/* * BSS client mode implementation * Copyright 2003, Jouni Malinen * Copyright 2004, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc * Copyright 2007, Michael Wu * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* TODO: * order BSS list by RSSI(?) ("quality of AP") * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE, * SSID) */ #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee80211_i.h" #include "rate.h" #include "led.h" #include "mesh.h" #define IEEE80211_ASSOC_SCANS_MAX_TRIES 2 #define IEEE80211_AUTH_TIMEOUT (HZ / 5) #define IEEE80211_AUTH_MAX_TRIES 3 #define IEEE80211_ASSOC_TIMEOUT (HZ / 5) #define IEEE80211_ASSOC_MAX_TRIES 3 #define IEEE80211_MONITORING_INTERVAL (2 * HZ) #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ) #define IEEE80211_PROBE_INTERVAL (60 * HZ) #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ) #define IEEE80211_SCAN_INTERVAL (2 * HZ) #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ) #define IEEE80211_IBSS_JOIN_TIMEOUT (7 * HZ) #define IEEE80211_PROBE_DELAY (HZ / 33) #define IEEE80211_CHANNEL_TIME (HZ / 33) #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5) #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ) #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ) #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ) #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ) #define IEEE80211_IBSS_MAX_STA_ENTRIES 128 #define ERP_INFO_USE_PROTECTION BIT(1) /* mgmt header + 1 byte action code */ #define IEEE80211_MIN_ACTION_SIZE (24 + 1) #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800 /* next values represent the buffer size for A-MPDU frame. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */ #define IEEE80211_MIN_AMPDU_BUF 0x8 #define IEEE80211_MAX_AMPDU_BUF 0x40 static void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst, u8 *ssid, size_t ssid_len); static struct ieee80211_sta_bss * ieee80211_rx_bss_get(struct ieee80211_local *local, u8 *bssid, int freq, u8 *ssid, u8 ssid_len); static void ieee80211_rx_bss_put(struct ieee80211_local *local, struct ieee80211_sta_bss *bss); static int ieee80211_sta_find_ibss(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta); static int ieee80211_sta_wep_configured(struct ieee80211_sub_if_data *sdata); static int ieee80211_sta_start_scan(struct ieee80211_sub_if_data *sdata, u8 *ssid, size_t ssid_len); static int ieee80211_sta_config_auth(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta); static void sta_rx_agg_session_timer_expired(unsigned long data); void ieee802_11_parse_elems(u8 *start, size_t len, struct ieee802_11_elems *elems) { size_t left = len; u8 *pos = start; memset(elems, 0, sizeof(*elems)); while (left >= 2) { u8 id, elen; id = *pos++; elen = *pos++; left -= 2; if (elen > left) return; switch (id) { case WLAN_EID_SSID: elems->ssid = pos; elems->ssid_len = elen; break; case WLAN_EID_SUPP_RATES: elems->supp_rates = pos; elems->supp_rates_len = elen; break; case WLAN_EID_FH_PARAMS: elems->fh_params = pos; elems->fh_params_len = elen; break; case WLAN_EID_DS_PARAMS: elems->ds_params = pos; elems->ds_params_len = elen; break; case WLAN_EID_CF_PARAMS: elems->cf_params = pos; elems->cf_params_len = elen; break; case WLAN_EID_TIM: elems->tim = pos; elems->tim_len = elen; break; case WLAN_EID_IBSS_PARAMS: elems->ibss_params = pos; elems->ibss_params_len = elen; break; case WLAN_EID_CHALLENGE: elems->challenge = pos; elems->challenge_len = elen; break; case WLAN_EID_WPA: if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && pos[2] == 0xf2) { /* Microsoft OUI (00:50:F2) */ if (pos[3] == 1) { /* OUI Type 1 - WPA IE */ elems->wpa = pos; elems->wpa_len = elen; } else if (elen >= 5 && pos[3] == 2) { if (pos[4] == 0) { elems->wmm_info = pos; elems->wmm_info_len = elen; } else if (pos[4] == 1) { elems->wmm_param = pos; elems->wmm_param_len = elen; } } } break; case WLAN_EID_RSN: elems->rsn = pos; elems->rsn_len = elen; break; case WLAN_EID_ERP_INFO: elems->erp_info = pos; elems->erp_info_len = elen; break; case WLAN_EID_EXT_SUPP_RATES: elems->ext_supp_rates = pos; elems->ext_supp_rates_len = elen; break; case WLAN_EID_HT_CAPABILITY: elems->ht_cap_elem = pos; elems->ht_cap_elem_len = elen; break; case WLAN_EID_HT_EXTRA_INFO: elems->ht_info_elem = pos; elems->ht_info_elem_len = elen; break; case WLAN_EID_MESH_ID: elems->mesh_id = pos; elems->mesh_id_len = elen; break; case WLAN_EID_MESH_CONFIG: elems->mesh_config = pos; elems->mesh_config_len = elen; break; case WLAN_EID_PEER_LINK: elems->peer_link = pos; elems->peer_link_len = elen; break; case WLAN_EID_PREQ: elems->preq = pos; elems->preq_len = elen; break; case WLAN_EID_PREP: elems->prep = pos; elems->prep_len = elen; break; case WLAN_EID_PERR: elems->perr = pos; elems->perr_len = elen; break; case WLAN_EID_CHANNEL_SWITCH: elems->ch_switch_elem = pos; elems->ch_switch_elem_len = elen; break; case WLAN_EID_QUIET: if (!elems->quiet_elem) { elems->quiet_elem = pos; elems->quiet_elem_len = elen; } elems->num_of_quiet_elem++; break; case WLAN_EID_COUNTRY: elems->country_elem = pos; elems->country_elem_len = elen; break; case WLAN_EID_PWR_CONSTRAINT: elems->pwr_constr_elem = pos; elems->pwr_constr_elem_len = elen; break; default: break; } left -= elen; pos += elen; } } static int ecw2cw(int ecw) { return (1 << ecw) - 1; } static void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_bss *bss, int ibss) { struct ieee80211_local *local = sdata->local; int i, have_higher_than_11mbit = 0; /* cf. IEEE 802.11 9.2.12 */ for (i = 0; i < bss->supp_rates_len; i++) if ((bss->supp_rates[i] & 0x7f) * 5 > 110) have_higher_than_11mbit = 1; if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ && have_higher_than_11mbit) sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE; else sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE; if (local->ops->conf_tx) { struct ieee80211_tx_queue_params qparam; memset(&qparam, 0, sizeof(qparam)); qparam.aifs = 2; if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ && !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)) qparam.cw_min = 31; else qparam.cw_min = 15; qparam.cw_max = 1023; qparam.txop = 0; for (i = 0; i < local_to_hw(local)->queues; i++) local->ops->conf_tx(local_to_hw(local), i, &qparam); } } static void ieee80211_sta_wmm_params(struct ieee80211_local *local, struct ieee80211_if_sta *ifsta, u8 *wmm_param, size_t wmm_param_len) { struct ieee80211_tx_queue_params params; size_t left; int count; u8 *pos; if (!(ifsta->flags & IEEE80211_STA_WMM_ENABLED)) return; if (!wmm_param) return; if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1) return; count = wmm_param[6] & 0x0f; if (count == ifsta->wmm_last_param_set) return; ifsta->wmm_last_param_set = count; pos = wmm_param + 8; left = wmm_param_len - 8; memset(¶ms, 0, sizeof(params)); if (!local->ops->conf_tx) return; local->wmm_acm = 0; for (; left >= 4; left -= 4, pos += 4) { int aci = (pos[0] >> 5) & 0x03; int acm = (pos[0] >> 4) & 0x01; int queue; switch (aci) { case 1: queue = 3; if (acm) local->wmm_acm |= BIT(0) | BIT(3); break; case 2: queue = 1; if (acm) local->wmm_acm |= BIT(4) | BIT(5); break; case 3: queue = 0; if (acm) local->wmm_acm |= BIT(6) | BIT(7); break; case 0: default: queue = 2; if (acm) local->wmm_acm |= BIT(1) | BIT(2); break; } params.aifs = pos[0] & 0x0f; params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4); params.cw_min = ecw2cw(pos[1] & 0x0f); params.txop = get_unaligned_le16(pos + 2); #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d " "cWmin=%d cWmax=%d txop=%d\n", local->mdev->name, queue, aci, acm, params.aifs, params.cw_min, params.cw_max, params.txop); #endif /* TODO: handle ACM (block TX, fallback to next lowest allowed * AC for now) */ if (local->ops->conf_tx(local_to_hw(local), queue, ¶ms)) { printk(KERN_DEBUG "%s: failed to set TX queue " "parameters for queue %d\n", local->mdev->name, queue); } } } static u32 ieee80211_handle_protect_preamb(struct ieee80211_sub_if_data *sdata, bool use_protection, bool use_short_preamble) { struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf; #ifdef CONFIG_MAC80211_VERBOSE_DEBUG struct ieee80211_if_sta *ifsta = &sdata->u.sta; DECLARE_MAC_BUF(mac); #endif u32 changed = 0; if (use_protection != bss_conf->use_cts_prot) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG if (net_ratelimit()) { printk(KERN_DEBUG "%s: CTS protection %s (BSSID=" "%s)\n", sdata->dev->name, use_protection ? "enabled" : "disabled", print_mac(mac, ifsta->bssid)); } #endif bss_conf->use_cts_prot = use_protection; changed |= BSS_CHANGED_ERP_CTS_PROT; } if (use_short_preamble != bss_conf->use_short_preamble) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG if (net_ratelimit()) { printk(KERN_DEBUG "%s: switched to %s barker preamble" " (BSSID=%s)\n", sdata->dev->name, use_short_preamble ? "short" : "long", print_mac(mac, ifsta->bssid)); } #endif bss_conf->use_short_preamble = use_short_preamble; changed |= BSS_CHANGED_ERP_PREAMBLE; } return changed; } static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata, u8 erp_value) { bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0; bool use_short_preamble = (erp_value & WLAN_ERP_BARKER_PREAMBLE) == 0; return ieee80211_handle_protect_preamb(sdata, use_protection, use_short_preamble); } static u32 ieee80211_handle_bss_capability(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_bss *bss) { u32 changed = 0; if (bss->has_erp_value) changed |= ieee80211_handle_erp_ie(sdata, bss->erp_value); else { u16 capab = bss->capability; changed |= ieee80211_handle_protect_preamb(sdata, false, (capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0); } return changed; } int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie, struct ieee80211_ht_info *ht_info) { if (ht_info == NULL) return -EINVAL; memset(ht_info, 0, sizeof(*ht_info)); if (ht_cap_ie) { u8 ampdu_info = ht_cap_ie->ampdu_params_info; ht_info->ht_supported = 1; ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info); ht_info->ampdu_factor = ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR; ht_info->ampdu_density = (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2; memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16); } else ht_info->ht_supported = 0; return 0; } int ieee80211_ht_addt_info_ie_to_ht_bss_info( struct ieee80211_ht_addt_info *ht_add_info_ie, struct ieee80211_ht_bss_info *bss_info) { if (bss_info == NULL) return -EINVAL; memset(bss_info, 0, sizeof(*bss_info)); if (ht_add_info_ie) { u16 op_mode; op_mode = le16_to_cpu(ht_add_info_ie->operation_mode); bss_info->primary_channel = ht_add_info_ie->control_chan; bss_info->bss_cap = ht_add_info_ie->ht_param; bss_info->bss_op_mode = (u8)(op_mode & 0xff); } return 0; } static void ieee80211_sta_send_associnfo(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { char *buf; size_t len; int i; union iwreq_data wrqu; if (!ifsta->assocreq_ies && !ifsta->assocresp_ies) return; buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len + ifsta->assocresp_ies_len), GFP_KERNEL); if (!buf) return; len = sprintf(buf, "ASSOCINFO("); if (ifsta->assocreq_ies) { len += sprintf(buf + len, "ReqIEs="); for (i = 0; i < ifsta->assocreq_ies_len; i++) { len += sprintf(buf + len, "%02x", ifsta->assocreq_ies[i]); } } if (ifsta->assocresp_ies) { if (ifsta->assocreq_ies) len += sprintf(buf + len, " "); len += sprintf(buf + len, "RespIEs="); for (i = 0; i < ifsta->assocresp_ies_len; i++) { len += sprintf(buf + len, "%02x", ifsta->assocresp_ies[i]); } } len += sprintf(buf + len, ")"); if (len > IW_CUSTOM_MAX) { len = sprintf(buf, "ASSOCRESPIE="); for (i = 0; i < ifsta->assocresp_ies_len; i++) { len += sprintf(buf + len, "%02x", ifsta->assocresp_ies[i]); } } memset(&wrqu, 0, sizeof(wrqu)); wrqu.data.length = len; wireless_send_event(sdata->dev, IWEVCUSTOM, &wrqu, buf); kfree(buf); } static void ieee80211_set_associated(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, bool assoc) { struct ieee80211_local *local = sdata->local; struct ieee80211_conf *conf = &local_to_hw(local)->conf; union iwreq_data wrqu; u32 changed = BSS_CHANGED_ASSOC; if (assoc) { struct ieee80211_sta_bss *bss; ifsta->flags |= IEEE80211_STA_ASSOCIATED; if (sdata->vif.type != IEEE80211_IF_TYPE_STA) return; bss = ieee80211_rx_bss_get(local, ifsta->bssid, conf->channel->center_freq, ifsta->ssid, ifsta->ssid_len); if (bss) { /* set timing information */ sdata->bss_conf.beacon_int = bss->beacon_int; sdata->bss_conf.timestamp = bss->timestamp; sdata->bss_conf.dtim_period = bss->dtim_period; changed |= ieee80211_handle_bss_capability(sdata, bss); ieee80211_rx_bss_put(local, bss); } if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) { changed |= BSS_CHANGED_HT; sdata->bss_conf.assoc_ht = 1; sdata->bss_conf.ht_conf = &conf->ht_conf; sdata->bss_conf.ht_bss_conf = &conf->ht_bss_conf; } ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET; memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN); memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN); ieee80211_sta_send_associnfo(sdata, ifsta); } else { netif_carrier_off(sdata->dev); ieee80211_sta_tear_down_BA_sessions(sdata, ifsta->bssid); ifsta->flags &= ~IEEE80211_STA_ASSOCIATED; changed |= ieee80211_reset_erp_info(sdata); sdata->bss_conf.assoc_ht = 0; sdata->bss_conf.ht_conf = NULL; sdata->bss_conf.ht_bss_conf = NULL; memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN); } ifsta->last_probe = jiffies; ieee80211_led_assoc(local, assoc); sdata->bss_conf.assoc = assoc; ieee80211_bss_info_change_notify(sdata, changed); if (assoc) netif_carrier_on(sdata->dev); wrqu.ap_addr.sa_family = ARPHRD_ETHER; wireless_send_event(sdata->dev, SIOCGIWAP, &wrqu, NULL); } static void ieee80211_set_disassoc(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, int deauth) { if (deauth) ifsta->auth_tries = 0; ifsta->assoc_scan_tries = 0; ifsta->assoc_tries = 0; ieee80211_set_associated(sdata, ifsta, 0); } void ieee80211_sta_tx(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int encrypt) { skb->dev = sdata->local->mdev; skb_set_mac_header(skb, 0); skb_set_network_header(skb, 0); skb_set_transport_header(skb, 0); skb->iif = sdata->dev->ifindex; skb->do_not_encrypt = !encrypt; dev_queue_xmit(skb); } static void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, int transaction, u8 *extra, size_t extra_len, int encrypt) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 6 + extra_len); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer for auth " "frame\n", sdata->dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6); memset(mgmt, 0, 24 + 6); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH); if (encrypt) mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); memcpy(mgmt->da, ifsta->bssid, ETH_ALEN); memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg); mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); ifsta->auth_transaction = transaction + 1; mgmt->u.auth.status_code = cpu_to_le16(0); if (extra) memcpy(skb_put(skb, extra_len), extra, extra_len); ieee80211_sta_tx(sdata, skb, encrypt); } static void ieee80211_authenticate(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { DECLARE_MAC_BUF(mac); ifsta->auth_tries++; if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) { printk(KERN_DEBUG "%s: authentication with AP %s" " timed out\n", sdata->dev->name, print_mac(mac, ifsta->bssid)); ifsta->state = IEEE80211_STA_MLME_DISABLED; return; } ifsta->state = IEEE80211_STA_MLME_AUTHENTICATE; printk(KERN_DEBUG "%s: authenticate with AP %s\n", sdata->dev->name, print_mac(mac, ifsta->bssid)); ieee80211_send_auth(sdata, ifsta, 1, NULL, 0, 0); mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT); } static int ieee80211_compatible_rates(struct ieee80211_sta_bss *bss, struct ieee80211_supported_band *sband, u64 *rates) { int i, j, count; *rates = 0; count = 0; for (i = 0; i < bss->supp_rates_len; i++) { int rate = (bss->supp_rates[i] & 0x7F) * 5; for (j = 0; j < sband->n_bitrates; j++) if (sband->bitrates[j].bitrate == rate) { *rates |= BIT(j); count++; break; } } return count; } static void ieee80211_send_assoc(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u8 *pos, *ies; int i, len, count, rates_len, supp_rates_len; u16 capab; struct ieee80211_sta_bss *bss; int wmm = 0; struct ieee80211_supported_band *sband; u64 rates = 0; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200 + ifsta->extra_ie_len + ifsta->ssid_len); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer for assoc " "frame\n", sdata->dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; capab = ifsta->capab; if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) { if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE)) capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME; if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE)) capab |= WLAN_CAPABILITY_SHORT_PREAMBLE; } bss = ieee80211_rx_bss_get(local, ifsta->bssid, local->hw.conf.channel->center_freq, ifsta->ssid, ifsta->ssid_len); if (bss) { if (bss->capability & WLAN_CAPABILITY_PRIVACY) capab |= WLAN_CAPABILITY_PRIVACY; if (bss->wmm_ie) wmm = 1; /* get all rates supported by the device and the AP as * some APs don't like getting a superset of their rates * in the association request (e.g. D-Link DAP 1353 in * b-only mode) */ rates_len = ieee80211_compatible_rates(bss, sband, &rates); if ((bss->capability & WLAN_CAPABILITY_SPECTRUM_MGMT) && (local->hw.flags & IEEE80211_HW_SPECTRUM_MGMT)) capab |= WLAN_CAPABILITY_SPECTRUM_MGMT; ieee80211_rx_bss_put(local, bss); } else { rates = ~0; rates_len = sband->n_bitrates; } mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); memcpy(mgmt->da, ifsta->bssid, ETH_ALEN); memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) { skb_put(skb, 10); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ); mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab); mgmt->u.reassoc_req.listen_interval = cpu_to_le16(local->hw.conf.listen_interval); memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid, ETH_ALEN); } else { skb_put(skb, 4); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ); mgmt->u.assoc_req.capab_info = cpu_to_le16(capab); mgmt->u.reassoc_req.listen_interval = cpu_to_le16(local->hw.conf.listen_interval); } /* SSID */ ies = pos = skb_put(skb, 2 + ifsta->ssid_len); *pos++ = WLAN_EID_SSID; *pos++ = ifsta->ssid_len; memcpy(pos, ifsta->ssid, ifsta->ssid_len); /* add all rates which were marked to be used above */ supp_rates_len = rates_len; if (supp_rates_len > 8) supp_rates_len = 8; len = sband->n_bitrates; pos = skb_put(skb, supp_rates_len + 2); *pos++ = WLAN_EID_SUPP_RATES; *pos++ = supp_rates_len; count = 0; for (i = 0; i < sband->n_bitrates; i++) { if (BIT(i) & rates) { int rate = sband->bitrates[i].bitrate; *pos++ = (u8) (rate / 5); if (++count == 8) break; } } if (count == 8) { pos = skb_put(skb, rates_len - count + 2); *pos++ = WLAN_EID_EXT_SUPP_RATES; *pos++ = rates_len - count; for (i++; i < sband->n_bitrates; i++) { if (BIT(i) & rates) { int rate = sband->bitrates[i].bitrate; *pos++ = (u8) (rate / 5); } } } if (capab & WLAN_CAPABILITY_SPECTRUM_MGMT) { /* 1. power capabilities */ pos = skb_put(skb, 4); *pos++ = WLAN_EID_PWR_CAPABILITY; *pos++ = 2; *pos++ = 0; /* min tx power */ *pos++ = local->hw.conf.channel->max_power; /* max tx power */ /* 2. supported channels */ /* TODO: get this in reg domain format */ pos = skb_put(skb, 2 * sband->n_channels + 2); *pos++ = WLAN_EID_SUPPORTED_CHANNELS; *pos++ = 2 * sband->n_channels; for (i = 0; i < sband->n_channels; i++) { *pos++ = ieee80211_frequency_to_channel( sband->channels[i].center_freq); *pos++ = 1; /* one channel in the subband*/ } } if (ifsta->extra_ie) { pos = skb_put(skb, ifsta->extra_ie_len); memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len); } if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) { pos = skb_put(skb, 9); *pos++ = WLAN_EID_VENDOR_SPECIFIC; *pos++ = 7; /* len */ *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */ *pos++ = 0x50; *pos++ = 0xf2; *pos++ = 2; /* WME */ *pos++ = 0; /* WME info */ *pos++ = 1; /* WME ver */ *pos++ = 0; } /* wmm support is a must to HT */ if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED) && sband->ht_info.ht_supported && bss->ht_add_ie) { struct ieee80211_ht_addt_info *ht_add_info = (struct ieee80211_ht_addt_info *)bss->ht_add_ie; u16 cap = sband->ht_info.cap; __le16 tmp; u32 flags = local->hw.conf.channel->flags; switch (ht_add_info->ht_param & IEEE80211_HT_IE_CHA_SEC_OFFSET) { case IEEE80211_HT_IE_CHA_SEC_ABOVE: if (flags & IEEE80211_CHAN_NO_FAT_ABOVE) { cap &= ~IEEE80211_HT_CAP_SUP_WIDTH; cap &= ~IEEE80211_HT_CAP_SGI_40; } break; case IEEE80211_HT_IE_CHA_SEC_BELOW: if (flags & IEEE80211_CHAN_NO_FAT_BELOW) { cap &= ~IEEE80211_HT_CAP_SUP_WIDTH; cap &= ~IEEE80211_HT_CAP_SGI_40; } break; } tmp = cpu_to_le16(cap); pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2); *pos++ = WLAN_EID_HT_CAPABILITY; *pos++ = sizeof(struct ieee80211_ht_cap); memset(pos, 0, sizeof(struct ieee80211_ht_cap)); memcpy(pos, &tmp, sizeof(u16)); pos += sizeof(u16); /* TODO: needs a define here for << 2 */ *pos++ = sband->ht_info.ampdu_factor | (sband->ht_info.ampdu_density << 2); memcpy(pos, sband->ht_info.supp_mcs_set, 16); } kfree(ifsta->assocreq_ies); ifsta->assocreq_ies_len = (skb->data + skb->len) - ies; ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL); if (ifsta->assocreq_ies) memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len); ieee80211_sta_tx(sdata, skb, 0); } static void ieee80211_send_deauth(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, u16 reason) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt)); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer for deauth " "frame\n", sdata->dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); memcpy(mgmt->da, ifsta->bssid, ETH_ALEN); memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH); skb_put(skb, 2); mgmt->u.deauth.reason_code = cpu_to_le16(reason); ieee80211_sta_tx(sdata, skb, 0); } static void ieee80211_send_disassoc(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, u16 reason) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt)); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc " "frame\n", sdata->dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); memcpy(mgmt->da, ifsta->bssid, ETH_ALEN); memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC); skb_put(skb, 2); mgmt->u.disassoc.reason_code = cpu_to_le16(reason); ieee80211_sta_tx(sdata, skb, 0); } static int ieee80211_privacy_mismatch(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = sdata->local; struct ieee80211_sta_bss *bss; int bss_privacy; int wep_privacy; int privacy_invoked; if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL)) return 0; bss = ieee80211_rx_bss_get(local, ifsta->bssid, local->hw.conf.channel->center_freq, ifsta->ssid, ifsta->ssid_len); if (!bss) return 0; bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY); wep_privacy = !!ieee80211_sta_wep_configured(sdata); privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED); ieee80211_rx_bss_put(local, bss); if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked)) return 0; return 1; } static void ieee80211_associate(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { DECLARE_MAC_BUF(mac); ifsta->assoc_tries++; if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) { printk(KERN_DEBUG "%s: association with AP %s" " timed out\n", sdata->dev->name, print_mac(mac, ifsta->bssid)); ifsta->state = IEEE80211_STA_MLME_DISABLED; return; } ifsta->state = IEEE80211_STA_MLME_ASSOCIATE; printk(KERN_DEBUG "%s: associate with AP %s\n", sdata->dev->name, print_mac(mac, ifsta->bssid)); if (ieee80211_privacy_mismatch(sdata, ifsta)) { printk(KERN_DEBUG "%s: mismatch in privacy configuration and " "mixed-cell disabled - abort association\n", sdata->dev->name); ifsta->state = IEEE80211_STA_MLME_DISABLED; return; } ieee80211_send_assoc(sdata, ifsta); mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT); } static void ieee80211_associated(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; int disassoc; DECLARE_MAC_BUF(mac); /* TODO: start monitoring current AP signal quality and number of * missed beacons. Scan other channels every now and then and search * for better APs. */ /* TODO: remove expired BSSes */ ifsta->state = IEEE80211_STA_MLME_ASSOCIATED; rcu_read_lock(); sta = sta_info_get(local, ifsta->bssid); if (!sta) { printk(KERN_DEBUG "%s: No STA entry for own AP %s\n", sdata->dev->name, print_mac(mac, ifsta->bssid)); disassoc = 1; } else { disassoc = 0; if (time_after(jiffies, sta->last_rx + IEEE80211_MONITORING_INTERVAL)) { if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) { printk(KERN_DEBUG "%s: No ProbeResp from " "current AP %s - assume out of " "range\n", sdata->dev->name, print_mac(mac, ifsta->bssid)); disassoc = 1; sta_info_unlink(&sta); } else ieee80211_send_probe_req(sdata, ifsta->bssid, local->scan_ssid, local->scan_ssid_len); ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL; } else { ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL; if (time_after(jiffies, ifsta->last_probe + IEEE80211_PROBE_INTERVAL)) { ifsta->last_probe = jiffies; ieee80211_send_probe_req(sdata, ifsta->bssid, ifsta->ssid, ifsta->ssid_len); } } } rcu_read_unlock(); if (disassoc && sta) sta_info_destroy(sta); if (disassoc) { ifsta->state = IEEE80211_STA_MLME_DISABLED; ieee80211_set_associated(sdata, ifsta, 0); } else { mod_timer(&ifsta->timer, jiffies + IEEE80211_MONITORING_INTERVAL); } } static void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst, u8 *ssid, size_t ssid_len) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u8 *pos, *supp_rates, *esupp_rates = NULL; int i; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer for probe " "request\n", sdata->dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); if (dst) { memcpy(mgmt->da, dst, ETH_ALEN); memcpy(mgmt->bssid, dst, ETH_ALEN); } else { memset(mgmt->da, 0xff, ETH_ALEN); memset(mgmt->bssid, 0xff, ETH_ALEN); } pos = skb_put(skb, 2 + ssid_len); *pos++ = WLAN_EID_SSID; *pos++ = ssid_len; memcpy(pos, ssid, ssid_len); supp_rates = skb_put(skb, 2); supp_rates[0] = WLAN_EID_SUPP_RATES; supp_rates[1] = 0; sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; for (i = 0; i < sband->n_bitrates; i++) { struct ieee80211_rate *rate = &sband->bitrates[i]; if (esupp_rates) { pos = skb_put(skb, 1); esupp_rates[1]++; } else if (supp_rates[1] == 8) { esupp_rates = skb_put(skb, 3); esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES; esupp_rates[1] = 1; pos = &esupp_rates[2]; } else { pos = skb_put(skb, 1); supp_rates[1]++; } *pos = rate->bitrate / 5; } ieee80211_sta_tx(sdata, skb, 0); } static int ieee80211_sta_wep_configured(struct ieee80211_sub_if_data *sdata) { if (!sdata || !sdata->default_key || sdata->default_key->conf.alg != ALG_WEP) return 0; return 1; } static void ieee80211_auth_completed(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { printk(KERN_DEBUG "%s: authenticated\n", sdata->dev->name); ifsta->flags |= IEEE80211_STA_AUTHENTICATED; ieee80211_associate(sdata, ifsta); } static void ieee80211_auth_challenge(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len) { u8 *pos; struct ieee802_11_elems elems; pos = mgmt->u.auth.variable; ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems); if (!elems.challenge) return; ieee80211_send_auth(sdata, ifsta, 3, elems.challenge - 2, elems.challenge_len + 2, 1); } static void ieee80211_send_addba_resp(struct ieee80211_sub_if_data *sdata, u8 *da, u16 tid, u8 dialog_token, u16 status, u16 policy, u16 buf_size, u16 timeout) { struct ieee80211_if_sta *ifsta = &sdata->u.sta; struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u16 capab; skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer " "for addba resp frame\n", sdata->dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); if (sdata->vif.type == IEEE80211_IF_TYPE_AP) memcpy(mgmt->bssid, sdata->dev->dev_addr, ETH_ALEN); else memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp)); mgmt->u.action.category = WLAN_CATEGORY_BACK; mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP; mgmt->u.action.u.addba_resp.dialog_token = dialog_token; capab = (u16)(policy << 1); /* bit 1 aggregation policy */ capab |= (u16)(tid << 2); /* bit 5:2 TID number */ capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */ mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab); mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout); mgmt->u.action.u.addba_resp.status = cpu_to_le16(status); ieee80211_sta_tx(sdata, skb, 0); return; } void ieee80211_send_addba_request(struct ieee80211_sub_if_data *sdata, const u8 *da, u16 tid, u8 dialog_token, u16 start_seq_num, u16 agg_size, u16 timeout) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_sta *ifsta = &sdata->u.sta; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u16 capab; skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom); if (!skb) { printk(KERN_ERR "%s: failed to allocate buffer " "for addba request frame\n", sdata->dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); if (sdata->vif.type == IEEE80211_IF_TYPE_AP) memcpy(mgmt->bssid, sdata->dev->dev_addr, ETH_ALEN); else memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req)); mgmt->u.action.category = WLAN_CATEGORY_BACK; mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ; mgmt->u.action.u.addba_req.dialog_token = dialog_token; capab = (u16)(1 << 1); /* bit 1 aggregation policy */ capab |= (u16)(tid << 2); /* bit 5:2 TID number */ capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */ mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab); mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout); mgmt->u.action.u.addba_req.start_seq_num = cpu_to_le16(start_seq_num << 4); ieee80211_sta_tx(sdata, skb, 0); } static void ieee80211_sta_process_addba_request(struct ieee80211_local *local, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_hw *hw = &local->hw; struct ieee80211_conf *conf = &hw->conf; struct sta_info *sta; struct tid_ampdu_rx *tid_agg_rx; u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status; u8 dialog_token; int ret = -EOPNOTSUPP; DECLARE_MAC_BUF(mac); rcu_read_lock(); sta = sta_info_get(local, mgmt->sa); if (!sta) { rcu_read_unlock(); return; } /* extract session parameters from addba request frame */ dialog_token = mgmt->u.action.u.addba_req.dialog_token; timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout); start_seq_num = le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4; capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab); ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1; tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2; buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6; status = WLAN_STATUS_REQUEST_DECLINED; /* sanity check for incoming parameters: * check if configuration can support the BA policy * and if buffer size does not exceeds max value */ if (((ba_policy != 1) && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA))) || (buf_size > IEEE80211_MAX_AMPDU_BUF)) { status = WLAN_STATUS_INVALID_QOS_PARAM; #ifdef CONFIG_MAC80211_HT_DEBUG if (net_ratelimit()) printk(KERN_DEBUG "AddBA Req with bad params from " "%s on tid %u. policy %d, buffer size %d\n", print_mac(mac, mgmt->sa), tid, ba_policy, buf_size); #endif /* CONFIG_MAC80211_HT_DEBUG */ goto end_no_lock; } /* determine default buffer size */ if (buf_size == 0) { struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[conf->channel->band]; buf_size = IEEE80211_MIN_AMPDU_BUF; buf_size = buf_size << sband->ht_info.ampdu_factor; } /* examine state machine */ spin_lock_bh(&sta->lock); if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_IDLE) { #ifdef CONFIG_MAC80211_HT_DEBUG if (net_ratelimit()) printk(KERN_DEBUG "unexpected AddBA Req from " "%s on tid %u\n", print_mac(mac, mgmt->sa), tid); #endif /* CONFIG_MAC80211_HT_DEBUG */ goto end; } /* prepare A-MPDU MLME for Rx aggregation */ sta->ampdu_mlme.tid_rx[tid] = kmalloc(sizeof(struct tid_ampdu_rx), GFP_ATOMIC); if (!sta->ampdu_mlme.tid_rx[tid]) { #ifdef CONFIG_MAC80211_HT_DEBUG if (net_ratelimit()) printk(KERN_ERR "allocate rx mlme to tid %d failed\n", tid); #endif goto end; } /* rx timer */ sta->ampdu_mlme.tid_rx[tid]->session_timer.function = sta_rx_agg_session_timer_expired; sta->ampdu_mlme.tid_rx[tid]->session_timer.data = (unsigned long)&sta->timer_to_tid[tid]; init_timer(&sta->ampdu_mlme.tid_rx[tid]->session_timer); tid_agg_rx = sta->ampdu_mlme.tid_rx[tid]; /* prepare reordering buffer */ tid_agg_rx->reorder_buf = kmalloc(buf_size * sizeof(struct sk_buff *), GFP_ATOMIC); if (!tid_agg_rx->reorder_buf) { #ifdef CONFIG_MAC80211_HT_DEBUG if (net_ratelimit()) printk(KERN_ERR "can not allocate reordering buffer " "to tid %d\n", tid); #endif kfree(sta->ampdu_mlme.tid_rx[tid]); goto end; } memset(tid_agg_rx->reorder_buf, 0, buf_size * sizeof(struct sk_buff *)); if (local->ops->ampdu_action) ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START, sta->addr, tid, &start_seq_num); #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "Rx A-MPDU request on tid %d result %d\n", tid, ret); #endif /* CONFIG_MAC80211_HT_DEBUG */ if (ret) { kfree(tid_agg_rx->reorder_buf); kfree(tid_agg_rx); sta->ampdu_mlme.tid_rx[tid] = NULL; goto end; } /* change state and send addba resp */ sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_OPERATIONAL; tid_agg_rx->dialog_token = dialog_token; tid_agg_rx->ssn = start_seq_num; tid_agg_rx->head_seq_num = start_seq_num; tid_agg_rx->buf_size = buf_size; tid_agg_rx->timeout = timeout; tid_agg_rx->stored_mpdu_num = 0; status = WLAN_STATUS_SUCCESS; end: spin_unlock_bh(&sta->lock); end_no_lock: ieee80211_send_addba_resp(sta->sdata, sta->addr, tid, dialog_token, status, 1, buf_size, timeout); rcu_read_unlock(); } static void ieee80211_sta_process_addba_resp(struct ieee80211_local *local, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_hw *hw = &local->hw; struct sta_info *sta; u16 capab; u16 tid; u8 *state; rcu_read_lock(); sta = sta_info_get(local, mgmt->sa); if (!sta) { rcu_read_unlock(); return; } capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab); tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2; state = &sta->ampdu_mlme.tid_state_tx[tid]; spin_lock_bh(&sta->lock); if (!(*state & HT_ADDBA_REQUESTED_MSK)) { spin_unlock_bh(&sta->lock); goto addba_resp_exit; } if (mgmt->u.action.u.addba_resp.dialog_token != sta->ampdu_mlme.tid_tx[tid]->dialog_token) { spin_unlock_bh(&sta->lock); #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid); #endif /* CONFIG_MAC80211_HT_DEBUG */ goto addba_resp_exit; } del_timer_sync(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer); #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid); #endif /* CONFIG_MAC80211_HT_DEBUG */ if (le16_to_cpu(mgmt->u.action.u.addba_resp.status) == WLAN_STATUS_SUCCESS) { *state |= HT_ADDBA_RECEIVED_MSK; sta->ampdu_mlme.addba_req_num[tid] = 0; if (*state == HT_AGG_STATE_OPERATIONAL) ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]); spin_unlock_bh(&sta->lock); } else { sta->ampdu_mlme.addba_req_num[tid]++; /* this will allow the state check in stop_BA_session */ *state = HT_AGG_STATE_OPERATIONAL; spin_unlock_bh(&sta->lock); ieee80211_stop_tx_ba_session(hw, sta->addr, tid, WLAN_BACK_INITIATOR); } addba_resp_exit: rcu_read_unlock(); } void ieee80211_send_delba(struct ieee80211_sub_if_data *sdata, const u8 *da, u16 tid, u16 initiator, u16 reason_code) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_sta *ifsta = &sdata->u.sta; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u16 params; skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom); if (!skb) { printk(KERN_ERR "%s: failed to allocate buffer " "for delba frame\n", sdata->dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); if (sdata->vif.type == IEEE80211_IF_TYPE_AP) memcpy(mgmt->bssid, sdata->dev->dev_addr, ETH_ALEN); else memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba)); mgmt->u.action.category = WLAN_CATEGORY_BACK; mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA; params = (u16)(initiator << 11); /* bit 11 initiator */ params |= (u16)(tid << 12); /* bit 15:12 TID number */ mgmt->u.action.u.delba.params = cpu_to_le16(params); mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code); ieee80211_sta_tx(sdata, skb, 0); } void ieee80211_send_bar(struct ieee80211_sub_if_data *sdata, u8 *ra, u16 tid, u16 ssn) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_bar *bar; u16 bar_control = 0; skb = dev_alloc_skb(sizeof(*bar) + local->hw.extra_tx_headroom); if (!skb) { printk(KERN_ERR "%s: failed to allocate buffer for " "bar frame\n", sdata->dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); bar = (struct ieee80211_bar *)skb_put(skb, sizeof(*bar)); memset(bar, 0, sizeof(*bar)); bar->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ); memcpy(bar->ra, ra, ETH_ALEN); memcpy(bar->ta, sdata->dev->dev_addr, ETH_ALEN); bar_control |= (u16)IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL; bar_control |= (u16)IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA; bar_control |= (u16)(tid << 12); bar->control = cpu_to_le16(bar_control); bar->start_seq_num = cpu_to_le16(ssn); ieee80211_sta_tx(sdata, skb, 0); } void ieee80211_sta_stop_rx_ba_session(struct ieee80211_sub_if_data *sdata, u8 *ra, u16 tid, u16 initiator, u16 reason) { struct ieee80211_local *local = sdata->local; struct ieee80211_hw *hw = &local->hw; struct sta_info *sta; int ret, i; DECLARE_MAC_BUF(mac); rcu_read_lock(); sta = sta_info_get(local, ra); if (!sta) { rcu_read_unlock(); return; } /* check if TID is in operational state */ spin_lock_bh(&sta->lock); if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL) { spin_unlock_bh(&sta->lock); rcu_read_unlock(); return; } sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_REQ_STOP_BA_MSK | (initiator << HT_AGG_STATE_INITIATOR_SHIFT); spin_unlock_bh(&sta->lock); /* stop HW Rx aggregation. ampdu_action existence * already verified in session init so we add the BUG_ON */ BUG_ON(!local->ops->ampdu_action); #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "Rx BA session stop requested for %s tid %u\n", print_mac(mac, ra), tid); #endif /* CONFIG_MAC80211_HT_DEBUG */ ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP, ra, tid, NULL); if (ret) printk(KERN_DEBUG "HW problem - can not stop rx " "aggregation for tid %d\n", tid); /* shutdown timer has not expired */ if (initiator != WLAN_BACK_TIMER) del_timer_sync(&sta->ampdu_mlme.tid_rx[tid]->session_timer); /* check if this is a self generated aggregation halt */ if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER) ieee80211_send_delba(sdata, ra, tid, 0, reason); /* free the reordering buffer */ for (i = 0; i < sta->ampdu_mlme.tid_rx[tid]->buf_size; i++) { if (sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]) { /* release the reordered frames */ dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]); sta->ampdu_mlme.tid_rx[tid]->stored_mpdu_num--; sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i] = NULL; } } /* free resources */ kfree(sta->ampdu_mlme.tid_rx[tid]->reorder_buf); kfree(sta->ampdu_mlme.tid_rx[tid]); sta->ampdu_mlme.tid_rx[tid] = NULL; sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_IDLE; rcu_read_unlock(); } static void ieee80211_sta_process_delba(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; u16 tid, params; u16 initiator; DECLARE_MAC_BUF(mac); rcu_read_lock(); sta = sta_info_get(local, mgmt->sa); if (!sta) { rcu_read_unlock(); return; } params = le16_to_cpu(mgmt->u.action.u.delba.params); tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12; initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11; #ifdef CONFIG_MAC80211_HT_DEBUG if (net_ratelimit()) printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n", print_mac(mac, mgmt->sa), initiator ? "initiator" : "recipient", tid, mgmt->u.action.u.delba.reason_code); #endif /* CONFIG_MAC80211_HT_DEBUG */ if (initiator == WLAN_BACK_INITIATOR) ieee80211_sta_stop_rx_ba_session(sdata, sta->addr, tid, WLAN_BACK_INITIATOR, 0); else { /* WLAN_BACK_RECIPIENT */ spin_lock_bh(&sta->lock); sta->ampdu_mlme.tid_state_tx[tid] = HT_AGG_STATE_OPERATIONAL; spin_unlock_bh(&sta->lock); ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid, WLAN_BACK_RECIPIENT); } rcu_read_unlock(); } /* * After sending add Block Ack request we activated a timer until * add Block Ack response will arrive from the recipient. * If this timer expires sta_addba_resp_timer_expired will be executed. */ void sta_addba_resp_timer_expired(unsigned long data) { /* not an elegant detour, but there is no choice as the timer passes * only one argument, and both sta_info and TID are needed, so init * flow in sta_info_create gives the TID as data, while the timer_to_id * array gives the sta through container_of */ u16 tid = *(u8 *)data; struct sta_info *temp_sta = container_of((void *)data, struct sta_info, timer_to_tid[tid]); struct ieee80211_local *local = temp_sta->local; struct ieee80211_hw *hw = &local->hw; struct sta_info *sta; u8 *state; rcu_read_lock(); sta = sta_info_get(local, temp_sta->addr); if (!sta) { rcu_read_unlock(); return; } state = &sta->ampdu_mlme.tid_state_tx[tid]; /* check if the TID waits for addBA response */ spin_lock_bh(&sta->lock); if (!(*state & HT_ADDBA_REQUESTED_MSK)) { spin_unlock_bh(&sta->lock); *state = HT_AGG_STATE_IDLE; #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "timer expired on tid %d but we are not " "expecting addBA response there", tid); #endif goto timer_expired_exit; } #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid); #endif /* go through the state check in stop_BA_session */ *state = HT_AGG_STATE_OPERATIONAL; spin_unlock_bh(&sta->lock); ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid, WLAN_BACK_INITIATOR); timer_expired_exit: rcu_read_unlock(); } /* * After accepting the AddBA Request we activated a timer, * resetting it after each frame that arrives from the originator. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed. */ static void sta_rx_agg_session_timer_expired(unsigned long data) { /* not an elegant detour, but there is no choice as the timer passes * only one argument, and various sta_info are needed here, so init * flow in sta_info_create gives the TID as data, while the timer_to_id * array gives the sta through container_of */ u8 *ptid = (u8 *)data; u8 *timer_to_id = ptid - *ptid; struct sta_info *sta = container_of(timer_to_id, struct sta_info, timer_to_tid[0]); #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid); #endif ieee80211_sta_stop_rx_ba_session(sta->sdata, sta->addr, (u16)*ptid, WLAN_BACK_TIMER, WLAN_REASON_QSTA_TIMEOUT); } void ieee80211_sta_tear_down_BA_sessions(struct ieee80211_sub_if_data *sdata, u8 *addr) { struct ieee80211_local *local = sdata->local; int i; for (i = 0; i < STA_TID_NUM; i++) { ieee80211_stop_tx_ba_session(&local->hw, addr, i, WLAN_BACK_INITIATOR); ieee80211_sta_stop_rx_ba_session(sdata, addr, i, WLAN_BACK_RECIPIENT, WLAN_REASON_QSTA_LEAVE_QBSS); } } static void ieee80211_send_refuse_measurement_request(struct ieee80211_sub_if_data *sdata, struct ieee80211_msrment_ie *request_ie, const u8 *da, const u8 *bssid, u8 dialog_token) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *msr_report; skb = dev_alloc_skb(sizeof(*msr_report) + local->hw.extra_tx_headroom + sizeof(struct ieee80211_msrment_ie)); if (!skb) { printk(KERN_ERR "%s: failed to allocate buffer for " "measurement report frame\n", sdata->dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); msr_report = (struct ieee80211_mgmt *)skb_put(skb, 24); memset(msr_report, 0, 24); memcpy(msr_report->da, da, ETH_ALEN); memcpy(msr_report->sa, sdata->dev->dev_addr, ETH_ALEN); memcpy(msr_report->bssid, bssid, ETH_ALEN); msr_report->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); skb_put(skb, 1 + sizeof(msr_report->u.action.u.measurement)); msr_report->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; msr_report->u.action.u.measurement.action_code = WLAN_ACTION_SPCT_MSR_RPRT; msr_report->u.action.u.measurement.dialog_token = dialog_token; msr_report->u.action.u.measurement.element_id = WLAN_EID_MEASURE_REPORT; msr_report->u.action.u.measurement.length = sizeof(struct ieee80211_msrment_ie); memset(&msr_report->u.action.u.measurement.msr_elem, 0, sizeof(struct ieee80211_msrment_ie)); msr_report->u.action.u.measurement.msr_elem.token = request_ie->token; msr_report->u.action.u.measurement.msr_elem.mode |= IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED; msr_report->u.action.u.measurement.msr_elem.type = request_ie->type; ieee80211_sta_tx(sdata, skb, 0); } static void ieee80211_sta_process_measurement_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { /* * Ignoring measurement request is spec violation. * Mandatory measurements must be reported optional * measurements might be refused or reported incapable * For now just refuse * TODO: Answer basic measurement as unmeasured */ ieee80211_send_refuse_measurement_request(sdata, &mgmt->u.action.u.measurement.msr_elem, mgmt->sa, mgmt->bssid, mgmt->u.action.u.measurement.dialog_token); } static void ieee80211_rx_mgmt_auth(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len) { u16 auth_alg, auth_transaction, status_code; DECLARE_MAC_BUF(mac); if (ifsta->state != IEEE80211_STA_MLME_AUTHENTICATE && sdata->vif.type != IEEE80211_IF_TYPE_IBSS) return; if (len < 24 + 6) return; if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS && memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) return; if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS && memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) return; auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg); auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction); status_code = le16_to_cpu(mgmt->u.auth.status_code); if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) { /* * IEEE 802.11 standard does not require authentication in IBSS * networks and most implementations do not seem to use it. * However, try to reply to authentication attempts if someone * has actually implemented this. */ if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) return; ieee80211_send_auth(sdata, ifsta, 2, NULL, 0, 0); } if (auth_alg != ifsta->auth_alg || auth_transaction != ifsta->auth_transaction) return; if (status_code != WLAN_STATUS_SUCCESS) { if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) { u8 algs[3]; const int num_algs = ARRAY_SIZE(algs); int i, pos; algs[0] = algs[1] = algs[2] = 0xff; if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN) algs[0] = WLAN_AUTH_OPEN; if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY) algs[1] = WLAN_AUTH_SHARED_KEY; if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP) algs[2] = WLAN_AUTH_LEAP; if (ifsta->auth_alg == WLAN_AUTH_OPEN) pos = 0; else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY) pos = 1; else pos = 2; for (i = 0; i < num_algs; i++) { pos++; if (pos >= num_algs) pos = 0; if (algs[pos] == ifsta->auth_alg || algs[pos] == 0xff) continue; if (algs[pos] == WLAN_AUTH_SHARED_KEY && !ieee80211_sta_wep_configured(sdata)) continue; ifsta->auth_alg = algs[pos]; break; } } return; } switch (ifsta->auth_alg) { case WLAN_AUTH_OPEN: case WLAN_AUTH_LEAP: ieee80211_auth_completed(sdata, ifsta); break; case WLAN_AUTH_SHARED_KEY: if (ifsta->auth_transaction == 4) ieee80211_auth_completed(sdata, ifsta); else ieee80211_auth_challenge(sdata, ifsta, mgmt, len); break; } } static void ieee80211_rx_mgmt_deauth(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len) { u16 reason_code; DECLARE_MAC_BUF(mac); if (len < 24 + 2) return; if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN)) return; reason_code = le16_to_cpu(mgmt->u.deauth.reason_code); if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) printk(KERN_DEBUG "%s: deauthenticated\n", sdata->dev->name); if (ifsta->state == IEEE80211_STA_MLME_AUTHENTICATE || ifsta->state == IEEE80211_STA_MLME_ASSOCIATE || ifsta->state == IEEE80211_STA_MLME_ASSOCIATED) { ifsta->state = IEEE80211_STA_MLME_AUTHENTICATE; mod_timer(&ifsta->timer, jiffies + IEEE80211_RETRY_AUTH_INTERVAL); } ieee80211_set_disassoc(sdata, ifsta, 1); ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED; } static void ieee80211_rx_mgmt_disassoc(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len) { u16 reason_code; DECLARE_MAC_BUF(mac); if (len < 24 + 2) return; if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN)) return; reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code); if (ifsta->flags & IEEE80211_STA_ASSOCIATED) printk(KERN_DEBUG "%s: disassociated\n", sdata->dev->name); if (ifsta->state == IEEE80211_STA_MLME_ASSOCIATED) { ifsta->state = IEEE80211_STA_MLME_ASSOCIATE; mod_timer(&ifsta->timer, jiffies + IEEE80211_RETRY_AUTH_INTERVAL); } ieee80211_set_disassoc(sdata, ifsta, 0); } static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len, int reassoc) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; struct sta_info *sta; u64 rates, basic_rates; u16 capab_info, status_code, aid; struct ieee802_11_elems elems; struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf; u8 *pos; int i, j; DECLARE_MAC_BUF(mac); bool have_higher_than_11mbit = false; /* AssocResp and ReassocResp have identical structure, so process both * of them in this function. */ if (ifsta->state != IEEE80211_STA_MLME_ASSOCIATE) return; if (len < 24 + 6) return; if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) return; capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info); status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code); aid = le16_to_cpu(mgmt->u.assoc_resp.aid); printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x " "status=%d aid=%d)\n", sdata->dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa), capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14)))); if (status_code != WLAN_STATUS_SUCCESS) { printk(KERN_DEBUG "%s: AP denied association (code=%d)\n", sdata->dev->name, status_code); /* if this was a reassociation, ensure we try a "full" * association next time. This works around some broken APs * which do not correctly reject reassociation requests. */ ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET; return; } if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14))) printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not " "set\n", sdata->dev->name, aid); aid &= ~(BIT(15) | BIT(14)); pos = mgmt->u.assoc_resp.variable; ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems); if (!elems.supp_rates) { printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n", sdata->dev->name); return; } printk(KERN_DEBUG "%s: associated\n", sdata->dev->name); ifsta->aid = aid; ifsta->ap_capab = capab_info; kfree(ifsta->assocresp_ies); ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt); ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL); if (ifsta->assocresp_ies) memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len); rcu_read_lock(); /* Add STA entry for the AP */ sta = sta_info_get(local, ifsta->bssid); if (!sta) { struct ieee80211_sta_bss *bss; int err; sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC); if (!sta) { printk(KERN_DEBUG "%s: failed to alloc STA entry for" " the AP\n", sdata->dev->name); rcu_read_unlock(); return; } bss = ieee80211_rx_bss_get(local, ifsta->bssid, local->hw.conf.channel->center_freq, ifsta->ssid, ifsta->ssid_len); if (bss) { sta->last_signal = bss->signal; sta->last_qual = bss->qual; sta->last_noise = bss->noise; ieee80211_rx_bss_put(local, bss); } err = sta_info_insert(sta); if (err) { printk(KERN_DEBUG "%s: failed to insert STA entry for" " the AP (error %d)\n", sdata->dev->name, err); rcu_read_unlock(); return; } /* update new sta with its last rx activity */ sta->last_rx = jiffies; } /* * FIXME: Do we really need to update the sta_info's information here? * We already know about the AP (we found it in our list) so it * should already be filled with the right info, no? * As is stands, all this is racy because typically we assume * the information that is filled in here (except flags) doesn't * change while a STA structure is alive. As such, it should move * to between the sta_info_alloc() and sta_info_insert() above. */ set_sta_flags(sta, WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP | WLAN_STA_AUTHORIZED); rates = 0; basic_rates = 0; sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; for (i = 0; i < elems.supp_rates_len; i++) { int rate = (elems.supp_rates[i] & 0x7f) * 5; if (rate > 110) have_higher_than_11mbit = true; for (j = 0; j < sband->n_bitrates; j++) { if (sband->bitrates[j].bitrate == rate) rates |= BIT(j); if (elems.supp_rates[i] & 0x80) basic_rates |= BIT(j); } } for (i = 0; i < elems.ext_supp_rates_len; i++) { int rate = (elems.ext_supp_rates[i] & 0x7f) * 5; if (rate > 110) have_higher_than_11mbit = true; for (j = 0; j < sband->n_bitrates; j++) { if (sband->bitrates[j].bitrate == rate) rates |= BIT(j); if (elems.ext_supp_rates[i] & 0x80) basic_rates |= BIT(j); } } sta->supp_rates[local->hw.conf.channel->band] = rates; sdata->basic_rates = basic_rates; /* cf. IEEE 802.11 9.2.12 */ if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ && have_higher_than_11mbit) sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE; else sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE; if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) { struct ieee80211_ht_bss_info bss_info; ieee80211_ht_cap_ie_to_ht_info( (struct ieee80211_ht_cap *) elems.ht_cap_elem, &sta->ht_info); ieee80211_ht_addt_info_ie_to_ht_bss_info( (struct ieee80211_ht_addt_info *) elems.ht_info_elem, &bss_info); ieee80211_handle_ht(local, 1, &sta->ht_info, &bss_info); } rate_control_rate_init(sta, local); if (elems.wmm_param) { set_sta_flags(sta, WLAN_STA_WME); rcu_read_unlock(); ieee80211_sta_wmm_params(local, ifsta, elems.wmm_param, elems.wmm_param_len); } else rcu_read_unlock(); /* set AID and assoc capability, * ieee80211_set_associated() will tell the driver */ bss_conf->aid = aid; bss_conf->assoc_capability = capab_info; ieee80211_set_associated(sdata, ifsta, 1); ieee80211_associated(sdata, ifsta); } /* Caller must hold local->sta_bss_lock */ static void __ieee80211_rx_bss_hash_add(struct ieee80211_local *local, struct ieee80211_sta_bss *bss) { u8 hash_idx; if (bss_mesh_cfg(bss)) hash_idx = mesh_id_hash(bss_mesh_id(bss), bss_mesh_id_len(bss)); else hash_idx = STA_HASH(bss->bssid); bss->hnext = local->sta_bss_hash[hash_idx]; local->sta_bss_hash[hash_idx] = bss; } /* Caller must hold local->sta_bss_lock */ static void __ieee80211_rx_bss_hash_del(struct ieee80211_local *local, struct ieee80211_sta_bss *bss) { struct ieee80211_sta_bss *b, *prev = NULL; b = local->sta_bss_hash[STA_HASH(bss->bssid)]; while (b) { if (b == bss) { if (!prev) local->sta_bss_hash[STA_HASH(bss->bssid)] = bss->hnext; else prev->hnext = bss->hnext; break; } prev = b; b = b->hnext; } } static struct ieee80211_sta_bss * ieee80211_rx_bss_add(struct ieee80211_sub_if_data *sdata, u8 *bssid, int freq, u8 *ssid, u8 ssid_len) { struct ieee80211_local *local = sdata->local; struct ieee80211_sta_bss *bss; bss = kzalloc(sizeof(*bss), GFP_ATOMIC); if (!bss) return NULL; atomic_inc(&bss->users); atomic_inc(&bss->users); memcpy(bss->bssid, bssid, ETH_ALEN); bss->freq = freq; if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) { memcpy(bss->ssid, ssid, ssid_len); bss->ssid_len = ssid_len; } spin_lock_bh(&local->sta_bss_lock); /* TODO: order by RSSI? */ list_add_tail(&bss->list, &local->sta_bss_list); __ieee80211_rx_bss_hash_add(local, bss); spin_unlock_bh(&local->sta_bss_lock); return bss; } static struct ieee80211_sta_bss * ieee80211_rx_bss_get(struct ieee80211_local *local, u8 *bssid, int freq, u8 *ssid, u8 ssid_len) { struct ieee80211_sta_bss *bss; spin_lock_bh(&local->sta_bss_lock); bss = local->sta_bss_hash[STA_HASH(bssid)]; while (bss) { if (!bss_mesh_cfg(bss) && !memcmp(bss->bssid, bssid, ETH_ALEN) && bss->freq == freq && bss->ssid_len == ssid_len && (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) { atomic_inc(&bss->users); break; } bss = bss->hnext; } spin_unlock_bh(&local->sta_bss_lock); return bss; } #ifdef CONFIG_MAC80211_MESH static struct ieee80211_sta_bss * ieee80211_rx_mesh_bss_get(struct ieee80211_local *local, u8 *mesh_id, int mesh_id_len, u8 *mesh_cfg, int freq) { struct ieee80211_sta_bss *bss; spin_lock_bh(&local->sta_bss_lock); bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)]; while (bss) { if (bss_mesh_cfg(bss) && !memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) && bss->freq == freq && mesh_id_len == bss->mesh_id_len && (mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id, mesh_id_len))) { atomic_inc(&bss->users); break; } bss = bss->hnext; } spin_unlock_bh(&local->sta_bss_lock); return bss; } static struct ieee80211_sta_bss * ieee80211_rx_mesh_bss_add(struct ieee80211_local *local, u8 *mesh_id, int mesh_id_len, u8 *mesh_cfg, int mesh_config_len, int freq) { struct ieee80211_sta_bss *bss; if (mesh_config_len != MESH_CFG_LEN) return NULL; bss = kzalloc(sizeof(*bss), GFP_ATOMIC); if (!bss) return NULL; bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC); if (!bss->mesh_cfg) { kfree(bss); return NULL; } if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) { bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC); if (!bss->mesh_id) { kfree(bss->mesh_cfg); kfree(bss); return NULL; } memcpy(bss->mesh_id, mesh_id, mesh_id_len); } atomic_inc(&bss->users); atomic_inc(&bss->users); memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN); bss->mesh_id_len = mesh_id_len; bss->freq = freq; spin_lock_bh(&local->sta_bss_lock); /* TODO: order by RSSI? */ list_add_tail(&bss->list, &local->sta_bss_list); __ieee80211_rx_bss_hash_add(local, bss); spin_unlock_bh(&local->sta_bss_lock); return bss; } #endif static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss) { kfree(bss->wpa_ie); kfree(bss->rsn_ie); kfree(bss->wmm_ie); kfree(bss->ht_ie); kfree(bss->ht_add_ie); kfree(bss_mesh_id(bss)); kfree(bss_mesh_cfg(bss)); kfree(bss); } static void ieee80211_rx_bss_put(struct ieee80211_local *local, struct ieee80211_sta_bss *bss) { local_bh_disable(); if (!atomic_dec_and_lock(&bss->users, &local->sta_bss_lock)) { local_bh_enable(); return; } __ieee80211_rx_bss_hash_del(local, bss); list_del(&bss->list); spin_unlock_bh(&local->sta_bss_lock); ieee80211_rx_bss_free(bss); } void ieee80211_rx_bss_list_init(struct ieee80211_local *local) { spin_lock_init(&local->sta_bss_lock); INIT_LIST_HEAD(&local->sta_bss_list); } void ieee80211_rx_bss_list_deinit(struct ieee80211_local *local) { struct ieee80211_sta_bss *bss, *tmp; list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list) ieee80211_rx_bss_put(local, bss); } static int ieee80211_sta_join_ibss(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, struct ieee80211_sta_bss *bss) { struct ieee80211_local *local = sdata->local; int res, rates, i, j; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u8 *pos; struct ieee80211_supported_band *sband; union iwreq_data wrqu; sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; /* Remove possible STA entries from other IBSS networks. */ sta_info_flush_delayed(sdata); if (local->ops->reset_tsf) { /* Reset own TSF to allow time synchronization work. */ local->ops->reset_tsf(local_to_hw(local)); } memcpy(ifsta->bssid, bss->bssid, ETH_ALEN); res = ieee80211_if_config(sdata, IEEE80211_IFCC_BSSID); if (res) return res; local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10; sdata->drop_unencrypted = bss->capability & WLAN_CAPABILITY_PRIVACY ? 1 : 0; res = ieee80211_set_freq(sdata, bss->freq); if (res) return res; /* Build IBSS probe response */ skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400); if (skb) { skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + sizeof(mgmt->u.beacon)); memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP); memset(mgmt->da, 0xff, ETH_ALEN); memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->u.beacon.beacon_int = cpu_to_le16(local->hw.conf.beacon_int); mgmt->u.beacon.timestamp = cpu_to_le64(bss->timestamp); mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability); pos = skb_put(skb, 2 + ifsta->ssid_len); *pos++ = WLAN_EID_SSID; *pos++ = ifsta->ssid_len; memcpy(pos, ifsta->ssid, ifsta->ssid_len); rates = bss->supp_rates_len; if (rates > 8) rates = 8; pos = skb_put(skb, 2 + rates); *pos++ = WLAN_EID_SUPP_RATES; *pos++ = rates; memcpy(pos, bss->supp_rates, rates); if (bss->band == IEEE80211_BAND_2GHZ) { pos = skb_put(skb, 2 + 1); *pos++ = WLAN_EID_DS_PARAMS; *pos++ = 1; *pos++ = ieee80211_frequency_to_channel(bss->freq); } pos = skb_put(skb, 2 + 2); *pos++ = WLAN_EID_IBSS_PARAMS; *pos++ = 2; /* FIX: set ATIM window based on scan results */ *pos++ = 0; *pos++ = 0; if (bss->supp_rates_len > 8) { rates = bss->supp_rates_len - 8; pos = skb_put(skb, 2 + rates); *pos++ = WLAN_EID_EXT_SUPP_RATES; *pos++ = rates; memcpy(pos, &bss->supp_rates[8], rates); } ifsta->probe_resp = skb; ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON); } rates = 0; sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; for (i = 0; i < bss->supp_rates_len; i++) { int bitrate = (bss->supp_rates[i] & 0x7f) * 5; for (j = 0; j < sband->n_bitrates; j++) if (sband->bitrates[j].bitrate == bitrate) rates |= BIT(j); } ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates; ieee80211_sta_def_wmm_params(sdata, bss, 1); ifsta->state = IEEE80211_STA_MLME_IBSS_JOINED; mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL); memset(&wrqu, 0, sizeof(wrqu)); memcpy(wrqu.ap_addr.sa_data, bss->bssid, ETH_ALEN); wireless_send_event(sdata->dev, SIOCGIWAP, &wrqu, NULL); return res; } u64 ieee80211_sta_get_rates(struct ieee80211_local *local, struct ieee802_11_elems *elems, enum ieee80211_band band) { struct ieee80211_supported_band *sband; struct ieee80211_rate *bitrates; size_t num_rates; u64 supp_rates; int i, j; sband = local->hw.wiphy->bands[band]; if (!sband) { WARN_ON(1); sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; } bitrates = sband->bitrates; num_rates = sband->n_bitrates; supp_rates = 0; for (i = 0; i < elems->supp_rates_len + elems->ext_supp_rates_len; i++) { u8 rate = 0; int own_rate; if (i < elems->supp_rates_len) rate = elems->supp_rates[i]; else if (elems->ext_supp_rates) rate = elems->ext_supp_rates [i - elems->supp_rates_len]; own_rate = 5 * (rate & 0x7f); for (j = 0; j < num_rates; j++) if (bitrates[j].bitrate == own_rate) supp_rates |= BIT(j); } return supp_rates; } static void ieee80211_rx_bss_info(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status, struct ieee802_11_elems *elems, int beacon) { struct ieee80211_local *local = sdata->local; int freq, clen; struct ieee80211_sta_bss *bss; struct sta_info *sta; u64 beacon_timestamp, rx_timestamp; struct ieee80211_channel *channel; DECLARE_MAC_BUF(mac); DECLARE_MAC_BUF(mac2); beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp); if (ieee80211_vif_is_mesh(&sdata->vif) && elems->mesh_id && elems->mesh_config && mesh_matches_local(elems, sdata)) { u64 rates = ieee80211_sta_get_rates(local, elems, rx_status->band); mesh_neighbour_update(mgmt->sa, rates, sdata, mesh_peer_accepts_plinks(elems)); } rcu_read_lock(); if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems->supp_rates && memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 && (sta = sta_info_get(local, mgmt->sa))) { u64 prev_rates; u64 supp_rates = ieee80211_sta_get_rates(local, elems, rx_status->band); prev_rates = sta->supp_rates[rx_status->band]; sta->supp_rates[rx_status->band] &= supp_rates; if (sta->supp_rates[rx_status->band] == 0) { /* No matching rates - this should not really happen. * Make sure that at least one rate is marked * supported to avoid issues with TX rate ctrl. */ sta->supp_rates[rx_status->band] = sdata->u.sta.supp_rates_bits[rx_status->band]; } } rcu_read_unlock(); if (elems->ds_params && elems->ds_params_len == 1) freq = ieee80211_channel_to_frequency(elems->ds_params[0]); else freq = rx_status->freq; channel = ieee80211_get_channel(local->hw.wiphy, freq); if (!channel || channel->flags & IEEE80211_CHAN_DISABLED) return; #ifdef CONFIG_MAC80211_MESH if (elems->mesh_config) bss = ieee80211_rx_mesh_bss_get(local, elems->mesh_id, elems->mesh_id_len, elems->mesh_config, freq); else #endif bss = ieee80211_rx_bss_get(local, mgmt->bssid, freq, elems->ssid, elems->ssid_len); if (!bss) { #ifdef CONFIG_MAC80211_MESH if (elems->mesh_config) bss = ieee80211_rx_mesh_bss_add(local, elems->mesh_id, elems->mesh_id_len, elems->mesh_config, elems->mesh_config_len, freq); else #endif bss = ieee80211_rx_bss_add(sdata, mgmt->bssid, freq, elems->ssid, elems->ssid_len); if (!bss) return; } else { #if 0 /* TODO: order by RSSI? */ spin_lock_bh(&local->sta_bss_lock); list_move_tail(&bss->list, &local->sta_bss_list); spin_unlock_bh(&local->sta_bss_lock); #endif } /* save the ERP value so that it is available at association time */ if (elems->erp_info && elems->erp_info_len >= 1) { bss->erp_value = elems->erp_info[0]; bss->has_erp_value = 1; } if (elems->ht_cap_elem && (!bss->ht_ie || bss->ht_ie_len != elems->ht_cap_elem_len || memcmp(bss->ht_ie, elems->ht_cap_elem, elems->ht_cap_elem_len))) { kfree(bss->ht_ie); bss->ht_ie = kmalloc(elems->ht_cap_elem_len + 2, GFP_ATOMIC); if (bss->ht_ie) { memcpy(bss->ht_ie, elems->ht_cap_elem - 2, elems->ht_cap_elem_len + 2); bss->ht_ie_len = elems->ht_cap_elem_len + 2; } else bss->ht_ie_len = 0; } else if (!elems->ht_cap_elem && bss->ht_ie) { kfree(bss->ht_ie); bss->ht_ie = NULL; bss->ht_ie_len = 0; } if (elems->ht_info_elem && (!bss->ht_add_ie || bss->ht_add_ie_len != elems->ht_info_elem_len || memcmp(bss->ht_add_ie, elems->ht_info_elem, elems->ht_info_elem_len))) { kfree(bss->ht_add_ie); bss->ht_add_ie = kmalloc(elems->ht_info_elem_len + 2, GFP_ATOMIC); if (bss->ht_add_ie) { memcpy(bss->ht_add_ie, elems->ht_info_elem - 2, elems->ht_info_elem_len + 2); bss->ht_add_ie_len = elems->ht_info_elem_len + 2; } else bss->ht_add_ie_len = 0; } else if (!elems->ht_info_elem && bss->ht_add_ie) { kfree(bss->ht_add_ie); bss->ht_add_ie = NULL; bss->ht_add_ie_len = 0; } bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int); bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info); if (elems->tim) { struct ieee80211_tim_ie *tim_ie = (struct ieee80211_tim_ie *)elems->tim; bss->dtim_period = tim_ie->dtim_period; } /* set default value for buggy APs */ if (!elems->tim || bss->dtim_period == 0) bss->dtim_period = 1; bss->supp_rates_len = 0; if (elems->supp_rates) { clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len; if (clen > elems->supp_rates_len) clen = elems->supp_rates_len; memcpy(&bss->supp_rates[bss->supp_rates_len], elems->supp_rates, clen); bss->supp_rates_len += clen; } if (elems->ext_supp_rates) { clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len; if (clen > elems->ext_supp_rates_len) clen = elems->ext_supp_rates_len; memcpy(&bss->supp_rates[bss->supp_rates_len], elems->ext_supp_rates, clen); bss->supp_rates_len += clen; } bss->band = rx_status->band; bss->timestamp = beacon_timestamp; bss->last_update = jiffies; bss->signal = rx_status->signal; bss->noise = rx_status->noise; bss->qual = rx_status->qual; if (!beacon && !bss->probe_resp) bss->probe_resp = true; /* * In STA mode, the remaining parameters should not be overridden * by beacons because they're not necessarily accurate there. */ if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS && bss->probe_resp && beacon) { ieee80211_rx_bss_put(local, bss); return; } if (elems->wpa && (!bss->wpa_ie || bss->wpa_ie_len != elems->wpa_len || memcmp(bss->wpa_ie, elems->wpa, elems->wpa_len))) { kfree(bss->wpa_ie); bss->wpa_ie = kmalloc(elems->wpa_len + 2, GFP_ATOMIC); if (bss->wpa_ie) { memcpy(bss->wpa_ie, elems->wpa - 2, elems->wpa_len + 2); bss->wpa_ie_len = elems->wpa_len + 2; } else bss->wpa_ie_len = 0; } else if (!elems->wpa && bss->wpa_ie) { kfree(bss->wpa_ie); bss->wpa_ie = NULL; bss->wpa_ie_len = 0; } if (elems->rsn && (!bss->rsn_ie || bss->rsn_ie_len != elems->rsn_len || memcmp(bss->rsn_ie, elems->rsn, elems->rsn_len))) { kfree(bss->rsn_ie); bss->rsn_ie = kmalloc(elems->rsn_len + 2, GFP_ATOMIC); if (bss->rsn_ie) { memcpy(bss->rsn_ie, elems->rsn - 2, elems->rsn_len + 2); bss->rsn_ie_len = elems->rsn_len + 2; } else bss->rsn_ie_len = 0; } else if (!elems->rsn && bss->rsn_ie) { kfree(bss->rsn_ie); bss->rsn_ie = NULL; bss->rsn_ie_len = 0; } /* * Cf. * http://www.wipo.int/pctdb/en/wo.jsp?wo=2007047181&IA=WO2007047181&DISPLAY=DESC * * quoting: * * In particular, "Wi-Fi CERTIFIED for WMM - Support for Multimedia * Applications with Quality of Service in Wi-Fi Networks," Wi- Fi * Alliance (September 1, 2004) is incorporated by reference herein. * The inclusion of the WMM Parameters in probe responses and * association responses is mandatory for WMM enabled networks. The * inclusion of the WMM Parameters in beacons, however, is optional. */ if (elems->wmm_param && (!bss->wmm_ie || bss->wmm_ie_len != elems->wmm_param_len || memcmp(bss->wmm_ie, elems->wmm_param, elems->wmm_param_len))) { kfree(bss->wmm_ie); bss->wmm_ie = kmalloc(elems->wmm_param_len + 2, GFP_ATOMIC); if (bss->wmm_ie) { memcpy(bss->wmm_ie, elems->wmm_param - 2, elems->wmm_param_len + 2); bss->wmm_ie_len = elems->wmm_param_len + 2; } else bss->wmm_ie_len = 0; } else if (elems->wmm_info && (!bss->wmm_ie || bss->wmm_ie_len != elems->wmm_info_len || memcmp(bss->wmm_ie, elems->wmm_info, elems->wmm_info_len))) { /* As for certain AP's Fifth bit is not set in WMM IE in * beacon frames.So while parsing the beacon frame the * wmm_info structure is used instead of wmm_param. * wmm_info structure was never used to set bss->wmm_ie. * This code fixes this problem by copying the WME * information from wmm_info to bss->wmm_ie and enabling * n-band association. */ kfree(bss->wmm_ie); bss->wmm_ie = kmalloc(elems->wmm_info_len + 2, GFP_ATOMIC); if (bss->wmm_ie) { memcpy(bss->wmm_ie, elems->wmm_info - 2, elems->wmm_info_len + 2); bss->wmm_ie_len = elems->wmm_info_len + 2; } else bss->wmm_ie_len = 0; } else if (!elems->wmm_param && !elems->wmm_info && bss->wmm_ie) { kfree(bss->wmm_ie); bss->wmm_ie = NULL; bss->wmm_ie_len = 0; } /* check if we need to merge IBSS */ if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon && !local->sta_sw_scanning && !local->sta_hw_scanning && bss->capability & WLAN_CAPABILITY_IBSS && bss->freq == local->oper_channel->center_freq && elems->ssid_len == sdata->u.sta.ssid_len && memcmp(elems->ssid, sdata->u.sta.ssid, sdata->u.sta.ssid_len) == 0) { if (rx_status->flag & RX_FLAG_TSFT) { /* in order for correct IBSS merging we need mactime * * since mactime is defined as the time the first data * symbol of the frame hits the PHY, and the timestamp * of the beacon is defined as "the time that the data * symbol containing the first bit of the timestamp is * transmitted to the PHY plus the transmitting STA’s * delays through its local PHY from the MAC-PHY * interface to its interface with the WM" * (802.11 11.1.2) - equals the time this bit arrives at * the receiver - we have to take into account the * offset between the two. * e.g: at 1 MBit that means mactime is 192 usec earlier * (=24 bytes * 8 usecs/byte) than the beacon timestamp. */ int rate = local->hw.wiphy->bands[rx_status->band]-> bitrates[rx_status->rate_idx].bitrate; rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate); } else if (local && local->ops && local->ops->get_tsf) /* second best option: get current TSF */ rx_timestamp = local->ops->get_tsf(local_to_hw(local)); else /* can't merge without knowing the TSF */ rx_timestamp = -1LLU; #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG "RX beacon SA=%s BSSID=" "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n", print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->bssid), (unsigned long long)rx_timestamp, (unsigned long long)beacon_timestamp, (unsigned long long)(rx_timestamp - beacon_timestamp), jiffies); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ if (beacon_timestamp > rx_timestamp) { #ifndef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG "%s: beacon TSF higher than " "local TSF - IBSS merge with BSSID %s\n", sdata->dev->name, print_mac(mac, mgmt->bssid)); #endif ieee80211_sta_join_ibss(sdata, &sdata->u.sta, bss); ieee80211_ibss_add_sta(sdata, NULL, mgmt->bssid, mgmt->sa, BIT(rx_status->rate_idx)); } } ieee80211_rx_bss_put(local, bss); } static void ieee80211_rx_mgmt_probe_resp(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { size_t baselen; struct ieee802_11_elems elems; if (memcmp(mgmt->da, sdata->dev->dev_addr, ETH_ALEN)) return; /* ignore ProbeResp to foreign address */ baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt; if (baselen > len) return; ieee802_11_parse_elems(mgmt->u.probe_resp.variable, len - baselen, &elems); ieee80211_rx_bss_info(sdata, mgmt, len, rx_status, &elems, 0); } static void ieee80211_rx_mgmt_beacon(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_if_sta *ifsta; size_t baselen; struct ieee802_11_elems elems; struct ieee80211_local *local = sdata->local; struct ieee80211_conf *conf = &local->hw.conf; u32 changed = 0; /* Process beacon from the current BSS */ baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt; if (baselen > len) return; ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems); ieee80211_rx_bss_info(sdata, mgmt, len, rx_status, &elems, 1); if (sdata->vif.type != IEEE80211_IF_TYPE_STA) return; ifsta = &sdata->u.sta; if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) || memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) return; ieee80211_sta_wmm_params(local, ifsta, elems.wmm_param, elems.wmm_param_len); /* Do not send changes to driver if we are scanning. This removes * requirement that driver's bss_info_changed function needs to be * atomic. */ if (local->sta_sw_scanning || local->sta_hw_scanning) return; if (elems.erp_info && elems.erp_info_len >= 1) changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]); else { u16 capab = le16_to_cpu(mgmt->u.beacon.capab_info); changed |= ieee80211_handle_protect_preamb(sdata, false, (capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0); } if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param && conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) { struct ieee80211_ht_bss_info bss_info; ieee80211_ht_addt_info_ie_to_ht_bss_info( (struct ieee80211_ht_addt_info *) elems.ht_info_elem, &bss_info); changed |= ieee80211_handle_ht(local, 1, &conf->ht_conf, &bss_info); } ieee80211_bss_info_change_notify(sdata, changed); } static void ieee80211_rx_mgmt_probe_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_local *local = sdata->local; int tx_last_beacon; struct sk_buff *skb; struct ieee80211_mgmt *resp; u8 *pos, *end; DECLARE_MAC_BUF(mac); #ifdef CONFIG_MAC80211_IBSS_DEBUG DECLARE_MAC_BUF(mac2); DECLARE_MAC_BUF(mac3); #endif if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS || ifsta->state != IEEE80211_STA_MLME_IBSS_JOINED || len < 24 + 2 || !ifsta->probe_resp) return; if (local->ops->tx_last_beacon) tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local)); else tx_last_beacon = 1; #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID=" "%s (tx_last_beacon=%d)\n", sdata->dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da), print_mac(mac3, mgmt->bssid), tx_last_beacon); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ if (!tx_last_beacon) return; if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 && memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0) return; end = ((u8 *) mgmt) + len; pos = mgmt->u.probe_req.variable; if (pos[0] != WLAN_EID_SSID || pos + 2 + pos[1] > end) { #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq " "from %s\n", sdata->dev->name, print_mac(mac, mgmt->sa)); #endif return; } if (pos[1] != 0 && (pos[1] != ifsta->ssid_len || memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) { /* Ignore ProbeReq for foreign SSID */ return; } /* Reply with ProbeResp */ skb = skb_copy(ifsta->probe_resp, GFP_KERNEL); if (!skb) return; resp = (struct ieee80211_mgmt *) skb->data; memcpy(resp->da, mgmt->sa, ETH_ALEN); #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n", sdata->dev->name, print_mac(mac, resp->da)); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ ieee80211_sta_tx(sdata, skb, 0); } static void ieee80211_rx_mgmt_action(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_local *local = sdata->local; if (len < IEEE80211_MIN_ACTION_SIZE) return; switch (mgmt->u.action.category) { case WLAN_CATEGORY_SPECTRUM_MGMT: if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ) break; switch (mgmt->u.action.u.chan_switch.action_code) { case WLAN_ACTION_SPCT_MSR_REQ: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.measurement))) break; ieee80211_sta_process_measurement_req(sdata, mgmt, len); break; } break; case WLAN_CATEGORY_BACK: switch (mgmt->u.action.u.addba_req.action_code) { case WLAN_ACTION_ADDBA_REQ: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.addba_req))) break; ieee80211_sta_process_addba_request(local, mgmt, len); break; case WLAN_ACTION_ADDBA_RESP: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.addba_resp))) break; ieee80211_sta_process_addba_resp(local, mgmt, len); break; case WLAN_ACTION_DELBA: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.delba))) break; ieee80211_sta_process_delba(sdata, mgmt, len); break; } break; case PLINK_CATEGORY: if (ieee80211_vif_is_mesh(&sdata->vif)) mesh_rx_plink_frame(sdata, mgmt, len, rx_status); break; case MESH_PATH_SEL_CATEGORY: if (ieee80211_vif_is_mesh(&sdata->vif)) mesh_rx_path_sel_frame(sdata, mgmt, len); break; } } void ieee80211_sta_rx_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct ieee80211_rx_status *rx_status) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_sta *ifsta; struct ieee80211_mgmt *mgmt; u16 fc; if (skb->len < 24) goto fail; ifsta = &sdata->u.sta; mgmt = (struct ieee80211_mgmt *) skb->data; fc = le16_to_cpu(mgmt->frame_control); switch (fc & IEEE80211_FCTL_STYPE) { case IEEE80211_STYPE_PROBE_REQ: case IEEE80211_STYPE_PROBE_RESP: case IEEE80211_STYPE_BEACON: case IEEE80211_STYPE_ACTION: memcpy(skb->cb, rx_status, sizeof(*rx_status)); case IEEE80211_STYPE_AUTH: case IEEE80211_STYPE_ASSOC_RESP: case IEEE80211_STYPE_REASSOC_RESP: case IEEE80211_STYPE_DEAUTH: case IEEE80211_STYPE_DISASSOC: skb_queue_tail(&ifsta->skb_queue, skb); queue_work(local->hw.workqueue, &ifsta->work); return; } fail: kfree_skb(skb); } static void ieee80211_sta_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_rx_status *rx_status; struct ieee80211_if_sta *ifsta; struct ieee80211_mgmt *mgmt; u16 fc; ifsta = &sdata->u.sta; rx_status = (struct ieee80211_rx_status *) skb->cb; mgmt = (struct ieee80211_mgmt *) skb->data; fc = le16_to_cpu(mgmt->frame_control); switch (fc & IEEE80211_FCTL_STYPE) { case IEEE80211_STYPE_PROBE_REQ: ieee80211_rx_mgmt_probe_req(sdata, ifsta, mgmt, skb->len, rx_status); break; case IEEE80211_STYPE_PROBE_RESP: ieee80211_rx_mgmt_probe_resp(sdata, mgmt, skb->len, rx_status); break; case IEEE80211_STYPE_BEACON: ieee80211_rx_mgmt_beacon(sdata, mgmt, skb->len, rx_status); break; case IEEE80211_STYPE_AUTH: ieee80211_rx_mgmt_auth(sdata, ifsta, mgmt, skb->len); break; case IEEE80211_STYPE_ASSOC_RESP: ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0); break; case IEEE80211_STYPE_REASSOC_RESP: ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1); break; case IEEE80211_STYPE_DEAUTH: ieee80211_rx_mgmt_deauth(sdata, ifsta, mgmt, skb->len); break; case IEEE80211_STYPE_DISASSOC: ieee80211_rx_mgmt_disassoc(sdata, ifsta, mgmt, skb->len); break; case IEEE80211_STYPE_ACTION: ieee80211_rx_mgmt_action(sdata, ifsta, mgmt, skb->len, rx_status); break; } kfree_skb(skb); } ieee80211_rx_result ieee80211_sta_rx_scan(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct ieee80211_rx_status *rx_status) { struct ieee80211_mgmt *mgmt; __le16 fc; if (skb->len < 2) return RX_DROP_UNUSABLE; mgmt = (struct ieee80211_mgmt *) skb->data; fc = mgmt->frame_control; if (ieee80211_is_ctl(fc)) return RX_CONTINUE; if (skb->len < 24) return RX_DROP_MONITOR; if (ieee80211_is_probe_resp(fc)) { ieee80211_rx_mgmt_probe_resp(sdata, mgmt, skb->len, rx_status); dev_kfree_skb(skb); return RX_QUEUED; } if (ieee80211_is_beacon(fc)) { ieee80211_rx_mgmt_beacon(sdata, mgmt, skb->len, rx_status); dev_kfree_skb(skb); return RX_QUEUED; } return RX_CONTINUE; } static int ieee80211_sta_active_ibss(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; int active = 0; struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sta->sdata == sdata && time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL, jiffies)) { active++; break; } } rcu_read_unlock(); return active; } static void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, unsigned long exp_time) { struct ieee80211_local *local = sdata->local; struct sta_info *sta, *tmp; LIST_HEAD(tmp_list); DECLARE_MAC_BUF(mac); unsigned long flags; spin_lock_irqsave(&local->sta_lock, flags); list_for_each_entry_safe(sta, tmp, &local->sta_list, list) if (time_after(jiffies, sta->last_rx + exp_time)) { #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG "%s: expiring inactive STA %s\n", sdata->dev->name, print_mac(mac, sta->addr)); #endif __sta_info_unlink(&sta); if (sta) list_add(&sta->list, &tmp_list); } spin_unlock_irqrestore(&local->sta_lock, flags); list_for_each_entry_safe(sta, tmp, &tmp_list, list) sta_info_destroy(sta); } static void ieee80211_sta_merge_ibss(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL); ieee80211_sta_expire(sdata, IEEE80211_IBSS_INACTIVITY_LIMIT); if (ieee80211_sta_active_ibss(sdata)) return; printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other " "IBSS networks with same SSID (merge)\n", sdata->dev->name); ieee80211_sta_req_scan(sdata, ifsta->ssid, ifsta->ssid_len); } #ifdef CONFIG_MAC80211_MESH static void ieee80211_mesh_housekeeping(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { bool free_plinks; ieee80211_sta_expire(sdata, IEEE80211_MESH_PEER_INACTIVITY_LIMIT); mesh_path_expire(sdata); free_plinks = mesh_plink_availables(sdata); if (free_plinks != sdata->u.sta.accepting_plinks) ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON); mod_timer(&ifsta->timer, jiffies + IEEE80211_MESH_HOUSEKEEPING_INTERVAL); } void ieee80211_start_mesh(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_sta *ifsta; ifsta = &sdata->u.sta; ifsta->state = IEEE80211_STA_MLME_MESH_UP; ieee80211_sta_timer((unsigned long)sdata); ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON); } #endif void ieee80211_sta_timer(unsigned long data) { struct ieee80211_sub_if_data *sdata = (struct ieee80211_sub_if_data *) data; struct ieee80211_if_sta *ifsta = &sdata->u.sta; struct ieee80211_local *local = sdata->local; set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request); queue_work(local->hw.workqueue, &ifsta->work); } void ieee80211_sta_work(struct work_struct *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.sta.work); struct ieee80211_local *local = sdata->local; struct ieee80211_if_sta *ifsta; struct sk_buff *skb; if (!netif_running(sdata->dev)) return; if (local->sta_sw_scanning || local->sta_hw_scanning) return; if (WARN_ON(sdata->vif.type != IEEE80211_IF_TYPE_STA && sdata->vif.type != IEEE80211_IF_TYPE_IBSS && sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT)) return; ifsta = &sdata->u.sta; while ((skb = skb_dequeue(&ifsta->skb_queue))) ieee80211_sta_rx_queued_mgmt(sdata, skb); #ifdef CONFIG_MAC80211_MESH if (ifsta->preq_queue_len && time_after(jiffies, ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval))) mesh_path_start_discovery(sdata); #endif if (ifsta->state != IEEE80211_STA_MLME_AUTHENTICATE && ifsta->state != IEEE80211_STA_MLME_ASSOCIATE && test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) { if (ifsta->scan_ssid_len) ieee80211_sta_start_scan(sdata, ifsta->scan_ssid, ifsta->scan_ssid_len); else ieee80211_sta_start_scan(sdata, NULL, 0); return; } if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) { if (ieee80211_sta_config_auth(sdata, ifsta)) return; clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request); } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request)) return; switch (ifsta->state) { case IEEE80211_STA_MLME_DISABLED: break; case IEEE80211_STA_MLME_AUTHENTICATE: ieee80211_authenticate(sdata, ifsta); break; case IEEE80211_STA_MLME_ASSOCIATE: ieee80211_associate(sdata, ifsta); break; case IEEE80211_STA_MLME_ASSOCIATED: ieee80211_associated(sdata, ifsta); break; case IEEE80211_STA_MLME_IBSS_SEARCH: ieee80211_sta_find_ibss(sdata, ifsta); break; case IEEE80211_STA_MLME_IBSS_JOINED: ieee80211_sta_merge_ibss(sdata, ifsta); break; #ifdef CONFIG_MAC80211_MESH case IEEE80211_STA_MLME_MESH_UP: ieee80211_mesh_housekeeping(sdata, ifsta); break; #endif default: WARN_ON(1); break; } if (ieee80211_privacy_mismatch(sdata, ifsta)) { printk(KERN_DEBUG "%s: privacy configuration mismatch and " "mixed-cell disabled - disassociate\n", sdata->dev->name); ieee80211_send_disassoc(sdata, ifsta, WLAN_REASON_UNSPECIFIED); ieee80211_set_disassoc(sdata, ifsta, 0); } } static void ieee80211_sta_reset_auth(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = sdata->local; if (local->ops->reset_tsf) { /* Reset own TSF to allow time synchronization work. */ local->ops->reset_tsf(local_to_hw(local)); } ifsta->wmm_last_param_set = -1; /* allow any WMM update */ if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN) ifsta->auth_alg = WLAN_AUTH_OPEN; else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY) ifsta->auth_alg = WLAN_AUTH_SHARED_KEY; else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP) ifsta->auth_alg = WLAN_AUTH_LEAP; else ifsta->auth_alg = WLAN_AUTH_OPEN; ifsta->auth_transaction = -1; ifsta->flags &= ~IEEE80211_STA_ASSOCIATED; ifsta->assoc_scan_tries = 0; ifsta->auth_tries = 0; ifsta->assoc_tries = 0; netif_carrier_off(sdata->dev); } void ieee80211_sta_req_auth(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = sdata->local; if (sdata->vif.type != IEEE80211_IF_TYPE_STA) return; if ((ifsta->flags & (IEEE80211_STA_BSSID_SET | IEEE80211_STA_AUTO_BSSID_SEL)) && (ifsta->flags & (IEEE80211_STA_SSID_SET | IEEE80211_STA_AUTO_SSID_SEL))) { set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request); queue_work(local->hw.workqueue, &ifsta->work); } } static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta, const char *ssid, int ssid_len) { int tmp, hidden_ssid; if (ssid_len == ifsta->ssid_len && !memcmp(ifsta->ssid, ssid, ssid_len)) return 1; if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) return 0; hidden_ssid = 1; tmp = ssid_len; while (tmp--) { if (ssid[tmp] != '\0') { hidden_ssid = 0; break; } } if (hidden_ssid && ifsta->ssid_len == ssid_len) return 1; if (ssid_len == 1 && ssid[0] == ' ') return 1; return 0; } static int ieee80211_sta_config_auth(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = sdata->local; struct ieee80211_sta_bss *bss, *selected = NULL; int top_rssi = 0, freq; spin_lock_bh(&local->sta_bss_lock); freq = local->oper_channel->center_freq; list_for_each_entry(bss, &local->sta_bss_list, list) { if (!(bss->capability & WLAN_CAPABILITY_ESS)) continue; if ((ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL | IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL)) && (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^ !!sdata->default_key)) continue; if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) && bss->freq != freq) continue; if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) && memcmp(bss->bssid, ifsta->bssid, ETH_ALEN)) continue; if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) && !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len)) continue; if (!selected || top_rssi < bss->signal) { selected = bss; top_rssi = bss->signal; } } if (selected) atomic_inc(&selected->users); spin_unlock_bh(&local->sta_bss_lock); if (selected) { ieee80211_set_freq(sdata, selected->freq); if (!(ifsta->flags & IEEE80211_STA_SSID_SET)) ieee80211_sta_set_ssid(sdata, selected->ssid, selected->ssid_len); ieee80211_sta_set_bssid(sdata, selected->bssid); ieee80211_sta_def_wmm_params(sdata, selected, 0); ieee80211_rx_bss_put(local, selected); ifsta->state = IEEE80211_STA_MLME_AUTHENTICATE; ieee80211_sta_reset_auth(sdata, ifsta); return 0; } else { if (ifsta->assoc_scan_tries < IEEE80211_ASSOC_SCANS_MAX_TRIES) { ifsta->assoc_scan_tries++; if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) ieee80211_sta_start_scan(sdata, NULL, 0); else ieee80211_sta_start_scan(sdata, ifsta->ssid, ifsta->ssid_len); ifsta->state = IEEE80211_STA_MLME_AUTHENTICATE; set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request); } else ifsta->state = IEEE80211_STA_MLME_DISABLED; } return -1; } static int ieee80211_sta_create_ibss(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = sdata->local; struct ieee80211_sta_bss *bss; struct ieee80211_supported_band *sband; u8 bssid[ETH_ALEN], *pos; int i; int ret; DECLARE_MAC_BUF(mac); #if 0 /* Easier testing, use fixed BSSID. */ memset(bssid, 0xfe, ETH_ALEN); #else /* Generate random, not broadcast, locally administered BSSID. Mix in * own MAC address to make sure that devices that do not have proper * random number generator get different BSSID. */ get_random_bytes(bssid, ETH_ALEN); for (i = 0; i < ETH_ALEN; i++) bssid[i] ^= sdata->dev->dev_addr[i]; bssid[0] &= ~0x01; bssid[0] |= 0x02; #endif printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n", sdata->dev->name, print_mac(mac, bssid)); bss = ieee80211_rx_bss_add(sdata, bssid, local->hw.conf.channel->center_freq, sdata->u.sta.ssid, sdata->u.sta.ssid_len); if (!bss) return -ENOMEM; bss->band = local->hw.conf.channel->band; sband = local->hw.wiphy->bands[bss->band]; if (local->hw.conf.beacon_int == 0) local->hw.conf.beacon_int = 100; bss->beacon_int = local->hw.conf.beacon_int; bss->last_update = jiffies; bss->capability = WLAN_CAPABILITY_IBSS; if (sdata->default_key) bss->capability |= WLAN_CAPABILITY_PRIVACY; else sdata->drop_unencrypted = 0; bss->supp_rates_len = sband->n_bitrates; pos = bss->supp_rates; for (i = 0; i < sband->n_bitrates; i++) { int rate = sband->bitrates[i].bitrate; *pos++ = (u8) (rate / 5); } ret = ieee80211_sta_join_ibss(sdata, ifsta, bss); ieee80211_rx_bss_put(local, bss); return ret; } static int ieee80211_sta_find_ibss(struct ieee80211_sub_if_data *sdata, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = sdata->local; struct ieee80211_sta_bss *bss; int found = 0; u8 bssid[ETH_ALEN]; int active_ibss; DECLARE_MAC_BUF(mac); DECLARE_MAC_BUF(mac2); if (ifsta->ssid_len == 0) return -EINVAL; active_ibss = ieee80211_sta_active_ibss(sdata); #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n", sdata->dev->name, active_ibss); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ spin_lock_bh(&local->sta_bss_lock); list_for_each_entry(bss, &local->sta_bss_list, list) { if (ifsta->ssid_len != bss->ssid_len || memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0 || !(bss->capability & WLAN_CAPABILITY_IBSS)) continue; #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG " bssid=%s found\n", print_mac(mac, bss->bssid)); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ memcpy(bssid, bss->bssid, ETH_ALEN); found = 1; if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0) break; } spin_unlock_bh(&local->sta_bss_lock); #ifdef CONFIG_MAC80211_IBSS_DEBUG if (found) printk(KERN_DEBUG " sta_find_ibss: selected %s current " "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid)); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) { int ret; int search_freq; if (ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) search_freq = bss->freq; else search_freq = local->hw.conf.channel->center_freq; bss = ieee80211_rx_bss_get(local, bssid, search_freq, ifsta->ssid, ifsta->ssid_len); if (!bss) goto dont_join; printk(KERN_DEBUG "%s: Selected IBSS BSSID %s" " based on configured SSID\n", sdata->dev->name, print_mac(mac, bssid)); ret = ieee80211_sta_join_ibss(sdata, ifsta, bss); ieee80211_rx_bss_put(local, bss); return ret; } dont_join: #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG " did not try to join ibss\n"); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ /* Selected IBSS not found in current scan results - try to scan */ if (ifsta->state == IEEE80211_STA_MLME_IBSS_JOINED && !ieee80211_sta_active_ibss(sdata)) { mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL); } else if (time_after(jiffies, local->last_scan_completed + IEEE80211_SCAN_INTERVAL)) { printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to " "join\n", sdata->dev->name); return ieee80211_sta_req_scan(sdata, ifsta->ssid, ifsta->ssid_len); } else if (ifsta->state != IEEE80211_STA_MLME_IBSS_JOINED) { int interval = IEEE80211_SCAN_INTERVAL; if (time_after(jiffies, ifsta->ibss_join_req + IEEE80211_IBSS_JOIN_TIMEOUT)) { if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) && (!(local->oper_channel->flags & IEEE80211_CHAN_NO_IBSS))) return ieee80211_sta_create_ibss(sdata, ifsta); if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) { printk(KERN_DEBUG "%s: IBSS not allowed on" " %d MHz\n", sdata->dev->name, local->hw.conf.channel->center_freq); } /* No IBSS found - decrease scan interval and continue * scanning. */ interval = IEEE80211_SCAN_INTERVAL_SLOW; } ifsta->state = IEEE80211_STA_MLME_IBSS_SEARCH; mod_timer(&ifsta->timer, jiffies + interval); return 0; } return 0; } int ieee80211_sta_set_ssid(struct ieee80211_sub_if_data *sdata, char *ssid, size_t len) { struct ieee80211_if_sta *ifsta; int res; if (len > IEEE80211_MAX_SSID_LEN) return -EINVAL; ifsta = &sdata->u.sta; if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0) { memset(ifsta->ssid, 0, sizeof(ifsta->ssid)); memcpy(ifsta->ssid, ssid, len); ifsta->ssid_len = len; ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET; res = 0; /* * Hack! MLME code needs to be cleaned up to have different * entry points for configuration and internal selection change */ if (netif_running(sdata->dev)) res = ieee80211_if_config(sdata, IEEE80211_IFCC_SSID); if (res) { printk(KERN_DEBUG "%s: Failed to config new SSID to " "the low-level driver\n", sdata->dev->name); return res; } } if (len) ifsta->flags |= IEEE80211_STA_SSID_SET; else ifsta->flags &= ~IEEE80211_STA_SSID_SET; if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && !(ifsta->flags & IEEE80211_STA_BSSID_SET)) { ifsta->ibss_join_req = jiffies; ifsta->state = IEEE80211_STA_MLME_IBSS_SEARCH; return ieee80211_sta_find_ibss(sdata, ifsta); } return 0; } int ieee80211_sta_get_ssid(struct ieee80211_sub_if_data *sdata, char *ssid, size_t *len) { struct ieee80211_if_sta *ifsta = &sdata->u.sta; memcpy(ssid, ifsta->ssid, ifsta->ssid_len); *len = ifsta->ssid_len; return 0; } int ieee80211_sta_set_bssid(struct ieee80211_sub_if_data *sdata, u8 *bssid) { struct ieee80211_if_sta *ifsta; int res; ifsta = &sdata->u.sta; if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) { memcpy(ifsta->bssid, bssid, ETH_ALEN); res = 0; /* * Hack! See also ieee80211_sta_set_ssid. */ if (netif_running(sdata->dev)) res = ieee80211_if_config(sdata, IEEE80211_IFCC_BSSID); if (res) { printk(KERN_DEBUG "%s: Failed to config new BSSID to " "the low-level driver\n", sdata->dev->name); return res; } } if (is_valid_ether_addr(bssid)) ifsta->flags |= IEEE80211_STA_BSSID_SET; else ifsta->flags &= ~IEEE80211_STA_BSSID_SET; return 0; } static void ieee80211_send_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, int powersave) { struct sk_buff *skb; struct ieee80211_hdr *nullfunc; __le16 fc; skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc " "frame\n", sdata->dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24); memset(nullfunc, 0, 24); fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_TODS); if (powersave) fc |= cpu_to_le16(IEEE80211_FCTL_PM); nullfunc->frame_control = fc; memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN); memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN); memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN); ieee80211_sta_tx(sdata, skb, 0); } static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type == IEEE80211_IF_TYPE_STA || ieee80211_vif_is_mesh(&sdata->vif)) ieee80211_sta_timer((unsigned long)sdata); } void ieee80211_scan_completed(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); struct net_device *dev = local->scan_dev; struct ieee80211_sub_if_data *sdata; union iwreq_data wrqu; local->last_scan_completed = jiffies; memset(&wrqu, 0, sizeof(wrqu)); wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL); if (local->sta_hw_scanning) { local->sta_hw_scanning = 0; if (ieee80211_hw_config(local)) printk(KERN_DEBUG "%s: failed to restore operational " "channel after scan\n", dev->name); /* Restart STA timer for HW scan case */ rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) ieee80211_restart_sta_timer(sdata); rcu_read_unlock(); goto done; } local->sta_sw_scanning = 0; if (ieee80211_hw_config(local)) printk(KERN_DEBUG "%s: failed to restore operational " "channel after scan\n", dev->name); netif_tx_lock_bh(local->mdev); netif_addr_lock(local->mdev); local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC; local->ops->configure_filter(local_to_hw(local), FIF_BCN_PRBRESP_PROMISC, &local->filter_flags, local->mdev->mc_count, local->mdev->mc_list); netif_addr_unlock(local->mdev); netif_tx_unlock_bh(local->mdev); rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { /* Tell AP we're back */ if (sdata->vif.type == IEEE80211_IF_TYPE_STA && sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED) ieee80211_send_nullfunc(local, sdata, 0); ieee80211_restart_sta_timer(sdata); netif_wake_queue(sdata->dev); } rcu_read_unlock(); done: sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) { struct ieee80211_if_sta *ifsta = &sdata->u.sta; if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) || (!(ifsta->state == IEEE80211_STA_MLME_IBSS_JOINED) && !ieee80211_sta_active_ibss(sdata))) ieee80211_sta_find_ibss(sdata, ifsta); } } EXPORT_SYMBOL(ieee80211_scan_completed); void ieee80211_sta_scan_work(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, scan_work.work); struct net_device *dev = local->scan_dev; struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_supported_band *sband; struct ieee80211_channel *chan; int skip; unsigned long next_delay = 0; if (!local->sta_sw_scanning) return; switch (local->scan_state) { case SCAN_SET_CHANNEL: /* * Get current scan band. scan_band may be IEEE80211_NUM_BANDS * after we successfully scanned the last channel of the last * band (and the last band is supported by the hw) */ if (local->scan_band < IEEE80211_NUM_BANDS) sband = local->hw.wiphy->bands[local->scan_band]; else sband = NULL; /* * If we are at an unsupported band and have more bands * left to scan, advance to the next supported one. */ while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) { local->scan_band++; sband = local->hw.wiphy->bands[local->scan_band]; local->scan_channel_idx = 0; } /* if no more bands/channels left, complete scan */ if (!sband || local->scan_channel_idx >= sband->n_channels) { ieee80211_scan_completed(local_to_hw(local)); return; } skip = 0; chan = &sband->channels[local->scan_channel_idx]; if (chan->flags & IEEE80211_CHAN_DISABLED || (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && chan->flags & IEEE80211_CHAN_NO_IBSS)) skip = 1; if (!skip) { local->scan_channel = chan; if (ieee80211_hw_config(local)) { printk(KERN_DEBUG "%s: failed to set freq to " "%d MHz for scan\n", dev->name, chan->center_freq); skip = 1; } } /* advance state machine to next channel/band */ local->scan_channel_idx++; if (local->scan_channel_idx >= sband->n_channels) { /* * scan_band may end up == IEEE80211_NUM_BANDS, but * we'll catch that case above and complete the scan * if that is the case. */ local->scan_band++; local->scan_channel_idx = 0; } if (skip) break; next_delay = IEEE80211_PROBE_DELAY + usecs_to_jiffies(local->hw.channel_change_time); local->scan_state = SCAN_SEND_PROBE; break; case SCAN_SEND_PROBE: next_delay = IEEE80211_PASSIVE_CHANNEL_TIME; local->scan_state = SCAN_SET_CHANNEL; if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN) break; ieee80211_send_probe_req(sdata, NULL, local->scan_ssid, local->scan_ssid_len); next_delay = IEEE80211_CHANNEL_TIME; break; } if (local->sta_sw_scanning) queue_delayed_work(local->hw.workqueue, &local->scan_work, next_delay); } static int ieee80211_sta_start_scan(struct ieee80211_sub_if_data *scan_sdata, u8 *ssid, size_t ssid_len) { struct ieee80211_local *local = scan_sdata->local; struct ieee80211_sub_if_data *sdata; if (ssid_len > IEEE80211_MAX_SSID_LEN) return -EINVAL; /* MLME-SCAN.request (page 118) page 144 (11.1.3.1) * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS * BSSID: MACAddress * SSID * ScanType: ACTIVE, PASSIVE * ProbeDelay: delay (in microseconds) to be used prior to transmitting * a Probe frame during active scanning * ChannelList * MinChannelTime (>= ProbeDelay), in TU * MaxChannelTime: (>= MinChannelTime), in TU */ /* MLME-SCAN.confirm * BSSDescriptionSet * ResultCode: SUCCESS, INVALID_PARAMETERS */ if (local->sta_sw_scanning || local->sta_hw_scanning) { if (local->scan_dev == scan_sdata->dev) return 0; return -EBUSY; } if (local->ops->hw_scan) { int rc = local->ops->hw_scan(local_to_hw(local), ssid, ssid_len); if (!rc) { local->sta_hw_scanning = 1; local->scan_dev = scan_sdata->dev; } return rc; } local->sta_sw_scanning = 1; rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { netif_stop_queue(sdata->dev); if (sdata->vif.type == IEEE80211_IF_TYPE_STA && (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)) ieee80211_send_nullfunc(local, sdata, 1); } rcu_read_unlock(); if (ssid) { local->scan_ssid_len = ssid_len; memcpy(local->scan_ssid, ssid, ssid_len); } else local->scan_ssid_len = 0; local->scan_state = SCAN_SET_CHANNEL; local->scan_channel_idx = 0; local->scan_band = IEEE80211_BAND_2GHZ; local->scan_dev = scan_sdata->dev; netif_addr_lock_bh(local->mdev); local->filter_flags |= FIF_BCN_PRBRESP_PROMISC; local->ops->configure_filter(local_to_hw(local), FIF_BCN_PRBRESP_PROMISC, &local->filter_flags, local->mdev->mc_count, local->mdev->mc_list); netif_addr_unlock_bh(local->mdev); /* TODO: start scan as soon as all nullfunc frames are ACKed */ queue_delayed_work(local->hw.workqueue, &local->scan_work, IEEE80211_CHANNEL_TIME); return 0; } int ieee80211_sta_req_scan(struct ieee80211_sub_if_data *sdata, u8 *ssid, size_t ssid_len) { struct ieee80211_if_sta *ifsta = &sdata->u.sta; struct ieee80211_local *local = sdata->local; if (sdata->vif.type != IEEE80211_IF_TYPE_STA) return ieee80211_sta_start_scan(sdata, ssid, ssid_len); if (local->sta_sw_scanning || local->sta_hw_scanning) { if (local->scan_dev == sdata->dev) return 0; return -EBUSY; } ifsta->scan_ssid_len = ssid_len; if (ssid_len) memcpy(ifsta->scan_ssid, ssid, ssid_len); set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request); queue_work(local->hw.workqueue, &ifsta->work); return 0; } static char * ieee80211_sta_scan_result(struct ieee80211_local *local, struct iw_request_info *info, struct ieee80211_sta_bss *bss, char *current_ev, char *end_buf) { struct iw_event iwe; if (time_after(jiffies, bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE)) return current_ev; memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWAP; iwe.u.ap_addr.sa_family = ARPHRD_ETHER; memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN); current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_ADDR_LEN); memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWESSID; if (bss_mesh_cfg(bss)) { iwe.u.data.length = bss_mesh_id_len(bss); iwe.u.data.flags = 1; current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, bss_mesh_id(bss)); } else { iwe.u.data.length = bss->ssid_len; iwe.u.data.flags = 1; current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, bss->ssid); } if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || bss_mesh_cfg(bss)) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWMODE; if (bss_mesh_cfg(bss)) iwe.u.mode = IW_MODE_MESH; else if (bss->capability & WLAN_CAPABILITY_ESS) iwe.u.mode = IW_MODE_MASTER; else iwe.u.mode = IW_MODE_ADHOC; current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_UINT_LEN); } memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWFREQ; iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq); iwe.u.freq.e = 0; current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_FREQ_LEN); memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWFREQ; iwe.u.freq.m = bss->freq; iwe.u.freq.e = 6; current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_FREQ_LEN); memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVQUAL; iwe.u.qual.qual = bss->qual; iwe.u.qual.level = bss->signal; iwe.u.qual.noise = bss->noise; iwe.u.qual.updated = local->wstats_flags; current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_QUAL_LEN); memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWENCODE; if (bss->capability & WLAN_CAPABILITY_PRIVACY) iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; else iwe.u.data.flags = IW_ENCODE_DISABLED; iwe.u.data.length = 0; current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, ""); if (bss && bss->wpa_ie) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVGENIE; iwe.u.data.length = bss->wpa_ie_len; current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, bss->wpa_ie); } if (bss && bss->rsn_ie) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVGENIE; iwe.u.data.length = bss->rsn_ie_len; current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, bss->rsn_ie); } if (bss && bss->ht_ie) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVGENIE; iwe.u.data.length = bss->ht_ie_len; current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, bss->ht_ie); } if (bss && bss->supp_rates_len > 0) { /* display all supported rates in readable format */ char *p = current_ev + iwe_stream_lcp_len(info); int i; memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWRATE; /* Those two flags are ignored... */ iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; for (i = 0; i < bss->supp_rates_len; i++) { iwe.u.bitrate.value = ((bss->supp_rates[i] & 0x7f) * 500000); p = iwe_stream_add_value(info, current_ev, p, end_buf, &iwe, IW_EV_PARAM_LEN); } current_ev = p; } if (bss) { char *buf; buf = kmalloc(30, GFP_ATOMIC); if (buf) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVCUSTOM; sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp)); iwe.u.data.length = strlen(buf); current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, buf); memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVCUSTOM; sprintf(buf, " Last beacon: %dms ago", jiffies_to_msecs(jiffies - bss->last_update)); iwe.u.data.length = strlen(buf); current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, buf); kfree(buf); } } if (bss_mesh_cfg(bss)) { char *buf; u8 *cfg = bss_mesh_cfg(bss); buf = kmalloc(50, GFP_ATOMIC); if (buf) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVCUSTOM; sprintf(buf, "Mesh network (version %d)", cfg[0]); iwe.u.data.length = strlen(buf); current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, buf); sprintf(buf, "Path Selection Protocol ID: " "0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3], cfg[4]); iwe.u.data.length = strlen(buf); current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, buf); sprintf(buf, "Path Selection Metric ID: " "0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7], cfg[8]); iwe.u.data.length = strlen(buf); current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, buf); sprintf(buf, "Congestion Control Mode ID: " "0x%02X%02X%02X%02X", cfg[9], cfg[10], cfg[11], cfg[12]); iwe.u.data.length = strlen(buf); current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, buf); sprintf(buf, "Channel Precedence: " "0x%02X%02X%02X%02X", cfg[13], cfg[14], cfg[15], cfg[16]); iwe.u.data.length = strlen(buf); current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, buf); kfree(buf); } } return current_ev; } int ieee80211_sta_scan_results(struct ieee80211_local *local, struct iw_request_info *info, char *buf, size_t len) { char *current_ev = buf; char *end_buf = buf + len; struct ieee80211_sta_bss *bss; spin_lock_bh(&local->sta_bss_lock); list_for_each_entry(bss, &local->sta_bss_list, list) { if (buf + len - current_ev <= IW_EV_ADDR_LEN) { spin_unlock_bh(&local->sta_bss_lock); return -E2BIG; } current_ev = ieee80211_sta_scan_result(local, info, bss, current_ev, end_buf); } spin_unlock_bh(&local->sta_bss_lock); return current_ev - buf; } int ieee80211_sta_set_extra_ie(struct ieee80211_sub_if_data *sdata, char *ie, size_t len) { struct ieee80211_if_sta *ifsta = &sdata->u.sta; kfree(ifsta->extra_ie); if (len == 0) { ifsta->extra_ie = NULL; ifsta->extra_ie_len = 0; return 0; } ifsta->extra_ie = kmalloc(len, GFP_KERNEL); if (!ifsta->extra_ie) { ifsta->extra_ie_len = 0; return -ENOMEM; } memcpy(ifsta->extra_ie, ie, len); ifsta->extra_ie_len = len; return 0; } struct sta_info *ieee80211_ibss_add_sta(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u8 *bssid, u8 *addr, u64 supp_rates) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; DECLARE_MAC_BUF(mac); int band = local->hw.conf.channel->band; /* TODO: Could consider removing the least recently used entry and * allow new one to be added. */ if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: No room for a new IBSS STA " "entry %s\n", sdata->dev->name, print_mac(mac, addr)); } return NULL; } if (compare_ether_addr(bssid, sdata->u.sta.bssid)) return NULL; #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n", wiphy_name(local->hw.wiphy), print_mac(mac, addr), sdata->dev->name); #endif sta = sta_info_alloc(sdata, addr, GFP_ATOMIC); if (!sta) return NULL; set_sta_flags(sta, WLAN_STA_AUTHORIZED); if (supp_rates) sta->supp_rates[band] = supp_rates; else sta->supp_rates[band] = sdata->u.sta.supp_rates_bits[band]; rate_control_rate_init(sta, local); if (sta_info_insert(sta)) return NULL; return sta; } int ieee80211_sta_deauthenticate(struct ieee80211_sub_if_data *sdata, u16 reason) { struct ieee80211_if_sta *ifsta = &sdata->u.sta; printk(KERN_DEBUG "%s: deauthenticating by local choice (reason=%d)\n", sdata->dev->name, reason); if (sdata->vif.type != IEEE80211_IF_TYPE_STA && sdata->vif.type != IEEE80211_IF_TYPE_IBSS) return -EINVAL; ieee80211_send_deauth(sdata, ifsta, reason); ieee80211_set_disassoc(sdata, ifsta, 1); return 0; } int ieee80211_sta_disassociate(struct ieee80211_sub_if_data *sdata, u16 reason) { struct ieee80211_if_sta *ifsta = &sdata->u.sta; printk(KERN_DEBUG "%s: disassociating by local choice (reason=%d)\n", sdata->dev->name, reason); if (sdata->vif.type != IEEE80211_IF_TYPE_STA) return -EINVAL; if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED)) return -1; ieee80211_send_disassoc(sdata, ifsta, reason); ieee80211_set_disassoc(sdata, ifsta, 0); return 0; } void ieee80211_notify_mac(struct ieee80211_hw *hw, enum ieee80211_notification_types notif_type) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata; switch (notif_type) { case IEEE80211_NOTIFY_RE_ASSOC: rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (sdata->vif.type != IEEE80211_IF_TYPE_STA) continue; ieee80211_sta_req_auth(sdata, &sdata->u.sta); } rcu_read_unlock(); break; } } EXPORT_SYMBOL(ieee80211_notify_mac);