOSYNC | RAID45_INVALID_FLAGS) /* ...invalid options definitions per raid level */ /* Array elements of 64 bit needed for rebuild/write_mostly bits */ #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) struct raid_set { struct dm_target *ti; uint32_t bitmap_loaded; uint32_t ctr_flags; int raid_disks; int delta_disks; int data_offset; int raid10_copies; struct mddev md; struct raid_type *raid_type; struct dm_target_callbacks callbacks; struct raid_dev dev[0]; }; /* raid10 algorithms (i.e. formats) */ #define ALGORITHM_RAID10_DEFAULT 0 #define ALGORITHM_RAID10_NEAR 1 #define ALGORITHM_RAID10_OFFSET 2 #define ALGORITHM_RAID10_FAR 3 /* Supported raid types and properties. */ static struct raid_type { const char *name; /* RAID algorithm. */ const char *descr; /* Descriptor text for logging. */ const unsigned parity_devs; /* # of parity devices. */ const unsigned minimal_devs; /* minimal # of devices in set. */ const unsigned level; /* RAID level. */ const unsigned algorithm; /* RAID algorithm. */ } raid_types[] = { {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, {"raid4", "raid4 (dedicated last parity disk)", 1, 2, 4, ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */ {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} }; /* True, if @v is in inclusive range [@min, @max] */ static bool _in_range(long v, long min, long max) { return v >= min && v <= max; } /* ctr flag bit manipulation... */ /* Set single @flag in @flags */ static void _set_flag(uint32_t flag, uint32_t *flags) { WARN_ON_ONCE(hweight32(flag) != 1); *flags |= flag; } /* Test single @flag in @flags */ static bool _test_flag(uint32_t flag, uint32_t flags) { WARN_ON_ONCE(hweight32(flag) != 1); return (flag & flags) ? true : false; } /* Test multiple @flags in @all_flags */ static bool _test_flags(uint32_t flags, uint32_t all_flags) { return (flags & all_flags) ? true : false; } /* Return true if single @flag is set in @*flags, else set it and return false */ static bool _test_and_set_flag(uint32_t flag, uint32_t *flags) { if (_test_flag(flag, *flags)) return true; _set_flag(flag, flags); return false; } /* ...ctr and runtime flag bit manipulation */ /* All table line arguments are defined here */ static struct arg_name_flag { const uint32_t flag; const char *name; } _arg_name_flags[] = { { CTR_FLAG_SYNC, "sync"}, { CTR_FLAG_NOSYNC, "nosync"}, { CTR_FLAG_REBUILD, "rebuild"}, { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, { CTR_FLAG_WRITE_MOSTLY, "writemostly"}, { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, { CTR_FLAG_REGION_SIZE, "region_size"}, { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, { CTR_FLAG_DATA_OFFSET, "data_offset"}, { CTR_FLAG_DELTA_DISKS, "delta_disks"}, { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, }; /* Return argument name string for given @flag */ static const char *_argname_by_flag(const uint32_t flag) { if (hweight32(flag) == 1) { struct arg_name_flag *anf = _arg_name_flags + ARRAY_SIZE(_arg_name_flags); while (anf-- > _arg_name_flags) if (_test_flag(flag, anf->flag)) return anf->name; } else DMERR("%s called with more than one flag!", __func__); return NULL; } /* * bool helpers to test for various raid levels of a raid set, * is. it's level as reported by the superblock rather than * the requested raid_type passed to the constructor. */ /* Return true, if raid set in @rs is raid0 */ static bool rs_is_raid0(struct raid_set *rs) { return !rs->md.level; } /* Return true, if raid set in @rs is raid10 */ static bool rs_is_raid10(struct raid_set *rs) { return rs->md.level == 10; } /* * bool helpers to test for various raid levels of a raid type */ /* Return true, if raid type in @rt is raid0 */ static bool rt_is_raid0(struct raid_type *rt) { return !rt->level; } /* Return true, if raid type in @rt is raid1 */ static bool rt_is_raid1(struct raid_type *rt) { return rt->level == 1; } /* Return true, if raid type in @rt is raid10 */ static bool rt_is_raid10(struct raid_type *rt) { return rt->level == 10; } /* Return true, if raid type in @rt is raid4/5 */ static bool rt_is_raid45(struct raid_type *rt) { return _in_range(rt->level, 4, 5); } /* Return true, if raid type in @rt is raid6 */ static bool rt_is_raid6(struct raid_type *rt) { return rt->level == 6; } /* Return true, if raid type in @rt is raid4/5/6 */ static bool rt_is_raid456(struct raid_type *rt) { return _in_range(rt->level, 4, 6); } /* END: raid level bools */ /* * Convenience functions to set ti->error to @errmsg and * return @r in order to shorten code in a lot of places */ static int ti_error_ret(struct dm_target *ti, const char *errmsg, int r) { ti->error = (char *) errmsg; return r; } static int ti_error_einval(struct dm_target *ti, const char *errmsg) { return ti_error_ret(ti, errmsg, -EINVAL); } /* END: convenience functions to set ti->error to @errmsg... */ /* Return invalid ctr flags for the raid level of @rs */ static uint32_t _invalid_flags(struct raid_set *rs) { if (rt_is_raid0(rs->raid_type)) return RAID0_INVALID_FLAGS; else if (rt_is_raid1(rs->raid_type)) return RAID1_INVALID_FLAGS; else if (rt_is_raid10(rs->raid_type)) return RAID10_INVALID_FLAGS; else if (rt_is_raid45(rs->raid_type)) return RAID45_INVALID_FLAGS; else if (rt_is_raid6(rs->raid_type)) return RAID6_INVALID_FLAGS; return ~0; } /* * Check for any invalid flags set on @rs defined by bitset @invalid_flags * * Has to be called after parsing of the ctr flags! */ static int rs_check_for_invalid_flags(struct raid_set *rs) { if (_test_flags(rs->ctr_flags, _invalid_flags(rs))) return ti_error_einval(rs->ti, "Invalid flag combined"); return 0; } /* MD raid10 bit definitions and helpers */ #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ /* Return md raid10 near copies for @layout */ static unsigned int _raid10_near_copies(int layout) { return layout & 0xFF; } /* Return md raid10 far copies for @layout */ static unsigned int _raid10_far_copies(int layout) { return _raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); } /* Return true if md raid10 offset for @layout */ static unsigned int _is_raid10_offset(int layout) { return layout & RAID10_OFFSET; } /* Return true if md raid10 near for @layout */ static unsigned int _is_raid10_near(int layout) { return !_is_raid10_offset(layout) && _raid10_near_copies(layout) > 1; } /* Return true if md raid10 far for @layout */ static unsigned int _is_raid10_far(int layout) { return !_is_raid10_offset(layout) && _raid10_far_copies(layout) > 1; } /* Return md raid10 layout string for @layout */ static const char *raid10_md_layout_to_format(int layout) { /* * Bit 16 stands for "offset" * (i.e. adjacent stripes hold copies) * * Refer to MD's raid10.c for details */ if (_is_raid10_offset(layout)) return "offset"; if (_raid10_near_copies(layout) > 1) return "near"; WARN_ON(_raid10_far_copies(layout) < 2); return "far"; } /* Return md raid10 algorithm for @name */ static const int raid10_name_to_format(const char *name) { if (!strcasecmp(name, "near")) return ALGORITHM_RAID10_NEAR; else if (!strcasecmp(name, "offset")) return ALGORITHM_RAID10_OFFSET; else if (!strcasecmp(name, "far")) return ALGORITHM_RAID10_FAR; return -EINVAL; } /* Return md raid10 copies for @layout */ static unsigned int raid10_md_layout_to_copies(int layout) { return _raid10_near_copies(layout) > 1 ? _raid10_near_copies(layout) : _raid10_far_copies(layout); } /* Return md raid10 format id for @format string */ static int raid10_format_to_md_layout(struct raid_set *rs, unsigned int algorithm, unsigned int copies) { unsigned int n = 1, f = 1, r = 0; /* * MD resilienece flaw: * * enabling use_far_sets for far/offset formats causes copies * to be colocated on the same devs together with their origins! * * -> disable it for now in the definition above */ if (algorithm == ALGORITHM_RAID10_DEFAULT || algorithm == ALGORITHM_RAID10_NEAR) n = copies; else if (algorithm == ALGORITHM_RAID10_OFFSET) { f = copies; r = RAID10_OFFSET; if (!_test_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, rs->ctr_flags)) r |= RAID10_USE_FAR_SETS; } else if (algorithm == ALGORITHM_RAID10_FAR) { f = copies; r = !RAID10_OFFSET; if (!_test_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, rs->ctr_flags)) r |= RAID10_USE_FAR_SETS; } else return -EINVAL; return r | (f << RAID10_FAR_COPIES_SHIFT) | n; } /* END: MD raid10 bit definitions and helpers */ /* Check for any of the raid10 algorithms */ static int _got_raid10(struct raid_type *rtp, const int layout) { if (rtp->level == 10) { switch (rtp->algorithm) { case ALGORITHM_RAID10_DEFAULT: case ALGORITHM_RAID10_NEAR: return _is_raid10_near(layout); case ALGORITHM_RAID10_OFFSET: return _is_raid10_offset(layout); case ALGORITHM_RAID10_FAR: return _is_raid10_far(layout); default: break; } } return 0; } /* Return raid_type for @name */ static struct raid_type *get_raid_type(const char *name) { struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); while (rtp-- > raid_types) if (!strcasecmp(rtp->name, name)) return rtp; return NULL; } /* Return raid_type for @name based derived from @level and @layout */ static struct raid_type *get_raid_type_by_ll(const int level, const int layout) { struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); while (rtp-- > raid_types) { /* RAID10 special checks based on @layout flags/properties */ if (rtp->level == level && (_got_raid10(rtp, layout) || rtp->algorithm == layout)) return rtp; } return NULL; } /* * Set the mddev properties in @rs to the new * ones requested by the ctr */ static void rs_set_new(struct raid_set *rs) { struct mddev *mddev = &rs->md; mddev->level = mddev->new_level; mddev->layout = mddev->new_layout; mddev->chunk_sectors = mddev->new_chunk_sectors; mddev->delta_disks = 0; } static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs) { unsigned i; struct raid_set *rs; if (raid_devs <= raid_type->parity_devs) return ERR_PTR(ti_error_einval(ti, "Insufficient number of devices")); rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL); if (!rs) return ERR_PTR(ti_error_ret(ti, "Cannot allocate raid context", -ENOMEM)); mddev_init(&rs->md); rs->raid_disks = raid_devs; rs->delta_disks = 0; rs->ti = ti; rs->raid_type = raid_type; rs->md.raid_disks = raid_devs; rs->md.level = raid_type->level; rs->md.new_level = rs->md.level; rs->md.layout = raid_type->algorithm; rs->md.new_layout = rs->md.layout; rs->md.delta_disks = 0; rs->md.recovery_cp = 0; for (i = 0; i < raid_devs; i++) md_rdev_init(&rs->dev[i].rdev); /* * Remaining items to be initialized by further RAID params: * rs->md.persistent * rs->md.external * rs->md.chunk_sectors * rs->md.new_chunk_sectors * rs->md.dev_sectors */ return rs; } static void context_free(struct raid_set *rs) { int i; for (i = 0; i < rs->md.raid_disks; i++) { if (rs->dev[i].meta_dev) dm_put_device(rs->ti, rs->dev[i].meta_dev); md_rdev_clear(&rs->dev[i].rdev); if (rs->dev[i].data_dev) dm_put_device(rs->ti, rs->dev[i].data_dev); } kfree(rs); } /* * For every device we have two words * : meta device name or '-' if missing * : data device name or '-' if missing * * The following are permitted: * - - * - * * * The following is not allowed: * - * * This code parses those words. If there is a failure, * the caller must use context_free to unwind the operations. */ static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) { int i; int rebuild = 0; int metadata_available = 0; int r = 0; const char *arg; /* Put off the number of raid devices argument to get to dev pairs */ arg = dm_shift_arg(as); if (!arg) return -EINVAL; for (i = 0; i < rs->md.raid_disks; i++) { rs->dev[i].rdev.raid_disk = i; rs->dev[i].meta_dev = NULL; rs->dev[i].data_dev = NULL; /* * There are no offsets, since there is a separate device * for data and metadata. */ rs->dev[i].rdev.data_offset = 0; rs->dev[i].rdev.mddev = &rs->md; arg = dm_shift_arg(as); if (!arg) return -EINVAL; if (strcmp(arg, "-")) { r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), &rs->dev[i].meta_dev); if (r) return ti_error_ret(rs->ti, "RAID metadata device lookup failure", r); rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); if (!rs->dev[i].rdev.sb_page) return ti_error_ret(rs->ti, "Failed to allocate superblock page", -ENOMEM); } arg = dm_shift_arg(as); if (!arg) return -EINVAL; if (!strcmp(arg, "-")) { if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && (!rs->dev[i].rdev.recovery_offset)) return ti_error_einval(rs->ti, "Drive designated for rebuild not specified"); if (rs->dev[i].meta_dev) return ti_error_einval(rs->ti, "No data device supplied with metadata device"); continue; } r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), &rs->dev[i].data_dev); if (r) return ti_error_ret(rs->ti, "RAID device lookup failure", r); if (rs->dev[i].meta_dev) { metadata_available = 1; rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; } rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; list_add(&rs->dev[i].rdev.same_set, &rs->md.disks); if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) rebuild++; } if (metadata_available) { rs->md.external = 0; rs->md.persistent = 1; rs->md.major_version = 2; } else if (rebuild && !rs->md.recovery_cp) { /* * Without metadata, we will not be able to tell if the array * is in-sync or not - we must assume it is not. Therefore, * it is impossible to rebuild a drive. * * Even if there is metadata, the on-disk information may * indicate that the array is not in-sync and it will then * fail at that time. * * User could specify 'nosync' option if desperate. */ DMERR("Unable to rebuild drive while array is not in-sync"); return ti_error_einval(rs->ti, "Unable to rebuild drive while array is not in-sync"); } return 0; } /* * validate_region_size * @rs * @region_size: region size in sectors. If 0, pick a size (4MiB default). * * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. * * Returns: 0 on success, -EINVAL on failure. */ static int validate_region_size(struct raid_set *rs, unsigned long region_size) { unsigned long min_region_size = rs->ti->len / (1 << 21); if (!region_size) { /* * Choose a reasonable default. All figures in sectors. */ if (min_region_size > (1 << 13)) { /* If not a power of 2, make it the next power of 2 */ region_size = roundup_pow_of_two(min_region_size); DMINFO("Choosing default region size of %lu sectors", region_size); } else { DMINFO("Choosing default region size of 4MiB"); region_size = 1 << 13; /* sectors */ } } else { /* * Validate user-supplied value. */ if (region_size > rs->ti->len) return ti_error_einval(rs->ti, "Supplied region size is too large"); if (region_size < min_region_size) { DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", region_size, min_region_size); return ti_error_einval(rs->ti, "Supplied region size is too small"); } if (!is_power_of_2(region_size)) return ti_error_einval(rs->ti, "Region size is not a power of 2"); if (region_size < rs->md.chunk_sectors) return ti_error_einval(rs->ti, "Region size is smaller than the chunk size"); } /* * Convert sectors to bytes. */ rs->md.bitmap_info.chunksize = (region_size << 9); return 0; } /* * validate_raid_redundancy * @rs * * Determine if there are enough devices in the array that haven't * failed (or are being rebuilt) to form a usable array. * * Returns: 0 on success, -EINVAL on failure. */ static int validate_raid_redundancy(struct raid_set *rs) { unsigned i, rebuild_cnt = 0; unsigned rebuilds_per_group = 0, copies, d; unsigned group_size, last_group_start; for (i = 0; i < rs->md.raid_disks; i++) if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || !rs->dev[i].rdev.sb_page) rebuild_cnt++; switch (rs->raid_type->level) { case 1: if (rebuild_cnt >= rs->md.raid_disks) goto too_many; break; case 4: case 5: case 6: if (rebuild_cnt > rs->raid_type->parity_devs) goto too_many; break; case 10: copies = raid10_md_layout_to_copies(rs->md.layout); if (rebuild_cnt < copies) break; /* * It is possible to have a higher rebuild count for RAID10, * as long as the failed devices occur in different mirror * groups (i.e. different stripes). * * When checking "near" format, make sure no adjacent devices * have failed beyond what can be handled. In addition to the * simple case where the number of devices is a multiple of the * number of copies, we must also handle cases where the number * of devices is not a multiple of the number of copies. * E.g. dev1 dev2 dev3 dev4 dev5 * A A B B C * C D D E E */ if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) { for (i = 0; i < rs->md.raid_disks * copies; i++) { if (!(i % copies)) rebuilds_per_group = 0; d = i % rs->md.raid_disks; if ((!rs->dev[d].rdev.sb_page || !test_bit(In_sync, &rs->dev[d].rdev.flags)) && (++rebuilds_per_group >= copies)) goto too_many; } break; } /* * When checking "far" and "offset" formats, we need to ensure * that the device that holds its copy is not also dead or * being rebuilt. (Note that "far" and "offset" formats only * support two copies right now. These formats also only ever * use the 'use_far_sets' variant.) * * This check is somewhat complicated by the need to account * for arrays that are not a multiple of (far) copies. This * results in the need to treat the last (potentially larger) * set differently. */ group_size = (rs->md.raid_disks / copies); last_group_start = (rs->md.raid_disks / group_size) - 1; last_group_start *= group_size; for (i = 0; i < rs->md.raid_disks; i++) { if (!(i % copies) && !(i > last_group_start)) rebuilds_per_group = 0; if ((!rs->dev[i].rdev.sb_page || !test_bit(In_sync, &rs->dev[i].rdev.flags)) && (++rebuilds_per_group >= copies)) goto too_many; } break; default: if (rebuild_cnt) return -EINVAL; } return 0; too_many: return -EINVAL; } /* * Possible arguments are... * [optional_args] * * Argument definitions * The number of sectors per disk that * will form the "stripe" * [[no]sync] Force or prevent recovery of the * entire array * [rebuild ] Rebuild the drive indicated by the index * [daemon_sleep ] Time between bitmap daemon work to * clear bits * [min_recovery_rate ] Throttle RAID initialization * [max_recovery_rate ] Throttle RAID initialization * [write_mostly ] Indicate a write mostly drive via index * [max_write_behind ] See '-write-behind=' (man mdadm) * [stripe_cache ] Stripe cache size for higher RAIDs * [region_size ] Defines granularity of bitmap * * RAID10-only options: * [raid10_copies <# copies>] Number of copies. (Default: 2) * [raid10_format ] Layout algorithm. (Default: near) */ static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, unsigned num_raid_params) { int raid10_format = ALGORITHM_RAID10_DEFAULT; unsigned raid10_copies = 2; unsigned i; unsigned value, region_size = 0; sector_t sectors_per_dev = rs->ti->len; sector_t max_io_len; const char *arg, *key; struct raid_dev *rd; struct raid_type *rt = rs->raid_type; arg = dm_shift_arg(as); num_raid_params--; /* Account for chunk_size argument */ if (kstrtouint(arg, 10, &value) < 0) return ti_error_einval(rs->ti, "Bad numerical argument given for chunk_size"); /* * First, parse the in-order required arguments * "chunk_size" is the only argument of this type. */ if (rt_is_raid1(rt)) { if (value) DMERR("Ignoring chunk size parameter for RAID 1"); value = 0; } else if (!is_power_of_2(value)) return ti_error_einval(rs->ti, "Chunk size must be a power of 2"); else if (value < 8) return ti_error_einval(rs->ti, "Chunk size value is too small"); rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; /* * We set each individual device as In_sync with a completed * 'recovery_offset'. If there has been a device failure or * replacement then one of the following cases applies: * * 1) User specifies 'rebuild'. * - Device is reset when param is read. * 2) A new device is supplied. * - No matching superblock found, resets device. * 3) Device failure was transient and returns on reload. * - Failure noticed, resets device for bitmap replay. * 4) Device hadn't completed recovery after previous failure. * - Superblock is read and overrides recovery_offset. * * What is found in the superblocks of the devices is always * authoritative, unless 'rebuild' or '[no]sync' was specified. */ for (i = 0; i < rs->md.raid_disks; i++) { set_bit(In_sync, &rs->dev[i].rdev.flags); rs->dev[i].rdev.recovery_offset = MaxSector; } /* * Second, parse the unordered optional arguments */ for (i = 0; i < num_raid_params; i++) { key = dm_shift_arg(as); if (!key) return ti_error_einval(rs->ti, "Not enough raid parameters given"); if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_NOSYNC))) { if (_test_and_set_flag(CTR_FLAG_NOSYNC, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one 'nosync' argument allowed"); rs->md.recovery_cp = MaxSector; continue; } if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_SYNC))) { if (_test_and_set_flag(CTR_FLAG_SYNC, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one 'sync' argument allowed"); rs->md.recovery_cp = 0; continue; } if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { if (_test_and_set_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one 'raid10_use_new_sets' argument allowed"); continue; } arg = dm_shift_arg(as); i++; /* Account for the argument pairs */ if (!arg) return ti_error_einval(rs->ti, "Wrong number of raid parameters given"); /* * Parameters that take a string value are checked here. */ if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_RAID10_FORMAT))) { if (_test_and_set_flag(CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one 'raid10_format' argument pair allowed"); if (!rt_is_raid10(rt)) return ti_error_einval(rs->ti, "'raid10_format' is an invalid parameter for this RAID type"); raid10_format = raid10_name_to_format(arg); if (raid10_format < 0) return ti_error_ret(rs->ti, "Invalid 'raid10_format' value given", raid10_format); continue; } if (kstrtouint(arg, 10, &value) < 0) return ti_error_einval(rs->ti, "Bad numerical argument given in raid params"); if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_REBUILD))) { /* * "rebuild" is being passed in by userspace to provide * indexes of replaced devices and to set up additional * devices on raid level takeover. */ if (!_in_range(value, 0, rs->md.raid_disks - 1)) return ti_error_einval(rs->ti, "Invalid rebuild index given"); rd = rs->dev + value; clear_bit(In_sync, &rd->rdev.flags); clear_bit(Faulty, &rd->rdev.flags); rd->rdev.recovery_offset = 0; _set_flag(CTR_FLAG_REBUILD, &rs->ctr_flags); } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_WRITE_MOSTLY))) { if (!rt_is_raid1(rt)) return ti_error_einval(rs->ti, "write_mostly option is only valid for RAID1"); if (!_in_range(value, 0, rs->md.raid_disks - 1)) return ti_error_einval(rs->ti, "Invalid write_mostly index given"); set_bit(WriteMostly, &rs->dev[value].rdev.flags); _set_flag(CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { if (!rt_is_raid1(rt)) return ti_error_einval(rs->ti, "max_write_behind option is only valid for RAID1"); if (_test_and_set_flag(CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one max_write_behind argument pair allowed"); /* * In device-mapper, we specify things in sectors, but * MD records this value in kB */ value /= 2; if (value > COUNTER_MAX) return ti_error_einval(rs->ti, "Max write-behind limit out of range"); rs->md.bitmap_info.max_write_behind = value; } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_DAEMON_SLEEP))) { if (_test_and_set_flag(CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one daemon_sleep argument pair allowed"); if (!value || (value > MAX_SCHEDULE_TIMEOUT)) return ti_error_einval(rs->ti, "daemon sleep period out of range"); rs->md.bitmap_info.daemon_sleep = value; } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_DATA_OFFSET))) { /* Userspace passes new data_offset after having extended the the data image LV */ if (_test_and_set_flag(CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one data_offset argument pair allowed"); /* Ensure sensible data offset */ if (value < 0) return ti_error_einval(rs->ti, "Bogus data_offset value"); rs->data_offset = value; } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_DELTA_DISKS))) { /* Define the +/-# of disks to add to/remove from the given raid set */ if (_test_and_set_flag(CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one delta_disks argument pair allowed"); /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ if (!_in_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) return ti_error_einval(rs->ti, "Too many delta_disk requested"); rs->delta_disks = value; } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_STRIPE_CACHE))) { if (_test_and_set_flag(CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one stripe_cache argument pair allowed"); /* * In device-mapper, we specify things in sectors, but * MD records this value in kB */ value /= 2; if (!rt_is_raid456(rt)) return ti_error_einval(rs->ti, "Inappropriate argument: stripe_cache"); if (raid5_set_cache_size(&rs->md, (int)value)) return ti_error_einval(rs->ti, "Bad stripe_cache size"); } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { if (_test_and_set_flag(CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one min_recovery_rate argument pair allowed"); if (value > INT_MAX) return ti_error_einval(rs->ti, "min_recovery_rate out of range"); rs->md.sync_speed_min = (int)value; } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { if (_test_and_set_flag(CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one max_recovery_rate argument pair allowed"); if (value > INT_MAX) return ti_error_einval(rs->ti, "max_recovery_rate out of range"); rs->md.sync_speed_max = (int)value; } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_REGION_SIZE))) { if (_test_and_set_flag(CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one region_size argument pair allowed"); region_size = value; } else if (!strcasecmp(key, _argname_by_flag(CTR_FLAG_RAID10_COPIES))) { if (_test_and_set_flag(CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) return ti_error_einval(rs->ti, "Only one raid10_copies argument pair allowed"); if (!_in_range(value, 2, rs->md.raid_disks)) return ti_error_einval(rs->ti, "Bad value for 'raid10_copies'"); raid10_copies = value; } else { DMERR("Unable to parse RAID parameter: %s", key); return ti_error_einval(rs->ti, "Unable to parse RAID parameters"); } } if (validate_region_size(rs, region_size)) return -EINVAL; if (rs->md.chunk_sectors) max_io_len = rs->md.chunk_sectors; else max_io_len = region_size; if (dm_set_target_max_io_len(rs->ti, max_io_len)) return -EINVAL; if (rt_is_raid10(rt)) { if (raid10_copies > rs->md.raid_disks) return ti_error_einval(rs->ti, "Not enough devices to satisfy specification"); rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); if (rs->md.new_layout < 0) return ti_error_ret(rs->ti, "Error getting raid10 format", rs->md.new_layout); rt = get_raid_type_by_ll(10, rs->md.new_layout); if (!rt) return ti_error_einval(rs->ti, "Failed to recognize new raid10 layout"); if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || rt->algorithm == ALGORITHM_RAID10_NEAR) && _test_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, rs->ctr_flags)) return ti_error_einval(rs->ti, "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"); /* (Len * #mirrors) / #devices */ sectors_per_dev = rs->ti->len * raid10_copies; sector_div(sectors_per_dev, rs->md.raid_disks); rs->md.layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); rs->md.new_layout = rs->md.layout; } else if (!rt_is_raid1(rt) && sector_div(sectors_per_dev, (rs->md.raid_disks - rt->parity_devs))) return ti_error_einval(rs->ti, "Target length not divisible by number of data devices"); rs->raid10_copies = raid10_copies; rs->md.dev_sectors = sectors_per_dev; /* Assume there are no metadata devices until the drives are parsed */ rs->md.persistent = 0; rs->md.external = 1; /* Check, if any invalid ctr arguments have been passed in for the raid level */ return rs_check_for_invalid_flags(rs); } static void do_table_event(struct work_struct *ws) { struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); dm_table_event(rs->ti->table); } static int raid_is_congested(struct dm_target_callbacks *cb, int bits) { struct raid_set *rs = container_of(cb, struct raid_set, callbacks); return mddev_congested(&rs->md, bits); } /* Features */ #define FEATURE_FLAG_SUPPORTS_RESHAPE 0x1 /* State flags for sb->flags */ #define SB_FLAG_RESHAPE_ACTIVE 0x1 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 /* * This structure is never routinely used by userspace, unlike md superblocks. * Devices with this superblock should only ever be accessed via device-mapper. */ #define DM_RAID_MAGIC 0x64526D44 struct dm_raid_superblock { __le32 magic; /* "DmRd" */ __le32 compat_features; /* Used to indicate compatible features (like 1.8.0 ondisk metadata extension) */ __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ __le32 array_position; /* The position of this drive in the raid set */ __le64 events; /* Incremented by md when superblock updated */ __le64 failed_devices; /* Pre 1.8.0 part of bit field of devices to */ /* indicate failures (see extension below) */ /* * This offset tracks the progress of the repair or replacement of * an individual drive. */ __le64 disk_recovery_offset; /* * This offset tracks the progress of the initial raid set * synchronisation/parity calculation. */ __le64 array_resync_offset; /* * raid characteristics */ __le32 level; __le32 layout; __le32 stripe_sectors; /******************************************************************** * BELOW FOLLOW V1.8.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! * * FEATURE_FLAG_SUPPORTS_RESHAPE in the features member indicates that those exist */ __le32 flags; /* Flags defining array states for reshaping */ /* * This offset tracks the progress of a raid * set reshape in order to be able to restart it */ __le64 reshape_position; /* * These define the properties of the array in case of an interrupted reshape */ __le32 new_level; __le32 new_layout; __le32 new_stripe_sectors; __le32 delta_disks; __le64 array_sectors; /* Array size in sectors */ /* * Sector offsets to data on devices (reshaping). * Needed to support out of place reshaping, thus * not writing over any stripes whilst converting * them from old to new layout */ __le64 data_offset; __le64 new_data_offset; __le64 sectors; /* Used device size in sectors */ /* * Additonal Bit field of devices indicating failures to support * up to 256 devices with the 1.8.0 on-disk metadata format */ __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; __le32 incompat_features; /* Used to indicate any incompatible features */ /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ } __packed; static int read_disk_sb(struct md_rdev *rdev, int size) { BUG_ON(!rdev->sb_page); if (rdev->sb_loaded) return 0; if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, 1)) { DMERR("Failed to read superblock of device at position %d", rdev->raid_disk); md_error(rdev->mddev, rdev); return -EINVAL; } rdev->sb_loaded = 1; return 0; } static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) { failed_devices[0] = le64_to_cpu(sb->failed_devices); memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); if (_test_flag(FEATURE_FLAG_SUPPORTS_RESHAPE, le32_to_cpu(sb->compat_features))) { int i = ARRAY_SIZE(sb->extended_failed_devices); while (i--) failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); } } static void super_sync(struct mddev *mddev, struct md_rdev *rdev) { int i; uint64_t failed_devices; struct dm_raid_superblock *sb; struct raid_set *rs = container_of(mddev, struct raid_set, md); sb = page_address(rdev->sb_page); failed_devices = le64_to_cpu(sb->failed_devices); for (i = 0; i < mddev->raid_disks; i++) if (!rs->dev[i].data_dev || test_bit(Faulty, &(rs->dev[i].rdev.flags))) failed_devices |= (1ULL << i); memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); sb->magic = cpu_to_le32(DM_RAID_MAGIC); sb->compat_features = cpu_to_le32(0); /* No features yet */ sb->num_devices = cpu_to_le32(mddev->raid_disks); sb->array_position = cpu_to_le32(rdev->raid_disk); sb->events = cpu_to_le64(mddev->events); sb->failed_devices = cpu_to_le64(failed_devices); sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); sb->level = cpu_to_le32(mddev->level); sb->layout = cpu_to_le32(mddev->layout); sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); } /* * super_load * * This function creates a superblock if one is not found on the device * and will decide which superblock to use if there's a choice. * * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise */ static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) { int r; struct dm_raid_superblock *sb; struct dm_raid_superblock *refsb; uint64_t events_sb, events_refsb; rdev->sb_start = 0; rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) { DMERR("superblock size of a logical block is no longer valid"); return -EINVAL; } r = read_disk_sb(rdev, rdev->sb_size); if (r) return r; sb = page_address(rdev->sb_page); /* * Two cases that we want to write new superblocks and rebuild: * 1) New device (no matching magic number) * 2) Device specified for rebuild (!In_sync w/ offset == 0) */ if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { super_sync(rdev->mddev, rdev); set_bit(FirstUse, &rdev->flags); /* Force writing of superblocks to disk */ set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags); /* Any superblock is better than none, choose that if given */ return refdev ? 0 : 1; } if (!refdev) return 1; events_sb = le64_to_cpu(sb->events); refsb = page_address(refdev->sb_page); events_refsb = le64_to_cpu(refsb->events); return (events_sb > events_refsb) ? 1 : 0; } static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) { int role; unsigned int d; struct mddev *mddev = &rs->md; uint64_t events_sb; uint64_t failed_devices[DISKS_ARRAY_ELEMS]; struct dm_raid_superblock *sb; uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; struct md_rdev *r; struct dm_raid_superblock *sb2; sb = page_address(rdev->sb_page); events_sb = le64_to_cpu(sb->events); /* * Initialise to 1 if this is a new superblock. */ mddev->events = events_sb ? : 1; mddev->reshape_position = MaxSector; /* * Reshaping is supported, e.g. reshape_position is valid * in superblock and superblock content is authoritative. */ if (_test_flag(FEATURE_FLAG_SUPPORTS_RESHAPE, le32_to_cpu(sb->compat_features))) { /* Superblock is authoritative wrt given raid set layout! */ mddev->raid_disks = le32_to_cpu(sb->num_devices); mddev->level = le32_to_cpu(sb->level); mddev->layout = le32_to_cpu(sb->layout); mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); mddev->new_level = le32_to_cpu(sb->new_level); mddev->new_layout = le32_to_cpu(sb->new_layout); mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); mddev->delta_disks = le32_to_cpu(sb->delta_disks); mddev->array_sectors = le64_to_cpu(sb->array_sectors); /* raid was reshaping and got interrupted */ if (_test_flag(SB_FLAG_RESHAPE_ACTIVE, le32_to_cpu(sb->flags))) { if (_test_flag(CTR_FLAG_DELTA_DISKS, rs->ctr_flags)) { DMERR("Reshape requested but raid set is still reshaping"); return -EINVAL; } if (mddev->delta_disks < 0 || (!mddev->delta_disks && _test_flag(SB_FLAG_RESHAPE_BACKWARDS, le32_to_cpu(sb->flags)))) mddev->reshape_backwards = 1; else mddev->reshape_backwards = 0; mddev->reshape_position = le64_to_cpu(sb->reshape_position); rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); } } else { /* * Reshaping is not allowed, because we don't have the appropriate metadata */ if (le32_to_cpu(sb->level) != mddev->level) { DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)"); return -EINVAL; } if (le32_to_cpu(sb->layout) != mddev->layout) { DMERR("Reshaping raid sets not yet supported. (raid layout change)"); DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout); DMERR(" Old layout: %s w/ %d copies", raid10_md_layout_to_format(le32_to_cpu(sb->layout)), raid10_md_layout_to_copies(le32_to_cpu(sb->layout))); DMERR(" New layout: %s w/ %d copies", raid10_md_layout_to_format(mddev->layout), raid10_md_layout_to_copies(mddev->layout)); return -EINVAL; } if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) { DMERR("Reshaping raid sets not yet supported. (stripe sectors change)"); return -EINVAL; } /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */ if (!rt_is_raid1(rs->raid_type) && (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) { DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)", sb->num_devices, mddev->raid_disks); return -EINVAL; } /* Table line is checked vs. authoritative superblock */ rs_set_new(rs); } if (!_test_flag(CTR_FLAG_NOSYNC, rs->ctr_flags)) mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); /* * During load, we set FirstUse if a new superblock was written. * There are two reasons we might not have a superblock: * 1) The raid set is brand new - in which case, all of the * devices must have their In_sync bit set. Also, * recovery_cp must be 0, unless forced. * 2) This is a new device being added to an old raid set * and the new device needs to be rebuilt - in which * case the In_sync bit will /not/ be set and * recovery_cp must be MaxSector. */ d = 0; rdev_for_each(r, mddev) { if (test_bit(FirstUse, &r->flags)) new_devs++; if (!test_bit(In_sync, &r->flags)) { DMINFO("Device %d specified for rebuild; clearing superblock", r->raid_disk); rebuilds++; if (test_bit(FirstUse, &r->flags)) rebuild_and_new++; } d++; } if (new_devs == rs->raid_disks || !rebuilds) { /* Replace a broken device */ if (new_devs == 1 && !rs->delta_disks) ; if (new_devs == rs->raid_disks) { DMINFO("Superblocks created for new raid set"); set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); mddev->recovery_cp = 0; } else if (new_devs && new_devs != rs->raid_disks && !rebuilds) { DMERR("New device injected into existing raid set without " "'delta_disks' or 'rebuild' parameter specified"); return -EINVAL; } } else if (new_devs && new_devs != rebuilds) { DMERR("%u 'rebuild' devices cannot be injected into" " a raid set with %u other first-time devices", rebuilds, new_devs); return -EINVAL; } else if (rebuilds) { if (rebuild_and_new && rebuilds != rebuild_and_new) { DMERR("new device%s provided without 'rebuild'", new_devs > 1 ? "s" : ""); return -EINVAL; } else if (mddev->recovery_cp != MaxSector) { DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", (unsigned long long) mddev->recovery_cp); return -EINVAL; } else if (mddev->reshape_position != MaxSector) { DMERR("'rebuild' specified while raid set is being reshaped"); return -EINVAL; } } /* * Now we set the Faulty bit for those devices that are * recorded in the superblock as failed. */ sb_retrieve_failed_devices(sb, failed_devices); rdev_for_each(r, mddev) { if (!r->sb_page) continue; sb2 = page_address(r->sb_page); sb2->failed_devices = 0; memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); /* * Check for any device re-ordering. */ if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { role = le32_to_cpu(sb2->array_position); if (role < 0) continue; if (role != r->raid_disk) { if (_is_raid10_near(mddev->layout)) { if (mddev->raid_disks % _raid10_near_copies(mddev->layout) || rs->raid_disks % rs->raid10_copies) return ti_error_einval(rs->ti, "Cannot change raid10 near " "set to odd # of devices!"); sb2->array_position = cpu_to_le32(r->raid_disk); } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && !rt_is_raid1(rs->raid_type)) return ti_error_einval(rs->ti, "Cannot change device positions in raid set"); DMINFO("raid device #%d now at position #%d", role, r->raid_disk); } /* * Partial recovery is performed on * returning failed devices. */ if (test_bit(role, (void *) failed_devices)) set_bit(Faulty, &r->flags); } } return 0; } static int super_validate(struct raid_set *rs, struct md_rdev *rdev) { struct mddev *mddev = &rs->md; struct dm_raid_superblock *sb; if (!rdev->sb_page) return 0; sb = page_address(rdev->sb_page); /* * If mddev->events is not set, we know we have not yet initialized * the array. */ if (!mddev->events && super_init_validation(rs, rdev)) return -EINVAL; if (sb->compat_features || sb->incompat_features) { rs->ti->error = "Unable to assemble array: No feature flags supported yet"; return -EINVAL; } /* Enable bitmap creation for RAID levels != 0 */ mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096); rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; if (!test_and_clear_bit(FirstUse, &rdev->flags)) { /* Retrieve device size stored in superblock to be prepared for shrink */ rdev->sectors = le64_to_cpu(sb->sectors); rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); if (rdev->recovery_offset == MaxSector) set_bit(In_sync, &rdev->flags); /* * If no reshape in progress -> we're recovering single * disk(s) and have to set the device(s) to out-of-sync */ else if (rs->md.reshape_position == MaxSector) clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ } /* * If a device comes back, set it as not In_sync and no longer faulty. */ if (test_and_clear_bit(Faulty, &rdev->flags)) { rdev->recovery_offset = 0; clear_bit(In_sync, &rdev->flags); rdev->saved_raid_disk = rdev->raid_disk; } /* Reshape support -> restore repective data offsets */ rdev->data_offset = le64_to_cpu(sb->data_offset); rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); return 0; } /* * Analyse superblocks and select the freshest. */ static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) { int r; struct raid_dev *dev; struct md_rdev *rdev, *tmp, *freshest; struct mddev *mddev = &rs->md; freshest = NULL; rdev_for_each_safe(rdev, tmp, mddev) { /* * Skipping super_load due to CTR_FLAG_SYNC will cause * the array to undergo initialization again as * though it were new. This is the intended effect * of the "sync" directive. * * When reshaping capability is added, we must ensure * that the "sync" directive is disallowed during the * reshape. */ rdev->sectors = to_sector(i_size_read(rdev->bdev->bd_inode)); if (_test_flag(CTR_FLAG_SYNC, rs->ctr_flags)) continue; if (!rdev->meta_bdev) continue; r = super_load(rdev, freshest); switch (r) { case 1: freshest = rdev; break; case 0: break; default: dev = container_of(rdev, struct raid_dev, rdev); if (dev->meta_dev) dm_put_device(ti, dev->meta_dev); dev->meta_dev = NULL; rdev->meta_bdev = NULL; if (rdev->sb_page) put_page(rdev->sb_page); rdev->sb_page = NULL; rdev->sb_loaded = 0; /* * We might be able to salvage the data device * even though the meta device has failed. For * now, we behave as though '- -' had been * set for this device in the table. */ if (dev->data_dev) dm_put_device(ti, dev->data_dev); dev->data_dev = NULL; rdev->bdev = NULL; list_del(&rdev->same_set); } } if (!freshest) return 0; if (validate_raid_redundancy(rs)) return ti_error_einval(rs->ti, "Insufficient redundancy to activate array"); /* * Validation of the freshest device provides the source of * validation for the remaining devices. */ if (super_validate(rs, freshest)) return ti_error_einval(rs->ti, "Unable to assemble array: Invalid superblocks"); rdev_for_each(rdev, mddev) if ((rdev != freshest) && super_validate(rs, rdev)) return -EINVAL; return 0; } /* * Enable/disable discard support on RAID set depending on * RAID level and discard properties of underlying RAID members. */ static void configure_discard_support(struct dm_target *ti, struct raid_set *rs) { int i; bool raid456; /* Assume discards not supported until after checks below. */ ti->discards_supported = false; /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */ raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6); for (i = 0; i < rs->md.raid_disks; i++) { struct request_queue *q; if (!rs->dev[i].rdev.bdev) continue; q = bdev_get_queue(rs->dev[i].rdev.bdev); if (!q || !blk_queue_discard(q)) return; if (raid456) { if (!q->limits.discard_zeroes_data) return; if (!devices_handle_discard_safely) { DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); return; } } } /* All RAID members properly support discards */ ti->discards_supported = true; /* * RAID1 and RAID10 personalities require bio splitting, * RAID0/4/5/6 don't and process large discard bios properly. */ ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10); ti->num_discard_bios = 1; } /* * Construct a RAID0/1/10/4/5/6 mapping: * Args: * <#raid_params> {0,} \ * <#raid_devs> [ ]{1,} * * varies by . See 'parse_raid_params' for * details on possible . * * Userspace is free to initialize the metadata devices, hence the superblocks to * enforce recreation based on the passed in table parameters. * */ static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv) { int r; struct raid_type *rt; unsigned num_raid_params, num_raid_devs; struct raid_set *rs = NULL; const char *arg; struct dm_arg_set as = { argc, argv }, as_nrd; struct dm_arg _args[] = { { 0, as.argc, "Cannot understand number of raid parameters" }, { 1, 254, "Cannot understand number of raid devices parameters" } }; /* Must have */ arg = dm_shift_arg(&as); if (!arg) return ti_error_einval(rs->ti, "No arguments"); rt = get_raid_type(arg); if (!rt) return ti_error_einval(rs->ti, "Unrecognised raid_type"); /* Must have <#raid_params> */ if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) return -EINVAL; /* number of raid device tupples */ as_nrd = as; dm_consume_args(&as_nrd, num_raid_params); _args[1].max = (as_nrd.argc - 1) / 2; if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) return -EINVAL; if (!_in_range(num_raid_devs, 1, MAX_RAID_DEVICES)) return ti_error_einval(rs->ti, "Invalid number of supplied raid devices"); rs = context_alloc(ti, rt, num_raid_devs); if (IS_ERR(rs)) return PTR_ERR(rs); r = parse_raid_params(rs, &as, num_raid_params); if (r) goto bad; r = parse_dev_params(rs, &as); if (r) goto bad; rs->md.sync_super = super_sync; r = analyse_superblocks(ti, rs); if (r) goto bad; INIT_WORK(&rs->md.event_work, do_table_event); ti->private = rs; ti->num_flush_bios = 1; /* * Disable/enable discard support on RAID set. */ configure_discard_support(ti, rs); /* Has to be held on running the array */ mddev_lock_nointr(&rs->md); r = md_run(&rs->md); rs->md.in_sync = 0; /* Assume already marked dirty */ mddev_unlock(&rs->md); if (r) { ti->error = "Fail to run raid array"; goto bad; } if (ti->len != rs->md.array_sectors) { r = ti_error_einval(ti, "Array size does not match requested target length"); goto size_mismatch; } rs->callbacks.congested_fn = raid_is_congested; dm_table_add_target_callbacks(ti->table, &rs->callbacks); mddev_suspend(&rs->md); return 0; size_mismatch: md_stop(&rs->md); bad: context_free(rs); return r; } static void raid_dtr(struct dm_target *ti) { struct raid_set *rs = ti->private; list_del_init(&rs->callbacks.list); md_stop(&rs->md); context_free(rs); } static int raid_map(struct dm_target *ti, struct bio *bio) { struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; mddev->pers->make_request(mddev, bio); return DM_MAPIO_SUBMITTED; } static const char *decipher_sync_action(struct mddev *mddev) { if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) return "frozen"; if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) return "reshape"; if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) return "resync"; else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) return "check"; return "repair"; } if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) return "recover"; } return "idle"; } static void raid_status(struct dm_target *ti, status_type_t type, unsigned status_flags, char *result, unsigned maxlen) { struct raid_set *rs = ti->private; unsigned raid_param_cnt = 1; /* at least 1 for chunksize */ unsigned sz = 0; int i, array_in_sync = 0; sector_t sync; switch (type) { case STATUSTYPE_INFO: DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks); if (!rt_is_raid0(rs->raid_type)) { if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery)) sync = rs->md.curr_resync_completed; else sync = rs->md.recovery_cp; if (sync >= rs->md.resync_max_sectors) { /* * Sync complete. */ array_in_sync = 1; sync = rs->md.resync_max_sectors; } else if (test_bit(MD_RECOVERY_REQUESTED, &rs->md.recovery)) { /* * If "check" or "repair" is occurring, the array has * undergone and initial sync and the health characters * should not be 'a' anymore. */ array_in_sync = 1; } else { /* * The array may be doing an initial sync, or it may * be rebuilding individual components. If all the * devices are In_sync, then it is the array that is * being initialized. */ for (i = 0; i < rs->md.raid_disks; i++) if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) array_in_sync = 1; } } else { /* RAID0 */ array_in_sync = 1; sync = rs->md.resync_max_sectors; } /* * Status characters: * 'D' = Dead/Failed device * 'a' = Alive but not in-sync * 'A' = Alive and in-sync */ for (i = 0; i < rs->md.raid_disks; i++) { if (test_bit(Faulty, &rs->dev[i].rdev.flags)) DMEMIT("D"); else if (!array_in_sync || !test_bit(In_sync, &rs->dev[i].rdev.flags)) DMEMIT("a"); else DMEMIT("A"); } /* * In-sync ratio: * The in-sync ratio shows the progress of: * - Initializing the array * - Rebuilding a subset of devices of the array * The user can distinguish between the two by referring * to the status characters. */ DMEMIT(" %llu/%llu", (unsigned long long) sync, (unsigned long long) rs->md.resync_max_sectors); /* * Sync action: * See Documentation/device-mapper/dm-raid.c for * information on each of these states. */ DMEMIT(" %s", decipher_sync_action(&rs->md)); /* * resync_mismatches/mismatch_cnt * This field shows the number of discrepancies found when * performing a "check" of the array. */ DMEMIT(" %llu", (strcmp(rs->md.last_sync_action, "check")) ? 0 : (unsigned long long) atomic64_read(&rs->md.resync_mismatches)); break; case STATUSTYPE_TABLE: /* The string you would use to construct this array */ for (i = 0; i < rs->md.raid_disks; i++) { if (_test_flag(CTR_FLAG_REBUILD, rs->ctr_flags) && rs->dev[i].data_dev && !test_bit(In_sync, &rs->dev[i].rdev.flags)) raid_param_cnt += 2; /* for rebuilds */ if (rs->dev[i].data_dev && test_bit(WriteMostly, &rs->dev[i].rdev.flags)) raid_param_cnt += 2; } raid_param_cnt += (hweight32(rs->ctr_flags & ~CTR_FLAG_REBUILD) * 2); if (rs->ctr_flags & (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)) raid_param_cnt--; DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, rs->md.chunk_sectors); if (_test_flag(CTR_FLAG_SYNC, rs->ctr_flags) && rs->md.recovery_cp == MaxSector) DMEMIT(" sync"); if (_test_flag(CTR_FLAG_NOSYNC, rs->ctr_flags)) DMEMIT(" nosync"); for (i = 0; i < rs->md.raid_disks; i++) if (_test_flag(CTR_FLAG_REBUILD, rs->ctr_flags) && rs->dev[i].data_dev && !test_bit(In_sync, &rs->dev[i].rdev.flags)) DMEMIT(" rebuild %u", i); if (_test_flag(CTR_FLAG_DAEMON_SLEEP, rs->ctr_flags)) DMEMIT(" daemon_sleep %lu", rs->md.bitmap_info.daemon_sleep); if (_test_flag(CTR_FLAG_MIN_RECOVERY_RATE, rs->ctr_flags)) DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min); if (_test_flag(CTR_FLAG_MAX_RECOVERY_RATE, rs->ctr_flags)) DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max); for (i = 0; i < rs->md.raid_disks; i++) if (rs->dev[i].data_dev && test_bit(WriteMostly, &rs->dev[i].rdev.flags)) DMEMIT(" write_mostly %u", i); if (_test_flag(CTR_FLAG_MAX_WRITE_BEHIND, rs->ctr_flags)) DMEMIT(" max_write_behind %lu", rs->md.bitmap_info.max_write_behind); if (_test_flag(CTR_FLAG_STRIPE_CACHE, rs->ctr_flags)) { struct r5conf *conf = rs->md.private; /* convert from kiB to sectors */ DMEMIT(" stripe_cache %d", conf ? conf->max_nr_stripes * 2 : 0); } if (_test_flag(CTR_FLAG_REGION_SIZE, rs->ctr_flags)) DMEMIT(" region_size %lu", rs->md.bitmap_info.chunksize >> 9); if (_test_flag(CTR_FLAG_RAID10_COPIES, rs->ctr_flags)) DMEMIT(" raid10_copies %u", raid10_md_layout_to_copies(rs->md.layout)); if (_test_flag(CTR_FLAG_RAID10_FORMAT, rs->ctr_flags)) DMEMIT(" raid10_format %s", raid10_md_layout_to_format(rs->md.layout)); DMEMIT(" %d", rs->md.raid_disks); for (i = 0; i < rs->md.raid_disks; i++) { if (rs->dev[i].meta_dev) DMEMIT(" %s", rs->dev[i].meta_dev->name); else DMEMIT(" -"); if (rs->dev[i].data_dev) DMEMIT(" %s", rs->dev[i].data_dev->name); else DMEMIT(" -"); } } } static int raid_message(struct dm_target *ti, unsigned argc, char **argv) { struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; if (!strcasecmp(argv[0], "reshape")) { DMERR("Reshape not supported."); return -EINVAL; } if (!mddev->pers || !mddev->pers->sync_request) return -EINVAL; if (!strcasecmp(argv[0], "frozen")) set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); else clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { if (mddev->sync_thread) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_reap_sync_thread(mddev); } } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) return -EBUSY; else if (!strcasecmp(argv[0], "resync")) set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); else if (!strcasecmp(argv[0], "recover")) { set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); } else { if (!strcasecmp(argv[0], "check")) set_bit(MD_RECOVERY_CHECK, &mddev->recovery); else if (!!strcasecmp(argv[0], "repair")) return -EINVAL; set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); set_bit(MD_RECOVERY_SYNC, &mddev->recovery); } if (mddev->ro == 2) { /* A write to sync_action is enough to justify * canceling read-auto mode */ mddev->ro = 0; if (!mddev->suspended) md_wakeup_thread(mddev->sync_thread); } set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); if (!mddev->suspended) md_wakeup_thread(mddev->thread); return 0; } static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { struct raid_set *rs = ti->private; unsigned i; int r = 0; for (i = 0; !r && i < rs->md.raid_disks; i++) if (rs->dev[i].data_dev) r = fn(ti, rs->dev[i].data_dev, 0, /* No offset on data devs */ rs->md.dev_sectors, data); return r; } static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) { struct raid_set *rs = ti->private; unsigned chunk_size = rs->md.chunk_sectors << 9; struct r5conf *conf = rs->md.private; blk_limits_io_min(limits, chunk_size); blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded)); } static void raid_presuspend(struct dm_target *ti) { struct raid_set *rs = ti->private; md_stop_writes(&rs->md); } static void raid_postsuspend(struct dm_target *ti) { struct raid_set *rs = ti->private; mddev_suspend(&rs->md); } static void attempt_restore_of_faulty_devices(struct raid_set *rs) { int i; uint64_t failed_devices, cleared_failed_devices = 0; unsigned long flags; struct dm_raid_superblock *sb; struct md_rdev *r; for (i = 0; i < rs->md.raid_disks; i++) { r = &rs->dev[i].rdev; if (test_bit(Faulty, &r->flags) && r->sb_page && sync_page_io(r, 0, r->sb_size, r->sb_page, REQ_OP_READ, 0, 1)) { DMINFO("Faulty %s device #%d has readable super block." " Attempting to revive it.", rs->raid_type->name, i); /* * Faulty bit may be set, but sometimes the array can * be suspended before the personalities can respond * by removing the device from the array (i.e. calling * 'hot_remove_disk'). If they haven't yet removed * the failed device, its 'raid_disk' number will be * '>= 0' - meaning we must call this function * ourselves. */ if ((r->raid_disk >= 0) && (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0)) /* Failed to revive this device, try next */ continue; r->raid_disk = i; r->saved_raid_disk = i; flags = r->flags; clear_bit(Faulty, &r->flags); clear_bit(WriteErrorSeen, &r->flags); clear_bit(In_sync, &r->flags); if (r->mddev->pers->hot_add_disk(r->mddev, r)) { r->raid_disk = -1; r->saved_raid_disk = -1; r->flags = flags; } else { r->recovery_offset = 0; cleared_failed_devices |= 1 << i; } } } if (cleared_failed_devices) { rdev_for_each(r, &rs->md) { sb = page_address(r->sb_page); failed_devices = le64_to_cpu(sb->failed_devices); failed_devices &= ~cleared_failed_devices; sb->failed_devices = cpu_to_le64(failed_devices); } } } static void raid_resume(struct dm_target *ti) { struct raid_set *rs = ti->private; if (!rt_is_raid0(rs->raid_type)) { set_bit(MD_CHANGE_DEVS, &rs->md.flags); if (!rs->bitmap_loaded) { bitmap_load(&rs->md); rs->bitmap_loaded = 1; } else { /* * A secondary resume while the device is active. * Take this opportunity to check whether any failed * devices are reachable again. */ attempt_restore_of_faulty_devices(rs); } clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); } mddev_resume(&rs->md); } static struct target_type raid_target = { .name = "raid", .version = {1, 8, 1}, .module = THIS_MODULE, .ctr = raid_ctr, .dtr = raid_dtr, .map = raid_map, .status = raid_status, .message = raid_message, .iterate_devices = raid_iterate_devices, .io_hints = raid_io_hints, .presuspend = raid_presuspend, .postsuspend = raid_postsuspend, .resume = raid_resume, }; static int __init dm_raid_init(void) { DMINFO("Loading target version %u.%u.%u", raid_target.version[0], raid_target.version[1], raid_target.version[2]); return dm_register_target(&raid_target); } static void __exit dm_raid_exit(void) { dm_unregister_target(&raid_target); } module_init(dm_raid_init); module_exit(dm_raid_exit); module_param(devices_handle_discard_safely, bool, 0644); MODULE_PARM_DESC(devices_handle_discard_safely, "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target"); MODULE_ALIAS("dm-raid1"); MODULE_ALIAS("dm-raid10"); MODULE_ALIAS("dm-raid4"); MODULE_ALIAS("dm-raid5"); MODULE_ALIAS("dm-raid6"); MODULE_AUTHOR("Neil Brown "); MODULE_LICENSE("GPL");