/* * arch/sh/kernel/process.c * * This file handles the architecture-dependent parts of process handling.. * * Copyright (C) 1995 Linus Torvalds * * SuperH version: Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima * Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC * Copyright (C) 2002 - 2008 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int hlt_counter; int ubc_usercnt = 0; void (*pm_idle)(void); void (*pm_power_off)(void); EXPORT_SYMBOL(pm_power_off); static int __init nohlt_setup(char *__unused) { hlt_counter = 1; return 1; } __setup("nohlt", nohlt_setup); static int __init hlt_setup(char *__unused) { hlt_counter = 0; return 1; } __setup("hlt", hlt_setup); static void default_idle(void) { if (!hlt_counter) { clear_thread_flag(TIF_POLLING_NRFLAG); smp_mb__after_clear_bit(); set_bl_bit(); while (!need_resched()) cpu_sleep(); clear_bl_bit(); set_thread_flag(TIF_POLLING_NRFLAG); } else while (!need_resched()) cpu_relax(); } void cpu_idle(void) { set_thread_flag(TIF_POLLING_NRFLAG); /* endless idle loop with no priority at all */ while (1) { void (*idle)(void) = pm_idle; if (!idle) idle = default_idle; tick_nohz_stop_sched_tick(1); while (!need_resched()) idle(); tick_nohz_restart_sched_tick(); preempt_enable_no_resched(); schedule(); preempt_disable(); check_pgt_cache(); } } void machine_restart(char * __unused) { /* SR.BL=1 and invoke address error to let CPU reset (manual reset) */ asm volatile("ldc %0, sr\n\t" "mov.l @%1, %0" : : "r" (0x10000000), "r" (0x80000001)); } void machine_halt(void) { local_irq_disable(); while (1) cpu_sleep(); } void machine_power_off(void) { if (pm_power_off) pm_power_off(); } void show_regs(struct pt_regs * regs) { printk("\n"); printk("Pid : %d, Comm: \t\t%s\n", task_pid_nr(current), current->comm); printk("CPU : %d \t\t%s (%s %.*s)\n\n", smp_processor_id(), print_tainted(), init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); print_symbol("PC is at %s\n", instruction_pointer(regs)); print_symbol("PR is at %s\n", regs->pr); printk("PC : %08lx SP : %08lx SR : %08lx ", regs->pc, regs->regs[15], regs->sr); #ifdef CONFIG_MMU printk("TEA : %08x\n", ctrl_inl(MMU_TEA)); #else printk("\n"); #endif printk("R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n", regs->regs[0],regs->regs[1], regs->regs[2],regs->regs[3]); printk("R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n", regs->regs[4],regs->regs[5], regs->regs[6],regs->regs[7]); printk("R8 : %08lx R9 : %08lx R10 : %08lx R11 : %08lx\n", regs->regs[8],regs->regs[9], regs->regs[10],regs->regs[11]); printk("R12 : %08lx R13 : %08lx R14 : %08lx\n", regs->regs[12],regs->regs[13], regs->regs[14]); printk("MACH: %08lx MACL: %08lx GBR : %08lx PR : %08lx\n", regs->mach, regs->macl, regs->gbr, regs->pr); show_trace(NULL, (unsigned long *)regs->regs[15], regs); show_code(regs); } /* * Create a kernel thread */ /* * This is the mechanism for creating a new kernel thread. * */ extern void kernel_thread_helper(void); __asm__(".align 5\n" "kernel_thread_helper:\n\t" "jsr @r5\n\t" " nop\n\t" "mov.l 1f, r1\n\t" "jsr @r1\n\t" " mov r0, r4\n\t" ".align 2\n\t" "1:.long do_exit"); /* Don't use this in BL=1(cli). Or else, CPU resets! */ int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { struct pt_regs regs; int pid; memset(®s, 0, sizeof(regs)); regs.regs[4] = (unsigned long)arg; regs.regs[5] = (unsigned long)fn; regs.pc = (unsigned long)kernel_thread_helper; regs.sr = (1 << 30); /* Ok, create the new process.. */ pid = do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); trace_mark(kernel_arch_kthread_create, "pid %d fn %p", pid, fn); return pid; } /* * Free current thread data structures etc.. */ void exit_thread(void) { if (current->thread.ubc_pc) { current->thread.ubc_pc = 0; ubc_usercnt -= 1; } } void flush_thread(void) { #if defined(CONFIG_SH_FPU) struct task_struct *tsk = current; /* Forget lazy FPU state */ clear_fpu(tsk, task_pt_regs(tsk)); clear_used_math(); #endif } void release_thread(struct task_struct *dead_task) { /* do nothing */ } /* Fill in the fpu structure for a core dump.. */ int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu) { int fpvalid = 0; #if defined(CONFIG_SH_FPU) struct task_struct *tsk = current; fpvalid = !!tsk_used_math(tsk); if (fpvalid) fpvalid = !fpregs_get(tsk, NULL, 0, sizeof(struct user_fpu_struct), fpu, NULL); #endif return fpvalid; } asmlinkage void ret_from_fork(void); int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { struct thread_info *ti = task_thread_info(p); struct pt_regs *childregs; #if defined(CONFIG_SH_FPU) struct task_struct *tsk = current; unlazy_fpu(tsk, regs); p->thread.fpu = tsk->thread.fpu; copy_to_stopped_child_used_math(p); #endif childregs = task_pt_regs(p); *childregs = *regs; if (user_mode(regs)) { childregs->regs[15] = usp; ti->addr_limit = USER_DS; } else { childregs->regs[15] = (unsigned long)childregs; ti->addr_limit = KERNEL_DS; } if (clone_flags & CLONE_SETTLS) childregs->gbr = childregs->regs[0]; childregs->regs[0] = 0; /* Set return value for child */ p->thread.sp = (unsigned long) childregs; p->thread.pc = (unsigned long) ret_from_fork; p->thread.ubc_pc = 0; return 0; } /* Tracing by user break controller. */ static void ubc_set_tracing(int asid, unsigned long pc) { #if defined(CONFIG_CPU_SH4A) unsigned long val; val = (UBC_CBR_ID_INST | UBC_CBR_RW_READ | UBC_CBR_CE); val |= (UBC_CBR_AIE | UBC_CBR_AIV_SET(asid)); ctrl_outl(val, UBC_CBR0); ctrl_outl(pc, UBC_CAR0); ctrl_outl(0x0, UBC_CAMR0); ctrl_outl(0x0, UBC_CBCR); val = (UBC_CRR_RES | UBC_CRR_PCB | UBC_CRR_BIE); ctrl_outl(val, UBC_CRR0); /* Read UBC register that we wrote last, for checking update */ val = ctrl_inl(UBC_CRR0); #else /* CONFIG_CPU_SH4A */ ctrl_outl(pc, UBC_BARA); #ifdef CONFIG_MMU ctrl_outb(asid, UBC_BASRA); #endif ctrl_outl(0, UBC_BAMRA); if (current_cpu_data.type == CPU_SH7729 || current_cpu_data.type == CPU_SH7710 || current_cpu_data.type == CPU_SH7712) { ctrl_outw(BBR_INST | BBR_READ | BBR_CPU, UBC_BBRA); ctrl_outl(BRCR_PCBA | BRCR_PCTE, UBC_BRCR); } else { ctrl_outw(BBR_INST | BBR_READ, UBC_BBRA); ctrl_outw(BRCR_PCBA, UBC_BRCR); } #endif /* CONFIG_CPU_SH4A */ } /* * switch_to(x,y) should switch tasks from x to y. * */ struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *next) { #if defined(CONFIG_SH_FPU) unlazy_fpu(prev, task_pt_regs(prev)); #endif #ifdef CONFIG_MMU /* * Restore the kernel mode register * k7 (r7_bank1) */ asm volatile("ldc %0, r7_bank" : /* no output */ : "r" (task_thread_info(next))); #endif /* If no tasks are using the UBC, we're done */ if (ubc_usercnt == 0) /* If no tasks are using the UBC, we're done */; else if (next->thread.ubc_pc && next->mm) { int asid = 0; #ifdef CONFIG_MMU asid |= cpu_asid(smp_processor_id(), next->mm); #endif ubc_set_tracing(asid, next->thread.ubc_pc); } else { #if defined(CONFIG_CPU_SH4A) ctrl_outl(UBC_CBR_INIT, UBC_CBR0); ctrl_outl(UBC_CRR_INIT, UBC_CRR0); #else ctrl_outw(0, UBC_BBRA); ctrl_outw(0, UBC_BBRB); #endif } return prev; } asmlinkage int sys_fork(unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs __regs) { #ifdef CONFIG_MMU struct pt_regs *regs = RELOC_HIDE(&__regs, 0); return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL); #else /* fork almost works, enough to trick you into looking elsewhere :-( */ return -EINVAL; #endif } asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp, unsigned long parent_tidptr, unsigned long child_tidptr, struct pt_regs __regs) { struct pt_regs *regs = RELOC_HIDE(&__regs, 0); if (!newsp) newsp = regs->regs[15]; return do_fork(clone_flags, newsp, regs, 0, (int __user *)parent_tidptr, (int __user *)child_tidptr); } /* * This is trivial, and on the face of it looks like it * could equally well be done in user mode. * * Not so, for quite unobvious reasons - register pressure. * In user mode vfork() cannot have a stack frame, and if * done by calling the "clone()" system call directly, you * do not have enough call-clobbered registers to hold all * the information you need. */ asmlinkage int sys_vfork(unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs __regs) { struct pt_regs *regs = RELOC_HIDE(&__regs, 0); return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs, 0, NULL, NULL); } /* * sys_execve() executes a new program. */ asmlinkage int sys_execve(char __user *ufilename, char __user * __user *uargv, char __user * __user *uenvp, unsigned long r7, struct pt_regs __regs) { struct pt_regs *regs = RELOC_HIDE(&__regs, 0); int error; char *filename; filename = getname(ufilename); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, uargv, uenvp, regs); if (error == 0) { task_lock(current); current->ptrace &= ~PT_DTRACE; task_unlock(current); } putname(filename); out: return error; } unsigned long get_wchan(struct task_struct *p) { unsigned long pc; if (!p || p == current || p->state == TASK_RUNNING) return 0; /* * The same comment as on the Alpha applies here, too ... */ pc = thread_saved_pc(p); #ifdef CONFIG_FRAME_POINTER if (in_sched_functions(pc)) { unsigned long schedule_frame = (unsigned long)p->thread.sp; return ((unsigned long *)schedule_frame)[21]; } #endif return pc; } asmlinkage void break_point_trap(void) { /* Clear tracing. */ #if defined(CONFIG_CPU_SH4A) ctrl_outl(UBC_CBR_INIT, UBC_CBR0); ctrl_outl(UBC_CRR_INIT, UBC_CRR0); #else ctrl_outw(0, UBC_BBRA); ctrl_outw(0, UBC_BBRB); #endif current->thread.ubc_pc = 0; ubc_usercnt -= 1; force_sig(SIGTRAP, current); }