/* * The driver for the ForteMedia FM801 based soundcards * Copyright (c) by Jaroslav Kysela <perex@perex.cz> * * Support FM only card by Andy Shevchenko <andy@smile.org.ua> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/moduleparam.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/tlv.h> #include <sound/ac97_codec.h> #include <sound/mpu401.h> #include <sound/opl3.h> #include <sound/initval.h> #include <asm/io.h> #ifdef CONFIG_SND_FM801_TEA575X_BOOL #include <sound/tea575x-tuner.h> #define TEA575X_RADIO 1 #endif MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>"); MODULE_DESCRIPTION("ForteMedia FM801"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801}," "{Genius,SoundMaker Live 5.1}}"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ /* * Enable TEA575x tuner * 1 = MediaForte 256-PCS * 2 = MediaForte 256-PCPR * 3 = MediaForte 64-PCR * 16 = setup tuner only (this is additional bit), i.e. SF-64-PCR FM card * High 16-bits are video (radio) device number + 1 */ static int tea575x_tuner[SNDRV_CARDS]; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for the FM801 soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for the FM801 soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable FM801 soundcard."); module_param_array(tea575x_tuner, int, NULL, 0444); MODULE_PARM_DESC(tea575x_tuner, "Enable TEA575x tuner."); /* * Direct registers */ #define FM801_REG(chip, reg) (chip->port + FM801_##reg) #define FM801_PCM_VOL 0x00 /* PCM Output Volume */ #define FM801_FM_VOL 0x02 /* FM Output Volume */ #define FM801_I2S_VOL 0x04 /* I2S Volume */ #define FM801_REC_SRC 0x06 /* Record Source */ #define FM801_PLY_CTRL 0x08 /* Playback Control */ #define FM801_PLY_COUNT 0x0a /* Playback Count */ #define FM801_PLY_BUF1 0x0c /* Playback Bufer I */ #define FM801_PLY_BUF2 0x10 /* Playback Buffer II */ #define FM801_CAP_CTRL 0x14 /* Capture Control */ #define FM801_CAP_COUNT 0x16 /* Capture Count */ #define FM801_CAP_BUF1 0x18 /* Capture Buffer I */ #define FM801_CAP_BUF2 0x1c /* Capture Buffer II */ #define FM801_CODEC_CTRL 0x22 /* Codec Control */ #define FM801_I2S_MODE 0x24 /* I2S Mode Control */ #define FM801_VOLUME 0x26 /* Volume Up/Down/Mute Status */ #define FM801_I2C_CTRL 0x29 /* I2C Control */ #define FM801_AC97_CMD 0x2a /* AC'97 Command */ #define FM801_AC97_DATA 0x2c /* AC'97 Data */ #define FM801_MPU401_DATA 0x30 /* MPU401 Data */ #define FM801_MPU401_CMD 0x31 /* MPU401 Command */ #define FM801_GPIO_CTRL 0x52 /* General Purpose I/O Control */ #define FM801_GEN_CTRL 0x54 /* General Control */ #define FM801_IRQ_MASK 0x56 /* Interrupt Mask */ #define FM801_IRQ_STATUS 0x5a /* Interrupt Status */ #define FM801_OPL3_BANK0 0x68 /* OPL3 Status Read / Bank 0 Write */ #define FM801_OPL3_DATA0 0x69 /* OPL3 Data 0 Write */ #define FM801_OPL3_BANK1 0x6a /* OPL3 Bank 1 Write */ #define FM801_OPL3_DATA1 0x6b /* OPL3 Bank 1 Write */ #define FM801_POWERDOWN 0x70 /* Blocks Power Down Control */ /* codec access */ #define FM801_AC97_READ (1<<7) /* read=1, write=0 */ #define FM801_AC97_VALID (1<<8) /* port valid=1 */ #define FM801_AC97_BUSY (1<<9) /* busy=1 */ #define FM801_AC97_ADDR_SHIFT 10 /* codec id (2bit) */ /* playback and record control register bits */ #define FM801_BUF1_LAST (1<<1) #define FM801_BUF2_LAST (1<<2) #define FM801_START (1<<5) #define FM801_PAUSE (1<<6) #define FM801_IMMED_STOP (1<<7) #define FM801_RATE_SHIFT 8 #define FM801_RATE_MASK (15 << FM801_RATE_SHIFT) #define FM801_CHANNELS_4 (1<<12) /* playback only */ #define FM801_CHANNELS_6 (2<<12) /* playback only */ #define FM801_CHANNELS_6MS (3<<12) /* playback only */ #define FM801_CHANNELS_MASK (3<<12) #define FM801_16BIT (1<<14) #define FM801_STEREO (1<<15) /* IRQ status bits */ #define FM801_IRQ_PLAYBACK (1<<8) #define FM801_IRQ_CAPTURE (1<<9) #define FM801_IRQ_VOLUME (1<<14) #define FM801_IRQ_MPU (1<<15) /* GPIO control register */ #define FM801_GPIO_GP0 (1<<0) /* read/write */ #define FM801_GPIO_GP1 (1<<1) #define FM801_GPIO_GP2 (1<<2) #define FM801_GPIO_GP3 (1<<3) #define FM801_GPIO_GP(x) (1<<(0+(x))) #define FM801_GPIO_GD0 (1<<8) /* directions: 1 = input, 0 = output*/ #define FM801_GPIO_GD1 (1<<9) #define FM801_GPIO_GD2 (1<<10) #define FM801_GPIO_GD3 (1<<11) #define FM801_GPIO_GD(x) (1<<(8+(x))) #define FM801_GPIO_GS0 (1<<12) /* function select: */ #define FM801_GPIO_GS1 (1<<13) /* 1 = GPIO */ #define FM801_GPIO_GS2 (1<<14) /* 0 = other (S/PDIF, VOL) */ #define FM801_GPIO_GS3 (1<<15) #define FM801_GPIO_GS(x) (1<<(12+(x))) /* */ struct fm801 { int irq; unsigned long port; /* I/O port number */ unsigned int multichannel: 1, /* multichannel support */ secondary: 1; /* secondary codec */ unsigned char secondary_addr; /* address of the secondary codec */ unsigned int tea575x_tuner; /* tuner flags */ unsigned short ply_ctrl; /* playback control */ unsigned short cap_ctrl; /* capture control */ unsigned long ply_buffer; unsigned int ply_buf; unsigned int ply_count; unsigned int ply_size; unsigned int ply_pos; unsigned long cap_buffer; unsigned int cap_buf; unsigned int cap_count; unsigned int cap_size; unsigned int cap_pos; struct snd_ac97_bus *ac97_bus; struct snd_ac97 *ac97; struct snd_ac97 *ac97_sec; struct pci_dev *pci; struct snd_card *card; struct snd_pcm *pcm; struct snd_rawmidi *rmidi; struct snd_pcm_substream *playback_substream; struct snd_pcm_substream *capture_substream; unsigned int p_dma_size; unsigned int c_dma_size; spinlock_t reg_lock; struct snd_info_entry *proc_entry; #ifdef TEA575X_RADIO struct snd_tea575x tea; #endif #ifdef CONFIG_PM u16 saved_regs[0x20]; #endif }; static struct pci_device_id snd_fm801_ids[] = { { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* FM801 */ { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* Gallant Odyssey Sound 4 */ { 0, } }; MODULE_DEVICE_TABLE(pci, snd_fm801_ids); /* * common I/O routines */ static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg, unsigned short mask, unsigned short value) { int change; unsigned long flags; unsigned short old, new; spin_lock_irqsave(&chip->reg_lock, flags); old = inw(chip->port + reg); new = (old & ~mask) | value; change = old != new; if (change) outw(new, chip->port + reg); spin_unlock_irqrestore(&chip->reg_lock, flags); return change; } static void snd_fm801_codec_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct fm801 *chip = ac97->private_data; int idx; /* * Wait until the codec interface is not ready.. */ for (idx = 0; idx < 100; idx++) { if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY)) goto ok1; udelay(10); } snd_printk(KERN_ERR "AC'97 interface is busy (1)\n"); return; ok1: /* write data and address */ outw(val, FM801_REG(chip, AC97_DATA)); outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD)); /* * Wait until the write command is not completed.. */ for (idx = 0; idx < 1000; idx++) { if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY)) return; udelay(10); } snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num); } static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg) { struct fm801 *chip = ac97->private_data; int idx; /* * Wait until the codec interface is not ready.. */ for (idx = 0; idx < 100; idx++) { if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY)) goto ok1; udelay(10); } snd_printk(KERN_ERR "AC'97 interface is busy (1)\n"); return 0; ok1: /* read command */ outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ, FM801_REG(chip, AC97_CMD)); for (idx = 0; idx < 100; idx++) { if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY)) goto ok2; udelay(10); } snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num); return 0; ok2: for (idx = 0; idx < 1000; idx++) { if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID) goto ok3; udelay(10); } snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num); return 0; ok3: return inw(FM801_REG(chip, AC97_DATA)); } static unsigned int rates[] = { 5500, 8000, 9600, 11025, 16000, 19200, 22050, 32000, 38400, 44100, 48000 }; static struct snd_pcm_hw_constraint_list hw_constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static unsigned int channels[] = { 2, 4, 6 }; static struct snd_pcm_hw_constraint_list hw_constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; /* * Sample rate routines */ static unsigned short snd_fm801_rate_bits(unsigned int rate) { unsigned int idx; for (idx = 0; idx < ARRAY_SIZE(rates); idx++) if (rates[idx] == rate) return idx; snd_BUG(); return ARRAY_SIZE(rates) - 1; } /* * PCM part */ static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct fm801 *chip = snd_pcm_substream_chip(substream); spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: chip->ply_ctrl &= ~(FM801_BUF1_LAST | FM801_BUF2_LAST | FM801_PAUSE); chip->ply_ctrl |= FM801_START | FM801_IMMED_STOP; break; case SNDRV_PCM_TRIGGER_STOP: chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: chip->ply_ctrl |= FM801_PAUSE; break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: chip->ply_ctrl &= ~FM801_PAUSE; break; default: spin_unlock(&chip->reg_lock); snd_BUG(); return -EINVAL; } outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL)); spin_unlock(&chip->reg_lock); return 0; } static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct fm801 *chip = snd_pcm_substream_chip(substream); spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: chip->cap_ctrl &= ~(FM801_BUF1_LAST | FM801_BUF2_LAST | FM801_PAUSE); chip->cap_ctrl |= FM801_START | FM801_IMMED_STOP; break; case SNDRV_PCM_TRIGGER_STOP: chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: chip->cap_ctrl |= FM801_PAUSE; break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: chip->cap_ctrl &= ~FM801_PAUSE; break; default: spin_unlock(&chip->reg_lock); snd_BUG(); return -EINVAL; } outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL)); spin_unlock(&chip->reg_lock); return 0; } static int snd_fm801_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int snd_fm801_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; chip->ply_size = snd_pcm_lib_buffer_bytes(substream); chip->ply_count = snd_pcm_lib_period_bytes(substream); spin_lock_irq(&chip->reg_lock); chip->ply_ctrl &= ~(FM801_START | FM801_16BIT | FM801_STEREO | FM801_RATE_MASK | FM801_CHANNELS_MASK); if (snd_pcm_format_width(runtime->format) == 16) chip->ply_ctrl |= FM801_16BIT; if (runtime->channels > 1) { chip->ply_ctrl |= FM801_STEREO; if (runtime->channels == 4) chip->ply_ctrl |= FM801_CHANNELS_4; else if (runtime->channels == 6) chip->ply_ctrl |= FM801_CHANNELS_6; } chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT; chip->ply_buf = 0; outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL)); outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT)); chip->ply_buffer = runtime->dma_addr; chip->ply_pos = 0; outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1)); outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2)); spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; chip->cap_size = snd_pcm_lib_buffer_bytes(substream); chip->cap_count = snd_pcm_lib_period_bytes(substream); spin_lock_irq(&chip->reg_lock); chip->cap_ctrl &= ~(FM801_START | FM801_16BIT | FM801_STEREO | FM801_RATE_MASK); if (snd_pcm_format_width(runtime->format) == 16) chip->cap_ctrl |= FM801_16BIT; if (runtime->channels > 1) chip->cap_ctrl |= FM801_STEREO; chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT; chip->cap_buf = 0; outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL)); outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT)); chip->cap_buffer = runtime->dma_addr; chip->cap_pos = 0; outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1)); outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2)); spin_unlock_irq(&chip->reg_lock); return 0; } static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); size_t ptr; if (!(chip->ply_ctrl & FM801_START)) return 0; spin_lock(&chip->reg_lock); ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT)); if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) { ptr += chip->ply_count; ptr %= chip->ply_size; } spin_unlock(&chip->reg_lock); return bytes_to_frames(substream->runtime, ptr); } static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); size_t ptr; if (!(chip->cap_ctrl & FM801_START)) return 0; spin_lock(&chip->reg_lock); ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT)); if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) { ptr += chip->cap_count; ptr %= chip->cap_size; } spin_unlock(&chip->reg_lock); return bytes_to_frames(substream->runtime, ptr); } static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id) { struct fm801 *chip = dev_id; unsigned short status; unsigned int tmp; status = inw(FM801_REG(chip, IRQ_STATUS)); status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME; if (! status) return IRQ_NONE; /* ack first */ outw(status, FM801_REG(chip, IRQ_STATUS)); if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) { spin_lock(&chip->reg_lock); chip->ply_buf++; chip->ply_pos += chip->ply_count; chip->ply_pos %= chip->ply_size; tmp = chip->ply_pos + chip->ply_count; tmp %= chip->ply_size; outl(chip->ply_buffer + tmp, (chip->ply_buf & 1) ? FM801_REG(chip, PLY_BUF1) : FM801_REG(chip, PLY_BUF2)); spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(chip->playback_substream); } if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) { spin_lock(&chip->reg_lock); chip->cap_buf++; chip->cap_pos += chip->cap_count; chip->cap_pos %= chip->cap_size; tmp = chip->cap_pos + chip->cap_count; tmp %= chip->cap_size; outl(chip->cap_buffer + tmp, (chip->cap_buf & 1) ? FM801_REG(chip, CAP_BUF1) : FM801_REG(chip, CAP_BUF2)); spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(chip->capture_substream); } if (chip->rmidi && (status & FM801_IRQ_MPU)) snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data); if (status & FM801_IRQ_VOLUME) ;/* TODO */ return IRQ_HANDLED; } static struct snd_pcm_hardware snd_fm801_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000, .rate_min = 5500, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static struct snd_pcm_hardware snd_fm801_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000, .rate_min = 5500, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static int snd_fm801_playback_open(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; chip->playback_substream = substream; runtime->hw = snd_fm801_playback; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); if (chip->multichannel) { runtime->hw.channels_max = 6; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels); } if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0) return err; return 0; } static int snd_fm801_capture_open(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; chip->capture_substream = substream; runtime->hw = snd_fm801_capture; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0) return err; return 0; } static int snd_fm801_playback_close(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); chip->playback_substream = NULL; return 0; } static int snd_fm801_capture_close(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); chip->capture_substream = NULL; return 0; } static struct snd_pcm_ops snd_fm801_playback_ops = { .open = snd_fm801_playback_open, .close = snd_fm801_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_fm801_hw_params, .hw_free = snd_fm801_hw_free, .prepare = snd_fm801_playback_prepare, .trigger = snd_fm801_playback_trigger, .pointer = snd_fm801_playback_pointer, }; static struct snd_pcm_ops snd_fm801_capture_ops = { .open = snd_fm801_capture_open, .close = snd_fm801_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_fm801_hw_params, .hw_free = snd_fm801_hw_free, .prepare = snd_fm801_capture_prepare, .trigger = snd_fm801_capture_trigger, .pointer = snd_fm801_capture_pointer, }; static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm) { struct snd_pcm *pcm; int err; if (rpcm) *rpcm = NULL; if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops); pcm->private_data = chip; pcm->info_flags = 0; strcpy(pcm->name, "FM801"); chip->pcm = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), chip->multichannel ? 128*1024 : 64*1024, 128*1024); if (rpcm) *rpcm = pcm; return 0; } /* * TEA5757 radio */ #ifdef TEA575X_RADIO /* 256PCS GPIO numbers */ #define TEA_256PCS_DATA 1 #define TEA_256PCS_WRITE_ENABLE 2 /* inverted */ #define TEA_256PCS_BUS_CLOCK 3 static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val) { struct fm801 *chip = tea->private_data; unsigned short reg; int i = 25; spin_lock_irq(&chip->reg_lock); reg = inw(FM801_REG(chip, GPIO_CTRL)); /* use GPIO lines and set write enable bit */ reg |= FM801_GPIO_GS(TEA_256PCS_DATA) | FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) | FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK); /* all of lines are in the write direction */ /* clear data and clock lines */ reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) | FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) | FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) | FM801_GPIO_GP(TEA_256PCS_DATA) | FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) | FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE)); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); while (i--) { if (val & (1 << i)) reg |= FM801_GPIO_GP(TEA_256PCS_DATA); else reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK); outw(reg, FM801_REG(chip, GPIO_CTRL)); reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); } /* and reset the write enable bit */ reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) | FM801_GPIO_GP(TEA_256PCS_DATA); outw(reg, FM801_REG(chip, GPIO_CTRL)); spin_unlock_irq(&chip->reg_lock); } static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea) { struct fm801 *chip = tea->private_data; unsigned short reg; unsigned int val = 0; int i; spin_lock_irq(&chip->reg_lock); reg = inw(FM801_REG(chip, GPIO_CTRL)); /* use GPIO lines, set data direction to input */ reg |= FM801_GPIO_GS(TEA_256PCS_DATA) | FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) | FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) | FM801_GPIO_GD(TEA_256PCS_DATA) | FM801_GPIO_GP(TEA_256PCS_DATA) | FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE); /* all of lines are in the write direction, except data */ /* clear data, write enable and clock lines */ reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) | FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) | FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK)); for (i = 0; i < 24; i++) { reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); val <<= 1; if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA)) val |= 1; } spin_unlock_irq(&chip->reg_lock); return val; } /* 256PCPR GPIO numbers */ #define TEA_256PCPR_BUS_CLOCK 0 #define TEA_256PCPR_DATA 1 #define TEA_256PCPR_WRITE_ENABLE 2 /* inverted */ static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val) { struct fm801 *chip = tea->private_data; unsigned short reg; int i = 25; spin_lock_irq(&chip->reg_lock); reg = inw(FM801_REG(chip, GPIO_CTRL)); /* use GPIO lines and set write enable bit */ reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) | FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) | FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK); /* all of lines are in the write direction */ /* clear data and clock lines */ reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) | FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) | FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) | FM801_GPIO_GP(TEA_256PCPR_DATA) | FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) | FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE)); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); while (i--) { if (val & (1 << i)) reg |= FM801_GPIO_GP(TEA_256PCPR_DATA); else reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK); outw(reg, FM801_REG(chip, GPIO_CTRL)); reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); } /* and reset the write enable bit */ reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) | FM801_GPIO_GP(TEA_256PCPR_DATA); outw(reg, FM801_REG(chip, GPIO_CTRL)); spin_unlock_irq(&chip->reg_lock); } static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea) { struct fm801 *chip = tea->private_data; unsigned short reg; unsigned int val = 0; int i; spin_lock_irq(&chip->reg_lock); reg = inw(FM801_REG(chip, GPIO_CTRL)); /* use GPIO lines, set data direction to input */ reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) | FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) | FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) | FM801_GPIO_GD(TEA_256PCPR_DATA) | FM801_GPIO_GP(TEA_256PCPR_DATA) | FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE); /* all of lines are in the write direction, except data */ /* clear data, write enable and clock lines */ reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) | FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) | FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK)); for (i = 0; i < 24; i++) { reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); val <<= 1; if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA)) val |= 1; } spin_unlock_irq(&chip->reg_lock); return val; } /* 64PCR GPIO numbers */ #define TEA_64PCR_BUS_CLOCK 0 #define TEA_64PCR_WRITE_ENABLE 1 /* inverted */ #define TEA_64PCR_DATA 2 static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val) { struct fm801 *chip = tea->private_data; unsigned short reg; int i = 25; spin_lock_irq(&chip->reg_lock); reg = inw(FM801_REG(chip, GPIO_CTRL)); /* use GPIO lines and set write enable bit */ reg |= FM801_GPIO_GS(TEA_64PCR_DATA) | FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) | FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK); /* all of lines are in the write direction */ /* clear data and clock lines */ reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) | FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) | FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) | FM801_GPIO_GP(TEA_64PCR_DATA) | FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) | FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE)); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); while (i--) { if (val & (1 << i)) reg |= FM801_GPIO_GP(TEA_64PCR_DATA); else reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK); outw(reg, FM801_REG(chip, GPIO_CTRL)); reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); } /* and reset the write enable bit */ reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) | FM801_GPIO_GP(TEA_64PCR_DATA); outw(reg, FM801_REG(chip, GPIO_CTRL)); spin_unlock_irq(&chip->reg_lock); } static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea) { struct fm801 *chip = tea->private_data; unsigned short reg; unsigned int val = 0; int i; spin_lock_irq(&chip->reg_lock); reg = inw(FM801_REG(chip, GPIO_CTRL)); /* use GPIO lines, set data direction to input */ reg |= FM801_GPIO_GS(TEA_64PCR_DATA) | FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) | FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) | FM801_GPIO_GD(TEA_64PCR_DATA) | FM801_GPIO_GP(TEA_64PCR_DATA) | FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE); /* all of lines are in the write direction, except data */ /* clear data, write enable and clock lines */ reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) | FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) | FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK)); for (i = 0; i < 24; i++) { reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); val <<= 1; if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA)) val |= 1; } spin_unlock_irq(&chip->reg_lock); return val; } static void snd_fm801_tea575x_64pcr_mute(struct snd_tea575x *tea, unsigned int mute) { struct fm801 *chip = tea->private_data; unsigned short reg; spin_lock_irq(&chip->reg_lock); reg = inw(FM801_REG(chip, GPIO_CTRL)); if (mute) /* 0xf800 (mute) */ reg &= ~FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE); else /* 0xf802 (unmute) */ reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE); outw(reg, FM801_REG(chip, GPIO_CTRL)); udelay(1); spin_unlock_irq(&chip->reg_lock); } static struct snd_tea575x_ops snd_fm801_tea_ops[3] = { { /* 1 = MediaForte 256-PCS */ .write = snd_fm801_tea575x_256pcs_write, .read = snd_fm801_tea575x_256pcs_read, }, { /* 2 = MediaForte 256-PCPR */ .write = snd_fm801_tea575x_256pcpr_write, .read = snd_fm801_tea575x_256pcpr_read, }, { /* 3 = MediaForte 64-PCR */ .write = snd_fm801_tea575x_64pcr_write, .read = snd_fm801_tea575x_64pcr_read, .mute = snd_fm801_tea575x_64pcr_mute, } }; #endif /* * Mixer routines */ #define FM801_SINGLE(xname, reg, shift, mask, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \ .get = snd_fm801_get_single, .put = snd_fm801_put_single, \ .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) } static int snd_fm801_info_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int mask = (kcontrol->private_value >> 16) & 0xff; uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_fm801_get_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask; if (invert) ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0]; return 0; } static int snd_fm801_put_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; unsigned short val; val = (ucontrol->value.integer.value[0] & mask); if (invert) val = mask - val; return snd_fm801_update_bits(chip, reg, mask << shift, val << shift); } #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \ .get = snd_fm801_get_double, .put = snd_fm801_put_double, \ .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) } #define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ .name = xname, .info = snd_fm801_info_double, \ .get = snd_fm801_get_double, .put = snd_fm801_put_double, \ .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \ .tlv = { .p = (xtlv) } } static int snd_fm801_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int mask = (kcontrol->private_value >> 16) & 0xff; uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_fm801_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift_left = (kcontrol->private_value >> 8) & 0x0f; int shift_right = (kcontrol->private_value >> 12) & 0x0f; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; spin_lock_irq(&chip->reg_lock); ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask; ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask; spin_unlock_irq(&chip->reg_lock); if (invert) { ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0]; ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1]; } return 0; } static int snd_fm801_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift_left = (kcontrol->private_value >> 8) & 0x0f; int shift_right = (kcontrol->private_value >> 12) & 0x0f; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; unsigned short val1, val2; val1 = ucontrol->value.integer.value[0] & mask; val2 = ucontrol->value.integer.value[1] & mask; if (invert) { val1 = mask - val1; val2 = mask - val2; } return snd_fm801_update_bits(chip, reg, (mask << shift_left) | (mask << shift_right), (val1 << shift_left ) | (val2 << shift_right)); } static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static char *texts[5] = { "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary" }; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = 5; if (uinfo->value.enumerated.item > 4) uinfo->value.enumerated.item = 4; strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); unsigned short val; val = inw(FM801_REG(chip, REC_SRC)) & 7; if (val > 4) val = 4; ucontrol->value.enumerated.item[0] = val; return 0; } static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); unsigned short val; if ((val = ucontrol->value.enumerated.item[0]) > 4) return -EINVAL; return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val); } static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0); #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls) static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = { FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1, db_scale_dsp), FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1), FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1, db_scale_dsp), FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1), FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1, db_scale_dsp), FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Digital Capture Source", .info = snd_fm801_info_mux, .get = snd_fm801_get_mux, .put = snd_fm801_put_mux, } }; #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi) static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = { FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0), FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0), FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0), FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0), FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0), FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0), }; static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus) { struct fm801 *chip = bus->private_data; chip->ac97_bus = NULL; } static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97) { struct fm801 *chip = ac97->private_data; if (ac97->num == 0) { chip->ac97 = NULL; } else { chip->ac97_sec = NULL; } } static int __devinit snd_fm801_mixer(struct fm801 *chip) { struct snd_ac97_template ac97; unsigned int i; int err; static struct snd_ac97_bus_ops ops = { .write = snd_fm801_codec_write, .read = snd_fm801_codec_read, }; if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0) return err; chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; ac97.private_free = snd_fm801_mixer_free_ac97; if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0) return err; if (chip->secondary) { ac97.num = 1; ac97.addr = chip->secondary_addr; if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0) return err; } for (i = 0; i < FM801_CONTROLS; i++) snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip)); if (chip->multichannel) { for (i = 0; i < FM801_CONTROLS_MULTI; i++) snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip)); } return 0; } /* * initialization routines */ static int wait_for_codec(struct fm801 *chip, unsigned int codec_id, unsigned short reg, unsigned long waits) { unsigned long timeout = jiffies + waits; outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg, FM801_REG(chip, AC97_CMD)); udelay(5); do { if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY)) == FM801_AC97_VALID) return 0; schedule_timeout_uninterruptible(1); } while (time_after(timeout, jiffies)); return -EIO; } static int snd_fm801_chip_init(struct fm801 *chip, int resume) { unsigned short cmdw; if (chip->tea575x_tuner & 0x0010) goto __ac97_ok; /* codec cold reset + AC'97 warm reset */ outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL)); inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */ udelay(100); outw(0, FM801_REG(chip, CODEC_CTRL)); if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0) { snd_printk(KERN_ERR "Primary AC'97 codec not found\n"); if (! resume) return -EIO; } if (chip->multichannel) { if (chip->secondary_addr) { wait_for_codec(chip, chip->secondary_addr, AC97_VENDOR_ID1, msecs_to_jiffies(50)); } else { /* my card has the secondary codec */ /* at address #3, so the loop is inverted */ int i; for (i = 3; i > 0; i--) { if (!wait_for_codec(chip, i, AC97_VENDOR_ID1, msecs_to_jiffies(50))) { cmdw = inw(FM801_REG(chip, AC97_DATA)); if (cmdw != 0xffff && cmdw != 0) { chip->secondary = 1; chip->secondary_addr = i; break; } } } } /* the recovery phase, it seems that probing for non-existing codec might */ /* cause timeout problems */ wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750)); } __ac97_ok: /* init volume */ outw(0x0808, FM801_REG(chip, PCM_VOL)); outw(0x9f1f, FM801_REG(chip, FM_VOL)); outw(0x8808, FM801_REG(chip, I2S_VOL)); /* I2S control - I2S mode */ outw(0x0003, FM801_REG(chip, I2S_MODE)); /* interrupt setup */ cmdw = inw(FM801_REG(chip, IRQ_MASK)); if (chip->irq < 0) cmdw |= 0x00c3; /* mask everything, no PCM nor MPU */ else cmdw &= ~0x0083; /* unmask MPU, PLAYBACK & CAPTURE */ outw(cmdw, FM801_REG(chip, IRQ_MASK)); /* interrupt clear */ outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS)); return 0; } static int snd_fm801_free(struct fm801 *chip) { unsigned short cmdw; if (chip->irq < 0) goto __end_hw; /* interrupt setup - mask everything */ cmdw = inw(FM801_REG(chip, IRQ_MASK)); cmdw |= 0x00c3; outw(cmdw, FM801_REG(chip, IRQ_MASK)); __end_hw: #ifdef TEA575X_RADIO snd_tea575x_exit(&chip->tea); #endif if (chip->irq >= 0) free_irq(chip->irq, chip); pci_release_regions(chip->pci); pci_disable_device(chip->pci); kfree(chip); return 0; } static int snd_fm801_dev_free(struct snd_device *device) { struct fm801 *chip = device->device_data; return snd_fm801_free(chip); } static int __devinit snd_fm801_create(struct snd_card *card, struct pci_dev * pci, int tea575x_tuner, struct fm801 ** rchip) { struct fm801 *chip; int err; static struct snd_device_ops ops = { .dev_free = snd_fm801_dev_free, }; *rchip = NULL; if ((err = pci_enable_device(pci)) < 0) return err; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) { pci_disable_device(pci); return -ENOMEM; } spin_lock_init(&chip->reg_lock); chip->card = card; chip->pci = pci; chip->irq = -1; chip->tea575x_tuner = tea575x_tuner; if ((err = pci_request_regions(pci, "FM801")) < 0) { kfree(chip); pci_disable_device(pci); return err; } chip->port = pci_resource_start(pci, 0); if ((tea575x_tuner & 0x0010) == 0) { if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_SHARED, "FM801", chip)) { snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq); snd_fm801_free(chip); return -EBUSY; } chip->irq = pci->irq; pci_set_master(pci); } if (pci->revision >= 0xb1) /* FM801-AU */ chip->multichannel = 1; snd_fm801_chip_init(chip, 0); if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) { snd_fm801_free(chip); return err; } snd_card_set_dev(card, &pci->dev); #ifdef TEA575X_RADIO if (tea575x_tuner > 0 && (tea575x_tuner & 0x000f) < 4) { chip->tea.dev_nr = tea575x_tuner >> 16; chip->tea.card = card; chip->tea.freq_fixup = 10700; chip->tea.private_data = chip; chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & 0x000f) - 1]; snd_tea575x_init(&chip->tea); } #endif *rchip = chip; return 0; } static int __devinit snd_card_fm801_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct fm801 *chip; struct snd_opl3 *opl3; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card); if (err < 0) return err; if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) { snd_card_free(card); return err; } card->private_data = chip; strcpy(card->driver, "FM801"); strcpy(card->shortname, "ForteMedia FM801-"); strcat(card->shortname, chip->multichannel ? "AU" : "AS"); sprintf(card->longname, "%s at 0x%lx, irq %i", card->shortname, chip->port, chip->irq); if (tea575x_tuner[dev] & 0x0010) goto __fm801_tuner_only; if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) { snd_card_free(card); return err; } if ((err = snd_fm801_mixer(chip)) < 0) { snd_card_free(card); return err; } if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801, FM801_REG(chip, MPU401_DATA), MPU401_INFO_INTEGRATED, chip->irq, 0, &chip->rmidi)) < 0) { snd_card_free(card); return err; } if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0), FM801_REG(chip, OPL3_BANK1), OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) { snd_card_free(card); return err; } if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) { snd_card_free(card); return err; } __fm801_tuner_only: if ((err = snd_card_register(card)) < 0) { snd_card_free(card); return err; } pci_set_drvdata(pci, card); dev++; return 0; } static void __devexit snd_card_fm801_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } #ifdef CONFIG_PM static unsigned char saved_regs[] = { FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC, FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2, FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2, FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL, }; static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state) { struct snd_card *card = pci_get_drvdata(pci); struct fm801 *chip = card->private_data; int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); snd_pcm_suspend_all(chip->pcm); snd_ac97_suspend(chip->ac97); snd_ac97_suspend(chip->ac97_sec); for (i = 0; i < ARRAY_SIZE(saved_regs); i++) chip->saved_regs[i] = inw(chip->port + saved_regs[i]); /* FIXME: tea575x suspend */ pci_disable_device(pci); pci_save_state(pci); pci_set_power_state(pci, pci_choose_state(pci, state)); return 0; } static int snd_fm801_resume(struct pci_dev *pci) { struct snd_card *card = pci_get_drvdata(pci); struct fm801 *chip = card->private_data; int i; pci_set_power_state(pci, PCI_D0); pci_restore_state(pci); if (pci_enable_device(pci) < 0) { printk(KERN_ERR "fm801: pci_enable_device failed, " "disabling device\n"); snd_card_disconnect(card); return -EIO; } pci_set_master(pci); snd_fm801_chip_init(chip, 1); snd_ac97_resume(chip->ac97); snd_ac97_resume(chip->ac97_sec); for (i = 0; i < ARRAY_SIZE(saved_regs); i++) outw(chip->saved_regs[i], chip->port + saved_regs[i]); snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } #endif static struct pci_driver driver = { .name = "FM801", .id_table = snd_fm801_ids, .probe = snd_card_fm801_probe, .remove = __devexit_p(snd_card_fm801_remove), #ifdef CONFIG_PM .suspend = snd_fm801_suspend, .resume = snd_fm801_resume, #endif }; static int __init alsa_card_fm801_init(void) { return pci_register_driver(&driver); } static void __exit alsa_card_fm801_exit(void) { pci_unregister_driver(&driver); } module_init(alsa_card_fm801_init) module_exit(alsa_card_fm801_exit)