/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "volumes.h" #include "print-tree.h" #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ sizeof(struct btrfs_item) * 2) / \ size) - 1)) #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ PAGE_CACHE_SIZE)) #define MAX_ORDERED_SUM_BYTES(r) ((PAGE_SIZE - \ sizeof(struct btrfs_ordered_sum)) / \ sizeof(u32) * (r)->sectorsize) int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 pos, u64 disk_offset, u64 disk_num_bytes, u64 num_bytes, u64 offset, u64 ram_bytes, u8 compression, u8 encryption, u16 other_encoding) { int ret = 0; struct btrfs_file_extent_item *item; struct btrfs_key file_key; struct btrfs_path *path; struct extent_buffer *leaf; path = btrfs_alloc_path(); if (!path) return -ENOMEM; file_key.objectid = objectid; file_key.offset = pos; file_key.type = BTRFS_EXTENT_DATA_KEY; path->leave_spinning = 1; ret = btrfs_insert_empty_item(trans, root, path, &file_key, sizeof(*item)); if (ret < 0) goto out; BUG_ON(ret); /* Can't happen */ leaf = path->nodes[0]; item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset); btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes); btrfs_set_file_extent_offset(leaf, item, offset); btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes); btrfs_set_file_extent_generation(leaf, item, trans->transid); btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); btrfs_set_file_extent_compression(leaf, item, compression); btrfs_set_file_extent_encryption(leaf, item, encryption); btrfs_set_file_extent_other_encoding(leaf, item, other_encoding); btrfs_mark_buffer_dirty(leaf); out: btrfs_free_path(path); return ret; } static struct btrfs_csum_item * btrfs_lookup_csum(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 bytenr, int cow) { int ret; struct btrfs_key file_key; struct btrfs_key found_key; struct btrfs_csum_item *item; struct extent_buffer *leaf; u64 csum_offset = 0; u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); int csums_in_item; file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; file_key.offset = bytenr; file_key.type = BTRFS_EXTENT_CSUM_KEY; ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); if (ret < 0) goto fail; leaf = path->nodes[0]; if (ret > 0) { ret = 1; if (path->slots[0] == 0) goto fail; path->slots[0]--; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.type != BTRFS_EXTENT_CSUM_KEY) goto fail; csum_offset = (bytenr - found_key.offset) >> root->fs_info->sb->s_blocksize_bits; csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]); csums_in_item /= csum_size; if (csum_offset == csums_in_item) { ret = -EFBIG; goto fail; } else if (csum_offset > csums_in_item) { goto fail; } } item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); item = (struct btrfs_csum_item *)((unsigned char *)item + csum_offset * csum_size); return item; fail: if (ret > 0) ret = -ENOENT; return ERR_PTR(ret); } int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid, u64 offset, int mod) { int ret; struct btrfs_key file_key; int ins_len = mod < 0 ? -1 : 0; int cow = mod != 0; file_key.objectid = objectid; file_key.offset = offset; file_key.type = BTRFS_EXTENT_DATA_KEY; ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); return ret; } static void btrfs_io_bio_endio_readpage(struct btrfs_io_bio *bio, int err) { kfree(bio->csum_allocated); } static int __btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode, struct bio *bio, u64 logical_offset, u32 *dst, int dio) { struct bio_vec *bvec = bio->bi_io_vec; struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio); struct btrfs_csum_item *item = NULL; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct btrfs_path *path; u8 *csum; u64 offset = 0; u64 item_start_offset = 0; u64 item_last_offset = 0; u64 disk_bytenr; u32 diff; int nblocks; int bio_index = 0; int count; u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); path = btrfs_alloc_path(); if (!path) return -ENOMEM; nblocks = bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits; if (!dst) { if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { btrfs_bio->csum_allocated = kmalloc_array(nblocks, csum_size, GFP_NOFS); if (!btrfs_bio->csum_allocated) { btrfs_free_path(path); return -ENOMEM; } btrfs_bio->csum = btrfs_bio->csum_allocated; btrfs_bio->end_io = btrfs_io_bio_endio_readpage; } else { btrfs_bio->csum = btrfs_bio->csum_inline; } csum = btrfs_bio->csum; } else { csum = (u8 *)dst; } if (bio->bi_iter.bi_size > PAGE_CACHE_SIZE * 8) path->reada = 2; WARN_ON(bio->bi_vcnt <= 0); /* * the free space stuff is only read when it hasn't been * updated in the current transaction. So, we can safely * read from the commit root and sidestep a nasty deadlock * between reading the free space cache and updating the csum tree. */ if (btrfs_is_free_space_inode(inode)) { path->search_commit_root = 1; path->skip_locking = 1; } disk_bytenr = (u64)bio->bi_iter.bi_sector << 9; if (dio) offset = logical_offset; while (bio_index < bio->bi_vcnt) { if (!dio) offset = page_offset(bvec->bv_page) + bvec->bv_offset; count = btrfs_find_ordered_sum(inode, offset, disk_bytenr, (u32 *)csum, nblocks); if (count) goto found; if (!item || disk_bytenr < item_start_offset || disk_bytenr >= item_last_offset) { struct btrfs_key found_key; u32 item_size; if (item) btrfs_release_path(path); item = btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, disk_bytenr, 0); if (IS_ERR(item)) { count = 1; memset(csum, 0, csum_size); if (BTRFS_I(inode)->root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) { set_extent_bits(io_tree, offset, offset + bvec->bv_len - 1, EXTENT_NODATASUM, GFP_NOFS); } else { btrfs_info(BTRFS_I(inode)->root->fs_info, "no csum found for inode %llu start %llu", btrfs_ino(inode), offset); } item = NULL; btrfs_release_path(path); goto found; } btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); item_start_offset = found_key.offset; item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); item_last_offset = item_start_offset + (item_size / csum_size) * root->sectorsize; item = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_csum_item); } /* * this byte range must be able to fit inside * a single leaf so it will also fit inside a u32 */ diff = disk_bytenr - item_start_offset; diff = diff / root->sectorsize; diff = diff * csum_size; count = min_t(int, nblocks, (item_last_offset - disk_bytenr) >> inode->i_sb->s_blocksize_bits); read_extent_buffer(path->nodes[0], csum, ((unsigned long)item) + diff, csum_size * count); found: csum += count * csum_size; nblocks -= count; bio_index += count; while (count--) { disk_bytenr += bvec->bv_len; offset += bvec->bv_len; bvec++; } } btrfs_free_path(path); return 0; } int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode, struct bio *bio, u32 *dst) { return __btrfs_lookup_bio_sums(root, inode, bio, 0, dst, 0); } int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode, struct bio *bio, u64 offset) { return __btrfs_lookup_bio_sums(root, inode, bio, offset, NULL, 1); } int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, struct list_head *list, int search_commit) { struct btrfs_key key; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_ordered_sum *sums; struct btrfs_csum_item *item; LIST_HEAD(tmplist); unsigned long offset; int ret; size_t size; u64 csum_end; u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); ASSERT(IS_ALIGNED(start, root->sectorsize) && IS_ALIGNED(end + 1, root->sectorsize)); path = btrfs_alloc_path(); if (!path) return -ENOMEM; if (search_commit) { path->skip_locking = 1; path->reada = 2; path->search_commit_root = 1; } key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; key.offset = start; key.type = BTRFS_EXTENT_CSUM_KEY; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto fail; if (ret > 0 && path->slots[0] > 0) { leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && key.type == BTRFS_EXTENT_CSUM_KEY) { offset = (start - key.offset) >> root->fs_info->sb->s_blocksize_bits; if (offset * csum_size < btrfs_item_size_nr(leaf, path->slots[0] - 1)) path->slots[0]--; } } while (start <= end) { leaf = path->nodes[0]; if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret < 0) goto fail; if (ret > 0) break; leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || key.type != BTRFS_EXTENT_CSUM_KEY || key.offset > end) break; if (key.offset > start) start = key.offset; size = btrfs_item_size_nr(leaf, path->slots[0]); csum_end = key.offset + (size / csum_size) * root->sectorsize; if (csum_end <= start) { path->slots[0]++; continue; } csum_end = min(csum_end, end + 1); item = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_csum_item); while (start < csum_end) { size = min_t(size_t, csum_end - start, MAX_ORDERED_SUM_BYTES(root)); sums = kzalloc(btrfs_ordered_sum_size(root, size), GFP_NOFS); if (!sums) { ret = -ENOMEM; goto fail; } sums->bytenr = start; sums->len = (int)size; offset = (start - key.offset) >> root->fs_info->sb->s_blocksize_bits; offset *= csum_size; size >>= root->fs_info->sb->s_blocksize_bits; read_extent_buffer(path->nodes[0], sums->sums, ((unsigned long)item) + offset, csum_size * size); start += root->sectorsize * size; list_add_tail(&sums->list, &tmplist); } path->slots[0]++; } ret = 0; fail: while (ret < 0 && !list_empty(&tmplist)) { sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); list_del(&sums->list); kfree(sums); } list_splice_tail(&tmplist, list); btrfs_free_path(path); return ret; } int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode, struct bio *bio, u64 file_start, int contig) { struct btrfs_ordered_sum *sums; struct btrfs_ordered_extent *ordered; char *data; struct bio_vec *bvec = bio->bi_io_vec; int bio_index = 0; int index; unsigned long total_bytes = 0; unsigned long this_sum_bytes = 0; u64 offset; WARN_ON(bio->bi_vcnt <= 0); sums = kzalloc(btrfs_ordered_sum_size(root, bio->bi_iter.bi_size), GFP_NOFS); if (!sums) return -ENOMEM; sums->len = bio->bi_iter.bi_size; INIT_LIST_HEAD(&sums->list); if (contig) offset = file_start; else offset = page_offset(bvec->bv_page) + bvec->bv_offset; ordered = btrfs_lookup_ordered_extent(inode, offset); BUG_ON(!ordered); /* Logic error */ sums->bytenr = (u64)bio->bi_iter.bi_sector << 9; index = 0; while (bio_index < bio->bi_vcnt) { if (!contig) offset = page_offset(bvec->bv_page) + bvec->bv_offset; if (offset >= ordered->file_offset + ordered->len || offset < ordered->file_offset) { unsigned long bytes_left; sums->len = this_sum_bytes; this_sum_bytes = 0; btrfs_add_ordered_sum(inode, ordered, sums); btrfs_put_ordered_extent(ordered); bytes_left = bio->bi_iter.bi_size - total_bytes; sums = kzalloc(btrfs_ordered_sum_size(root, bytes_left), GFP_NOFS); BUG_ON(!sums); /* -ENOMEM */ sums->len = bytes_left; ordered = btrfs_lookup_ordered_extent(inode, offset); BUG_ON(!ordered); /* Logic error */ sums->bytenr = ((u64)bio->bi_iter.bi_sector << 9) + total_bytes; index = 0; } data = kmap_atomic(bvec->bv_page); sums->sums[index] = ~(u32)0; sums->sums[index] = btrfs_csum_data(data + bvec->bv_offset, sums->sums[index], bvec->bv_len); kunmap_atomic(data); btrfs_csum_final(sums->sums[index], (char *)(sums->sums + index)); bio_index++; index++; total_bytes += bvec->bv_len; this_sum_bytes += bvec->bv_len; offset += bvec->bv_len; bvec++; } this_sum_bytes = 0; btrfs_add_ordered_sum(inode, ordered, sums); btrfs_put_ordered_extent(ordered); return 0; } /* * helper function for csum removal, this expects the * key to describe the csum pointed to by the path, and it expects * the csum to overlap the range [bytenr, len] * * The csum should not be entirely contained in the range and the * range should not be entirely contained in the csum. * * This calls btrfs_truncate_item with the correct args based on the * overlap, and fixes up the key as required. */ static noinline void truncate_one_csum(struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *key, u64 bytenr, u64 len) { struct extent_buffer *leaf; u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); u64 csum_end; u64 end_byte = bytenr + len; u32 blocksize_bits = root->fs_info->sb->s_blocksize_bits; leaf = path->nodes[0]; csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; csum_end <<= root->fs_info->sb->s_blocksize_bits; csum_end += key->offset; if (key->offset < bytenr && csum_end <= end_byte) { /* * [ bytenr - len ] * [ ] * [csum ] * A simple truncate off the end of the item */ u32 new_size = (bytenr - key->offset) >> blocksize_bits; new_size *= csum_size; btrfs_truncate_item(root, path, new_size, 1); } else if (key->offset >= bytenr && csum_end > end_byte && end_byte > key->offset) { /* * [ bytenr - len ] * [ ] * [csum ] * we need to truncate from the beginning of the csum */ u32 new_size = (csum_end - end_byte) >> blocksize_bits; new_size *= csum_size; btrfs_truncate_item(root, path, new_size, 0); key->offset = end_byte; btrfs_set_item_key_safe(root, path, key); } else { BUG(); } } /* * deletes the csum items from the csum tree for a given * range of bytes. */ int btrfs_del_csums(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 len) { struct btrfs_path *path; struct btrfs_key key; u64 end_byte = bytenr + len; u64 csum_end; struct extent_buffer *leaf; int ret; u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); int blocksize_bits = root->fs_info->sb->s_blocksize_bits; root = root->fs_info->csum_root; path = btrfs_alloc_path(); if (!path) return -ENOMEM; while (1) { key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; key.offset = end_byte - 1; key.type = BTRFS_EXTENT_CSUM_KEY; path->leave_spinning = 1; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret > 0) { if (path->slots[0] == 0) break; path->slots[0]--; } else if (ret < 0) { break; } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || key.type != BTRFS_EXTENT_CSUM_KEY) { break; } if (key.offset >= end_byte) break; csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; csum_end <<= blocksize_bits; csum_end += key.offset; /* this csum ends before we start, we're done */ if (csum_end <= bytenr) break; /* delete the entire item, it is inside our range */ if (key.offset >= bytenr && csum_end <= end_byte) { ret = btrfs_del_item(trans, root, path); if (ret) goto out; if (key.offset == bytenr) break; } else if (key.offset < bytenr && csum_end > end_byte) { unsigned long offset; unsigned long shift_len; unsigned long item_offset; /* * [ bytenr - len ] * [csum ] * * Our bytes are in the middle of the csum, * we need to split this item and insert a new one. * * But we can't drop the path because the * csum could change, get removed, extended etc. * * The trick here is the max size of a csum item leaves * enough room in the tree block for a single * item header. So, we split the item in place, * adding a new header pointing to the existing * bytes. Then we loop around again and we have * a nicely formed csum item that we can neatly * truncate. */ offset = (bytenr - key.offset) >> blocksize_bits; offset *= csum_size; shift_len = (len >> blocksize_bits) * csum_size; item_offset = btrfs_item_ptr_offset(leaf, path->slots[0]); memset_extent_buffer(leaf, 0, item_offset + offset, shift_len); key.offset = bytenr; /* * btrfs_split_item returns -EAGAIN when the * item changed size or key */ ret = btrfs_split_item(trans, root, path, &key, offset); if (ret && ret != -EAGAIN) { btrfs_abort_transaction(trans, root, ret); goto out; } key.offset = end_byte - 1; } else { truncate_one_csum(root, path, &key, bytenr, len); if (key.offset < bytenr) break; } btrfs_release_path(path); } ret = 0; out: btrfs_free_path(path); return ret; } int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_ordered_sum *sums) { struct btrfs_key file_key; struct btrfs_key found_key; struct btrfs_path *path; struct btrfs_csum_item *item; struct btrfs_csum_item *item_end; struct extent_buffer *leaf = NULL; u64 next_offset; u64 total_bytes = 0; u64 csum_offset; u64 bytenr; u32 nritems; u32 ins_size; int index = 0; int found_next; int ret; u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); path = btrfs_alloc_path(); if (!path) return -ENOMEM; again: next_offset = (u64)-1; found_next = 0; bytenr = sums->bytenr + total_bytes; file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; file_key.offset = bytenr; file_key.type = BTRFS_EXTENT_CSUM_KEY; item = btrfs_lookup_csum(trans, root, path, bytenr, 1); if (!IS_ERR(item)) { ret = 0; leaf = path->nodes[0]; item_end = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); item_end = (struct btrfs_csum_item *)((char *)item_end + btrfs_item_size_nr(leaf, path->slots[0])); goto found; } ret = PTR_ERR(item); if (ret != -EFBIG && ret != -ENOENT) goto fail_unlock; if (ret == -EFBIG) { u32 item_size; /* we found one, but it isn't big enough yet */ leaf = path->nodes[0]; item_size = btrfs_item_size_nr(leaf, path->slots[0]); if ((item_size / csum_size) >= MAX_CSUM_ITEMS(root, csum_size)) { /* already at max size, make a new one */ goto insert; } } else { int slot = path->slots[0] + 1; /* we didn't find a csum item, insert one */ nritems = btrfs_header_nritems(path->nodes[0]); if (!nritems || (path->slots[0] >= nritems - 1)) { ret = btrfs_next_leaf(root, path); if (ret == 1) found_next = 1; if (ret != 0) goto insert; slot = path->slots[0]; } btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || found_key.type != BTRFS_EXTENT_CSUM_KEY) { found_next = 1; goto insert; } next_offset = found_key.offset; found_next = 1; goto insert; } /* * at this point, we know the tree has an item, but it isn't big * enough yet to put our csum in. Grow it */ btrfs_release_path(path); ret = btrfs_search_slot(trans, root, &file_key, path, csum_size, 1); if (ret < 0) goto fail_unlock; if (ret > 0) { if (path->slots[0] == 0) goto insert; path->slots[0]--; } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); csum_offset = (bytenr - found_key.offset) >> root->fs_info->sb->s_blocksize_bits; if (found_key.type != BTRFS_EXTENT_CSUM_KEY || found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || csum_offset >= MAX_CSUM_ITEMS(root, csum_size)) { goto insert; } if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) / csum_size) { int extend_nr; u64 tmp; u32 diff; u32 free_space; if (btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item) + csum_size * 2) goto insert; free_space = btrfs_leaf_free_space(root, leaf) - sizeof(struct btrfs_item) - csum_size; tmp = sums->len - total_bytes; tmp >>= root->fs_info->sb->s_blocksize_bits; WARN_ON(tmp < 1); extend_nr = max_t(int, 1, (int)tmp); diff = (csum_offset + extend_nr) * csum_size; diff = min(diff, MAX_CSUM_ITEMS(root, csum_size) * csum_size); diff = diff - btrfs_item_size_nr(leaf, path->slots[0]); diff = min(free_space, diff); diff /= csum_size; diff *= csum_size; btrfs_extend_item(root, path, diff); ret = 0; goto csum; } insert: btrfs_release_path(path); csum_offset = 0; if (found_next) { u64 tmp; tmp = sums->len - total_bytes; tmp >>= root->fs_info->sb->s_blocksize_bits; tmp = min(tmp, (next_offset - file_key.offset) >> root->fs_info->sb->s_blocksize_bits); tmp = max((u64)1, tmp); tmp = min(tmp, (u64)MAX_CSUM_ITEMS(root, csum_size)); ins_size = csum_size * tmp; } else { ins_size = csum_size; } path->leave_spinning = 1; ret = btrfs_insert_empty_item(trans, root, path, &file_key, ins_size); path->leave_spinning = 0; if (ret < 0) goto fail_unlock; if (WARN_ON(ret != 0)) goto fail_unlock; leaf = path->nodes[0]; csum: item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); item_end = (struct btrfs_csum_item *)((unsigned char *)item + btrfs_item_size_nr(leaf, path->slots[0])); item = (struct btrfs_csum_item *)((unsigned char *)item + csum_offset * csum_size); found: ins_size = (u32)(sums->len - total_bytes) >> root->fs_info->sb->s_blocksize_bits; ins_size *= csum_size; ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, ins_size); write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, ins_size); ins_size /= csum_size; total_bytes += ins_size * root->sectorsize; index += ins_size; btrfs_mark_buffer_dirty(path->nodes[0]); if (total_bytes < sums->len) { btrfs_release_path(path); cond_resched(); goto again; } out: btrfs_free_path(path); return ret; fail_unlock: goto out; } void btrfs_extent_item_to_extent_map(struct inode *inode, const struct btrfs_path *path, struct btrfs_file_extent_item *fi, const bool new_inline, struct extent_map *em) { struct btrfs_root *root = BTRFS_I(inode)->root; struct extent_buffer *leaf = path->nodes[0]; const int slot = path->slots[0]; struct btrfs_key key; u64 extent_start, extent_end; u64 bytenr; u8 type = btrfs_file_extent_type(leaf, fi); int compress_type = btrfs_file_extent_compression(leaf, fi); em->bdev = root->fs_info->fs_devices->latest_bdev; btrfs_item_key_to_cpu(leaf, &key, slot); extent_start = key.offset; if (type == BTRFS_FILE_EXTENT_REG || type == BTRFS_FILE_EXTENT_PREALLOC) { extent_end = extent_start + btrfs_file_extent_num_bytes(leaf, fi); } else if (type == BTRFS_FILE_EXTENT_INLINE) { size_t size; size = btrfs_file_extent_inline_len(leaf, slot, fi); extent_end = ALIGN(extent_start + size, root->sectorsize); } em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); if (type == BTRFS_FILE_EXTENT_REG || type == BTRFS_FILE_EXTENT_PREALLOC) { em->start = extent_start; em->len = extent_end - extent_start; em->orig_start = extent_start - btrfs_file_extent_offset(leaf, fi); em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); if (bytenr == 0) { em->block_start = EXTENT_MAP_HOLE; return; } if (compress_type != BTRFS_COMPRESS_NONE) { set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); em->compress_type = compress_type; em->block_start = bytenr; em->block_len = em->orig_block_len; } else { bytenr += btrfs_file_extent_offset(leaf, fi); em->block_start = bytenr; em->block_len = em->len; if (type == BTRFS_FILE_EXTENT_PREALLOC) set_bit(EXTENT_FLAG_PREALLOC, &em->flags); } } else if (type == BTRFS_FILE_EXTENT_INLINE) { em->block_start = EXTENT_MAP_INLINE; em->start = extent_start; em->len = extent_end - extent_start; /* * Initialize orig_start and block_len with the same values * as in inode.c:btrfs_get_extent(). */ em->orig_start = EXTENT_MAP_HOLE; em->block_len = (u64)-1; if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) { set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); em->compress_type = compress_type; } } else { btrfs_err(root->fs_info, "unknown file extent item type %d, inode %llu, offset %llu, root %llu", type, btrfs_ino(inode), extent_start, root->root_key.objectid); } }