/* * Contains common pci routines for ALL ppc platform * (based on pci_32.c and pci_64.c) * * Port for PPC64 David Engebretsen, IBM Corp. * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. * * Copyright (C) 2003 Anton Blanchard , IBM * Rework, based on alpha PCI code. * * Common pmac/prep/chrp pci routines. -- Cort * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static DEFINE_SPINLOCK(hose_spinlock); LIST_HEAD(hose_list); /* XXX kill that some day ... */ static int global_phb_number; /* Global phb counter */ /* ISA Memory physical address */ resource_size_t isa_mem_base; static struct dma_map_ops *pci_dma_ops = &dma_direct_ops; unsigned long isa_io_base; unsigned long pci_dram_offset; static int pci_bus_count; void set_pci_dma_ops(struct dma_map_ops *dma_ops) { pci_dma_ops = dma_ops; } struct dma_map_ops *get_pci_dma_ops(void) { return pci_dma_ops; } EXPORT_SYMBOL(get_pci_dma_ops); struct pci_controller *pcibios_alloc_controller(struct device_node *dev) { struct pci_controller *phb; phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); if (!phb) return NULL; spin_lock(&hose_spinlock); phb->global_number = global_phb_number++; list_add_tail(&phb->list_node, &hose_list); spin_unlock(&hose_spinlock); phb->dn = dev; phb->is_dynamic = mem_init_done; return phb; } void pcibios_free_controller(struct pci_controller *phb) { spin_lock(&hose_spinlock); list_del(&phb->list_node); spin_unlock(&hose_spinlock); if (phb->is_dynamic) kfree(phb); } static resource_size_t pcibios_io_size(const struct pci_controller *hose) { return resource_size(&hose->io_resource); } int pcibios_vaddr_is_ioport(void __iomem *address) { int ret = 0; struct pci_controller *hose; resource_size_t size; spin_lock(&hose_spinlock); list_for_each_entry(hose, &hose_list, list_node) { size = pcibios_io_size(hose); if (address >= hose->io_base_virt && address < (hose->io_base_virt + size)) { ret = 1; break; } } spin_unlock(&hose_spinlock); return ret; } unsigned long pci_address_to_pio(phys_addr_t address) { struct pci_controller *hose; resource_size_t size; unsigned long ret = ~0; spin_lock(&hose_spinlock); list_for_each_entry(hose, &hose_list, list_node) { size = pcibios_io_size(hose); if (address >= hose->io_base_phys && address < (hose->io_base_phys + size)) { unsigned long base = (unsigned long)hose->io_base_virt - _IO_BASE; ret = base + (address - hose->io_base_phys); break; } } spin_unlock(&hose_spinlock); return ret; } EXPORT_SYMBOL_GPL(pci_address_to_pio); /* * Return the domain number for this bus. */ int pci_domain_nr(struct pci_bus *bus) { struct pci_controller *hose = pci_bus_to_host(bus); return hose->global_number; } EXPORT_SYMBOL(pci_domain_nr); /* This routine is meant to be used early during boot, when the * PCI bus numbers have not yet been assigned, and you need to * issue PCI config cycles to an OF device. * It could also be used to "fix" RTAS config cycles if you want * to set pci_assign_all_buses to 1 and still use RTAS for PCI * config cycles. */ struct pci_controller *pci_find_hose_for_OF_device(struct device_node *node) { while (node) { struct pci_controller *hose, *tmp; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) if (hose->dn == node) return hose; node = node->parent; } return NULL; } static ssize_t pci_show_devspec(struct device *dev, struct device_attribute *attr, char *buf) { struct pci_dev *pdev; struct device_node *np; pdev = to_pci_dev(dev); np = pci_device_to_OF_node(pdev); if (np == NULL || np->full_name == NULL) return 0; return sprintf(buf, "%s", np->full_name); } static DEVICE_ATTR(devspec, S_IRUGO, pci_show_devspec, NULL); /* Add sysfs properties */ int pcibios_add_platform_entries(struct pci_dev *pdev) { return device_create_file(&pdev->dev, &dev_attr_devspec); } void pcibios_set_master(struct pci_dev *dev) { /* No special bus mastering setup handling */ } /* * Reads the interrupt pin to determine if interrupt is use by card. * If the interrupt is used, then gets the interrupt line from the * openfirmware and sets it in the pci_dev and pci_config line. */ int pci_read_irq_line(struct pci_dev *pci_dev) { struct of_irq oirq; unsigned int virq; /* The current device-tree that iSeries generates from the HV * PCI informations doesn't contain proper interrupt routing, * and all the fallback would do is print out crap, so we * don't attempt to resolve the interrupts here at all, some * iSeries specific fixup does it. * * In the long run, we will hopefully fix the generated device-tree * instead. */ pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); #ifdef DEBUG memset(&oirq, 0xff, sizeof(oirq)); #endif /* Try to get a mapping from the device-tree */ if (of_irq_map_pci(pci_dev, &oirq)) { u8 line, pin; /* If that fails, lets fallback to what is in the config * space and map that through the default controller. We * also set the type to level low since that's what PCI * interrupts are. If your platform does differently, then * either provide a proper interrupt tree or don't use this * function. */ if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) return -1; if (pin == 0) return -1; if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || line == 0xff || line == 0) { return -1; } pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", line, pin); virq = irq_create_mapping(NULL, line); if (virq) irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); } else { pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %s\n", oirq.size, oirq.specifier[0], oirq.specifier[1], oirq.controller ? oirq.controller->full_name : ""); virq = irq_create_of_mapping(oirq.controller, oirq.specifier, oirq.size); } if (!virq) { pr_debug(" Failed to map !\n"); return -1; } pr_debug(" Mapped to linux irq %d\n", virq); pci_dev->irq = virq; return 0; } EXPORT_SYMBOL(pci_read_irq_line); /* * Platform support for /proc/bus/pci/X/Y mmap()s, * modelled on the sparc64 implementation by Dave Miller. * -- paulus. */ /* * Adjust vm_pgoff of VMA such that it is the physical page offset * corresponding to the 32-bit pci bus offset for DEV requested by the user. * * Basically, the user finds the base address for his device which he wishes * to mmap. They read the 32-bit value from the config space base register, * add whatever PAGE_SIZE multiple offset they wish, and feed this into the * offset parameter of mmap on /proc/bus/pci/XXX for that device. * * Returns negative error code on failure, zero on success. */ static struct resource *__pci_mmap_make_offset(struct pci_dev *dev, resource_size_t *offset, enum pci_mmap_state mmap_state) { struct pci_controller *hose = pci_bus_to_host(dev->bus); unsigned long io_offset = 0; int i, res_bit; if (hose == 0) return NULL; /* should never happen */ /* If memory, add on the PCI bridge address offset */ if (mmap_state == pci_mmap_mem) { #if 0 /* See comment in pci_resource_to_user() for why this is disabled */ *offset += hose->pci_mem_offset; #endif res_bit = IORESOURCE_MEM; } else { io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; *offset += io_offset; res_bit = IORESOURCE_IO; } /* * Check that the offset requested corresponds to one of the * resources of the device. */ for (i = 0; i <= PCI_ROM_RESOURCE; i++) { struct resource *rp = &dev->resource[i]; int flags = rp->flags; /* treat ROM as memory (should be already) */ if (i == PCI_ROM_RESOURCE) flags |= IORESOURCE_MEM; /* Active and same type? */ if ((flags & res_bit) == 0) continue; /* In the range of this resource? */ if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end) continue; /* found it! construct the final physical address */ if (mmap_state == pci_mmap_io) *offset += hose->io_base_phys - io_offset; return rp; } return NULL; } /* * Set vm_page_prot of VMA, as appropriate for this architecture, for a pci * device mapping. */ static pgprot_t __pci_mmap_set_pgprot(struct pci_dev *dev, struct resource *rp, pgprot_t protection, enum pci_mmap_state mmap_state, int write_combine) { pgprot_t prot = protection; /* Write combine is always 0 on non-memory space mappings. On * memory space, if the user didn't pass 1, we check for a * "prefetchable" resource. This is a bit hackish, but we use * this to workaround the inability of /sysfs to provide a write * combine bit */ if (mmap_state != pci_mmap_mem) write_combine = 0; else if (write_combine == 0) { if (rp->flags & IORESOURCE_PREFETCH) write_combine = 1; } return pgprot_noncached(prot); } /* * This one is used by /dev/mem and fbdev who have no clue about the * PCI device, it tries to find the PCI device first and calls the * above routine */ pgprot_t pci_phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t prot) { struct pci_dev *pdev = NULL; struct resource *found = NULL; resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; int i; if (page_is_ram(pfn)) return prot; prot = pgprot_noncached(prot); for_each_pci_dev(pdev) { for (i = 0; i <= PCI_ROM_RESOURCE; i++) { struct resource *rp = &pdev->resource[i]; int flags = rp->flags; /* Active and same type? */ if ((flags & IORESOURCE_MEM) == 0) continue; /* In the range of this resource? */ if (offset < (rp->start & PAGE_MASK) || offset > rp->end) continue; found = rp; break; } if (found) break; } if (found) { if (found->flags & IORESOURCE_PREFETCH) prot = pgprot_noncached_wc(prot); pci_dev_put(pdev); } pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", (unsigned long long)offset, pgprot_val(prot)); return prot; } /* * Perform the actual remap of the pages for a PCI device mapping, as * appropriate for this architecture. The region in the process to map * is described by vm_start and vm_end members of VMA, the base physical * address is found in vm_pgoff. * The pci device structure is provided so that architectures may make mapping * decisions on a per-device or per-bus basis. * * Returns a negative error code on failure, zero on success. */ int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma, enum pci_mmap_state mmap_state, int write_combine) { resource_size_t offset = ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; struct resource *rp; int ret; rp = __pci_mmap_make_offset(dev, &offset, mmap_state); if (rp == NULL) return -EINVAL; vma->vm_pgoff = offset >> PAGE_SHIFT; vma->vm_page_prot = __pci_mmap_set_pgprot(dev, rp, vma->vm_page_prot, mmap_state, write_combine); ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vma->vm_end - vma->vm_start, vma->vm_page_prot); return ret; } /* This provides legacy IO read access on a bus */ int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) { unsigned long offset; struct pci_controller *hose = pci_bus_to_host(bus); struct resource *rp = &hose->io_resource; void __iomem *addr; /* Check if port can be supported by that bus. We only check * the ranges of the PHB though, not the bus itself as the rules * for forwarding legacy cycles down bridges are not our problem * here. So if the host bridge supports it, we do it. */ offset = (unsigned long)hose->io_base_virt - _IO_BASE; offset += port; if (!(rp->flags & IORESOURCE_IO)) return -ENXIO; if (offset < rp->start || (offset + size) > rp->end) return -ENXIO; addr = hose->io_base_virt + port; switch (size) { case 1: *((u8 *)val) = in_8(addr); return 1; case 2: if (port & 1) return -EINVAL; *((u16 *)val) = in_le16(addr); return 2; case 4: if (port & 3) return -EINVAL; *((u32 *)val) = in_le32(addr); return 4; } return -EINVAL; } /* This provides legacy IO write access on a bus */ int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) { unsigned long offset; struct pci_controller *hose = pci_bus_to_host(bus); struct resource *rp = &hose->io_resource; void __iomem *addr; /* Check if port can be supported by that bus. We only check * the ranges of the PHB though, not the bus itself as the rules * for forwarding legacy cycles down bridges are not our problem * here. So if the host bridge supports it, we do it. */ offset = (unsigned long)hose->io_base_virt - _IO_BASE; offset += port; if (!(rp->flags & IORESOURCE_IO)) return -ENXIO; if (offset < rp->start || (offset + size) > rp->end) return -ENXIO; addr = hose->io_base_virt + port; /* WARNING: The generic code is idiotic. It gets passed a pointer * to what can be a 1, 2 or 4 byte quantity and always reads that * as a u32, which means that we have to correct the location of * the data read within those 32 bits for size 1 and 2 */ switch (size) { case 1: out_8(addr, val >> 24); return 1; case 2: if (port & 1) return -EINVAL; out_le16(addr, val >> 16); return 2; case 4: if (port & 3) return -EINVAL; out_le32(addr, val); return 4; } return -EINVAL; } /* This provides legacy IO or memory mmap access on a bus */ int pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, enum pci_mmap_state mmap_state) { struct pci_controller *hose = pci_bus_to_host(bus); resource_size_t offset = ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; resource_size_t size = vma->vm_end - vma->vm_start; struct resource *rp; pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", pci_domain_nr(bus), bus->number, mmap_state == pci_mmap_mem ? "MEM" : "IO", (unsigned long long)offset, (unsigned long long)(offset + size - 1)); if (mmap_state == pci_mmap_mem) { /* Hack alert ! * * Because X is lame and can fail starting if it gets an error * trying to mmap legacy_mem (instead of just moving on without * legacy memory access) we fake it here by giving it anonymous * memory, effectively behaving just like /dev/zero */ if ((offset + size) > hose->isa_mem_size) { #ifdef CONFIG_MMU printk(KERN_DEBUG "Process %s (pid:%d) mapped non-existing PCI" "legacy memory for 0%04x:%02x\n", current->comm, current->pid, pci_domain_nr(bus), bus->number); #endif if (vma->vm_flags & VM_SHARED) return shmem_zero_setup(vma); return 0; } offset += hose->isa_mem_phys; } else { unsigned long io_offset = (unsigned long)hose->io_base_virt - \ _IO_BASE; unsigned long roffset = offset + io_offset; rp = &hose->io_resource; if (!(rp->flags & IORESOURCE_IO)) return -ENXIO; if (roffset < rp->start || (roffset + size) > rp->end) return -ENXIO; offset += hose->io_base_phys; } pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); vma->vm_pgoff = offset >> PAGE_SHIFT; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vma->vm_end - vma->vm_start, vma->vm_page_prot); } void pci_resource_to_user(const struct pci_dev *dev, int bar, const struct resource *rsrc, resource_size_t *start, resource_size_t *end) { struct pci_controller *hose = pci_bus_to_host(dev->bus); resource_size_t offset = 0; if (hose == NULL) return; if (rsrc->flags & IORESOURCE_IO) offset = (unsigned long)hose->io_base_virt - _IO_BASE; /* We pass a fully fixed up address to userland for MMIO instead of * a BAR value because X is lame and expects to be able to use that * to pass to /dev/mem ! * * That means that we'll have potentially 64 bits values where some * userland apps only expect 32 (like X itself since it thinks only * Sparc has 64 bits MMIO) but if we don't do that, we break it on * 32 bits CHRPs :-( * * Hopefully, the sysfs insterface is immune to that gunk. Once X * has been fixed (and the fix spread enough), we can re-enable the * 2 lines below and pass down a BAR value to userland. In that case * we'll also have to re-enable the matching code in * __pci_mmap_make_offset(). * * BenH. */ #if 0 else if (rsrc->flags & IORESOURCE_MEM) offset = hose->pci_mem_offset; #endif *start = rsrc->start - offset; *end = rsrc->end - offset; } /** * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree * @hose: newly allocated pci_controller to be setup * @dev: device node of the host bridge * @primary: set if primary bus (32 bits only, soon to be deprecated) * * This function will parse the "ranges" property of a PCI host bridge device * node and setup the resource mapping of a pci controller based on its * content. * * Life would be boring if it wasn't for a few issues that we have to deal * with here: * * - We can only cope with one IO space range and up to 3 Memory space * ranges. However, some machines (thanks Apple !) tend to split their * space into lots of small contiguous ranges. So we have to coalesce. * * - We can only cope with all memory ranges having the same offset * between CPU addresses and PCI addresses. Unfortunately, some bridges * are setup for a large 1:1 mapping along with a small "window" which * maps PCI address 0 to some arbitrary high address of the CPU space in * order to give access to the ISA memory hole. * The way out of here that I've chosen for now is to always set the * offset based on the first resource found, then override it if we * have a different offset and the previous was set by an ISA hole. * * - Some busses have IO space not starting at 0, which causes trouble with * the way we do our IO resource renumbering. The code somewhat deals with * it for 64 bits but I would expect problems on 32 bits. * * - Some 32 bits platforms such as 4xx can have physical space larger than * 32 bits so we need to use 64 bits values for the parsing */ void __devinit pci_process_bridge_OF_ranges(struct pci_controller *hose, struct device_node *dev, int primary) { const u32 *ranges; int rlen; int pna = of_n_addr_cells(dev); int np = pna + 5; int memno = 0, isa_hole = -1; u32 pci_space; unsigned long long pci_addr, cpu_addr, pci_next, cpu_next, size; unsigned long long isa_mb = 0; struct resource *res; printk(KERN_INFO "PCI host bridge %s %s ranges:\n", dev->full_name, primary ? "(primary)" : ""); /* Get ranges property */ ranges = of_get_property(dev, "ranges", &rlen); if (ranges == NULL) return; /* Parse it */ pr_debug("Parsing ranges property...\n"); while ((rlen -= np * 4) >= 0) { /* Read next ranges element */ pci_space = ranges[0]; pci_addr = of_read_number(ranges + 1, 2); cpu_addr = of_translate_address(dev, ranges + 3); size = of_read_number(ranges + pna + 3, 2); pr_debug("pci_space: 0x%08x pci_addr:0x%016llx " "cpu_addr:0x%016llx size:0x%016llx\n", pci_space, pci_addr, cpu_addr, size); ranges += np; /* If we failed translation or got a zero-sized region * (some FW try to feed us with non sensical zero sized regions * such as power3 which look like some kind of attempt * at exposing the VGA memory hole) */ if (cpu_addr == OF_BAD_ADDR || size == 0) continue; /* Now consume following elements while they are contiguous */ for (; rlen >= np * sizeof(u32); ranges += np, rlen -= np * 4) { if (ranges[0] != pci_space) break; pci_next = of_read_number(ranges + 1, 2); cpu_next = of_translate_address(dev, ranges + 3); if (pci_next != pci_addr + size || cpu_next != cpu_addr + size) break; size += of_read_number(ranges + pna + 3, 2); } /* Act based on address space type */ res = NULL; switch ((pci_space >> 24) & 0x3) { case 1: /* PCI IO space */ printk(KERN_INFO " IO 0x%016llx..0x%016llx -> 0x%016llx\n", cpu_addr, cpu_addr + size - 1, pci_addr); /* We support only one IO range */ if (hose->pci_io_size) { printk(KERN_INFO " \\--> Skipped (too many) !\n"); continue; } /* On 32 bits, limit I/O space to 16MB */ if (size > 0x01000000) size = 0x01000000; /* 32 bits needs to map IOs here */ hose->io_base_virt = ioremap(cpu_addr, size); /* Expect trouble if pci_addr is not 0 */ if (primary) isa_io_base = (unsigned long)hose->io_base_virt; /* pci_io_size and io_base_phys always represent IO * space starting at 0 so we factor in pci_addr */ hose->pci_io_size = pci_addr + size; hose->io_base_phys = cpu_addr - pci_addr; /* Build resource */ res = &hose->io_resource; res->flags = IORESOURCE_IO; res->start = pci_addr; break; case 2: /* PCI Memory space */ case 3: /* PCI 64 bits Memory space */ printk(KERN_INFO " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", cpu_addr, cpu_addr + size - 1, pci_addr, (pci_space & 0x40000000) ? "Prefetch" : ""); /* We support only 3 memory ranges */ if (memno >= 3) { printk(KERN_INFO " \\--> Skipped (too many) !\n"); continue; } /* Handles ISA memory hole space here */ if (pci_addr == 0) { isa_mb = cpu_addr; isa_hole = memno; if (primary || isa_mem_base == 0) isa_mem_base = cpu_addr; hose->isa_mem_phys = cpu_addr; hose->isa_mem_size = size; } /* We get the PCI/Mem offset from the first range or * the, current one if the offset came from an ISA * hole. If they don't match, bugger. */ if (memno == 0 || (isa_hole >= 0 && pci_addr != 0 && hose->pci_mem_offset == isa_mb)) hose->pci_mem_offset = cpu_addr - pci_addr; else if (pci_addr != 0 && hose->pci_mem_offset != cpu_addr - pci_addr) { printk(KERN_INFO " \\--> Skipped (offset mismatch) !\n"); continue; } /* Build resource */ res = &hose->mem_resources[memno++]; res->flags = IORESOURCE_MEM; if (pci_space & 0x40000000) res->flags |= IORESOURCE_PREFETCH; res->start = cpu_addr; break; } if (res != NULL) { res->name = dev->full_name; res->end = res->start + size - 1; res->parent = NULL; res->sibling = NULL; res->child = NULL; } } /* If there's an ISA hole and the pci_mem_offset is -not- matching * the ISA hole offset, then we need to remove the ISA hole from * the resource list for that brige */ if (isa_hole >= 0 && hose->pci_mem_offset != isa_mb) { unsigned int next = isa_hole + 1; printk(KERN_INFO " Removing ISA hole at 0x%016llx\n", isa_mb); if (next < memno) memmove(&hose->mem_resources[isa_hole], &hose->mem_resources[next], sizeof(struct resource) * (memno - next)); hose->mem_resources[--memno].flags = 0; } } /* Decide whether to display the domain number in /proc */ int pci_proc_domain(struct pci_bus *bus) { struct pci_controller *hose = pci_bus_to_host(bus); return 0; } /* This header fixup will do the resource fixup for all devices as they are * probed, but not for bridge ranges */ static void __devinit pcibios_fixup_resources(struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); int i; if (!hose) { printk(KERN_ERR "No host bridge for PCI dev %s !\n", pci_name(dev)); return; } for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { struct resource *res = dev->resource + i; if (!res->flags) continue; if (res->start == 0) { pr_debug("PCI:%s Resource %d %016llx-%016llx [%x]" \ "is unassigned\n", pci_name(dev), i, (unsigned long long)res->start, (unsigned long long)res->end, (unsigned int)res->flags); res->end -= res->start; res->start = 0; res->flags |= IORESOURCE_UNSET; continue; } pr_debug("PCI:%s Resource %d %016llx-%016llx [%x]\n", pci_name(dev), i, (unsigned long long)res->start,\ (unsigned long long)res->end, (unsigned int)res->flags); } } DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); /* This function tries to figure out if a bridge resource has been initialized * by the firmware or not. It doesn't have to be absolutely bullet proof, but * things go more smoothly when it gets it right. It should covers cases such * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges */ static int __devinit pcibios_uninitialized_bridge_resource(struct pci_bus *bus, struct resource *res) { struct pci_controller *hose = pci_bus_to_host(bus); struct pci_dev *dev = bus->self; resource_size_t offset; u16 command; int i; /* Job is a bit different between memory and IO */ if (res->flags & IORESOURCE_MEM) { /* If the BAR is non-0 (res != pci_mem_offset) then it's * probably been initialized by somebody */ if (res->start != hose->pci_mem_offset) return 0; /* The BAR is 0, let's check if memory decoding is enabled on * the bridge. If not, we consider it unassigned */ pci_read_config_word(dev, PCI_COMMAND, &command); if ((command & PCI_COMMAND_MEMORY) == 0) return 1; /* Memory decoding is enabled and the BAR is 0. If any of * the bridge resources covers that starting address (0 then * it's good enough for us for memory */ for (i = 0; i < 3; i++) { if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && hose->mem_resources[i].start == hose->pci_mem_offset) return 0; } /* Well, it starts at 0 and we know it will collide so we may as * well consider it as unassigned. That covers the Apple case. */ return 1; } else { /* If the BAR is non-0, then we consider it assigned */ offset = (unsigned long)hose->io_base_virt - _IO_BASE; if (((res->start - offset) & 0xfffffffful) != 0) return 0; /* Here, we are a bit different than memory as typically IO * space starting at low addresses -is- valid. What we do * instead if that we consider as unassigned anything that * doesn't have IO enabled in the PCI command register, * and that's it. */ pci_read_config_word(dev, PCI_COMMAND, &command); if (command & PCI_COMMAND_IO) return 0; /* It's starting at 0 and IO is disabled in the bridge, consider * it unassigned */ return 1; } } /* Fixup resources of a PCI<->PCI bridge */ static void __devinit pcibios_fixup_bridge(struct pci_bus *bus) { struct resource *res; int i; struct pci_dev *dev = bus->self; pci_bus_for_each_resource(bus, res, i) { if (!res) continue; if (!res->flags) continue; if (i >= 3 && bus->self->transparent) continue; pr_debug("PCI:%s Bus rsrc %d %016llx-%016llx [%x] fixup...\n", pci_name(dev), i, (unsigned long long)res->start,\ (unsigned long long)res->end, (unsigned int)res->flags); /* Try to detect uninitialized P2P bridge resources, * and clear them out so they get re-assigned later */ if (pcibios_uninitialized_bridge_resource(bus, res)) { res->flags = 0; pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); } else { pr_debug("PCI:%s %016llx-%016llx\n", pci_name(dev), (unsigned long long)res->start, (unsigned long long)res->end); } } } void __devinit pcibios_setup_bus_self(struct pci_bus *bus) { /* Fix up the bus resources for P2P bridges */ if (bus->self != NULL) pcibios_fixup_bridge(bus); } void __devinit pcibios_setup_bus_devices(struct pci_bus *bus) { struct pci_dev *dev; pr_debug("PCI: Fixup bus devices %d (%s)\n", bus->number, bus->self ? pci_name(bus->self) : "PHB"); list_for_each_entry(dev, &bus->devices, bus_list) { /* Setup OF node pointer in archdata */ dev->dev.of_node = pci_device_to_OF_node(dev); /* Fixup NUMA node as it may not be setup yet by the generic * code and is needed by the DMA init */ set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); /* Hook up default DMA ops */ set_dma_ops(&dev->dev, pci_dma_ops); dev->dev.archdata.dma_data = (void *)PCI_DRAM_OFFSET; /* Read default IRQs and fixup if necessary */ pci_read_irq_line(dev); } } void __devinit pcibios_fixup_bus(struct pci_bus *bus) { /* When called from the generic PCI probe, read PCI<->PCI bridge * bases. This is -not- called when generating the PCI tree from * the OF device-tree. */ if (bus->self != NULL) pci_read_bridge_bases(bus); /* Now fixup the bus bus */ pcibios_setup_bus_self(bus); /* Now fixup devices on that bus */ pcibios_setup_bus_devices(bus); } EXPORT_SYMBOL(pcibios_fixup_bus); static int skip_isa_ioresource_align(struct pci_dev *dev) { return 0; } /* * We need to avoid collisions with `mirrored' VGA ports * and other strange ISA hardware, so we always want the * addresses to be allocated in the 0x000-0x0ff region * modulo 0x400. * * Why? Because some silly external IO cards only decode * the low 10 bits of the IO address. The 0x00-0xff region * is reserved for motherboard devices that decode all 16 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, * but we want to try to avoid allocating at 0x2900-0x2bff * which might have be mirrored at 0x0100-0x03ff.. */ resource_size_t pcibios_align_resource(void *data, const struct resource *res, resource_size_t size, resource_size_t align) { struct pci_dev *dev = data; resource_size_t start = res->start; if (res->flags & IORESOURCE_IO) { if (skip_isa_ioresource_align(dev)) return start; if (start & 0x300) start = (start + 0x3ff) & ~0x3ff; } return start; } EXPORT_SYMBOL(pcibios_align_resource); /* * Reparent resource children of pr that conflict with res * under res, and make res replace those children. */ static int __init reparent_resources(struct resource *parent, struct resource *res) { struct resource *p, **pp; struct resource **firstpp = NULL; for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { if (p->end < res->start) continue; if (res->end < p->start) break; if (p->start < res->start || p->end > res->end) return -1; /* not completely contained */ if (firstpp == NULL) firstpp = pp; } if (firstpp == NULL) return -1; /* didn't find any conflicting entries? */ res->parent = parent; res->child = *firstpp; res->sibling = *pp; *firstpp = res; *pp = NULL; for (p = res->child; p != NULL; p = p->sibling) { p->parent = res; pr_debug("PCI: Reparented %s [%llx..%llx] under %s\n", p->name, (unsigned long long)p->start, (unsigned long long)p->end, res->name); } return 0; } /* * Handle resources of PCI devices. If the world were perfect, we could * just allocate all the resource regions and do nothing more. It isn't. * On the other hand, we cannot just re-allocate all devices, as it would * require us to know lots of host bridge internals. So we attempt to * keep as much of the original configuration as possible, but tweak it * when it's found to be wrong. * * Known BIOS problems we have to work around: * - I/O or memory regions not configured * - regions configured, but not enabled in the command register * - bogus I/O addresses above 64K used * - expansion ROMs left enabled (this may sound harmless, but given * the fact the PCI specs explicitly allow address decoders to be * shared between expansion ROMs and other resource regions, it's * at least dangerous) * * Our solution: * (1) Allocate resources for all buses behind PCI-to-PCI bridges. * This gives us fixed barriers on where we can allocate. * (2) Allocate resources for all enabled devices. If there is * a collision, just mark the resource as unallocated. Also * disable expansion ROMs during this step. * (3) Try to allocate resources for disabled devices. If the * resources were assigned correctly, everything goes well, * if they weren't, they won't disturb allocation of other * resources. * (4) Assign new addresses to resources which were either * not configured at all or misconfigured. If explicitly * requested by the user, configure expansion ROM address * as well. */ void pcibios_allocate_bus_resources(struct pci_bus *bus) { struct pci_bus *b; int i; struct resource *res, *pr; pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", pci_domain_nr(bus), bus->number); pci_bus_for_each_resource(bus, res, i) { if (!res || !res->flags || res->start > res->end || res->parent) continue; if (bus->parent == NULL) pr = (res->flags & IORESOURCE_IO) ? &ioport_resource : &iomem_resource; else { /* Don't bother with non-root busses when * re-assigning all resources. We clear the * resource flags as if they were colliding * and as such ensure proper re-allocation * later. */ pr = pci_find_parent_resource(bus->self, res); if (pr == res) { /* this happens when the generic PCI * code (wrongly) decides that this * bridge is transparent -- paulus */ continue; } } pr_debug("PCI: %s (bus %d) bridge rsrc %d: %016llx-%016llx " "[0x%x], parent %p (%s)\n", bus->self ? pci_name(bus->self) : "PHB", bus->number, i, (unsigned long long)res->start, (unsigned long long)res->end, (unsigned int)res->flags, pr, (pr && pr->name) ? pr->name : "nil"); if (pr && !(pr->flags & IORESOURCE_UNSET)) { if (request_resource(pr, res) == 0) continue; /* * Must be a conflict with an existing entry. * Move that entry (or entries) under the * bridge resource and try again. */ if (reparent_resources(pr, res) == 0) continue; } printk(KERN_WARNING "PCI: Cannot allocate resource region " "%d of PCI bridge %d, will remap\n", i, bus->number); clear_resource: res->start = res->end = 0; res->flags = 0; } list_for_each_entry(b, &bus->children, node) pcibios_allocate_bus_resources(b); } static inline void __devinit alloc_resource(struct pci_dev *dev, int idx) { struct resource *pr, *r = &dev->resource[idx]; pr_debug("PCI: Allocating %s: Resource %d: %016llx..%016llx [%x]\n", pci_name(dev), idx, (unsigned long long)r->start, (unsigned long long)r->end, (unsigned int)r->flags); pr = pci_find_parent_resource(dev, r); if (!pr || (pr->flags & IORESOURCE_UNSET) || request_resource(pr, r) < 0) { printk(KERN_WARNING "PCI: Cannot allocate resource region %d" " of device %s, will remap\n", idx, pci_name(dev)); if (pr) pr_debug("PCI: parent is %p: %016llx-%016llx [%x]\n", pr, (unsigned long long)pr->start, (unsigned long long)pr->end, (unsigned int)pr->flags); /* We'll assign a new address later */ r->flags |= IORESOURCE_UNSET; r->end -= r->start; r->start = 0; } } static void __init pcibios_allocate_resources(int pass) { struct pci_dev *dev = NULL; int idx, disabled; u16 command; struct resource *r; for_each_pci_dev(dev) { pci_read_config_word(dev, PCI_COMMAND, &command); for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { r = &dev->resource[idx]; if (r->parent) /* Already allocated */ continue; if (!r->flags || (r->flags & IORESOURCE_UNSET)) continue; /* Not assigned at all */ /* We only allocate ROMs on pass 1 just in case they * have been screwed up by firmware */ if (idx == PCI_ROM_RESOURCE) disabled = 1; if (r->flags & IORESOURCE_IO) disabled = !(command & PCI_COMMAND_IO); else disabled = !(command & PCI_COMMAND_MEMORY); if (pass == disabled) alloc_resource(dev, idx); } if (pass) continue; r = &dev->resource[PCI_ROM_RESOURCE]; if (r->flags) { /* Turn the ROM off, leave the resource region, * but keep it unregistered. */ u32 reg; pci_read_config_dword(dev, dev->rom_base_reg, ®); if (reg & PCI_ROM_ADDRESS_ENABLE) { pr_debug("PCI: Switching off ROM of %s\n", pci_name(dev)); r->flags &= ~IORESOURCE_ROM_ENABLE; pci_write_config_dword(dev, dev->rom_base_reg, reg & ~PCI_ROM_ADDRESS_ENABLE); } } } } static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) { struct pci_controller *hose = pci_bus_to_host(bus); resource_size_t offset; struct resource *res, *pres; int i; pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); /* Check for IO */ if (!(hose->io_resource.flags & IORESOURCE_IO)) goto no_io; offset = (unsigned long)hose->io_base_virt - _IO_BASE; res = kzalloc(sizeof(struct resource), GFP_KERNEL); BUG_ON(res == NULL); res->name = "Legacy IO"; res->flags = IORESOURCE_IO; res->start = offset; res->end = (offset + 0xfff) & 0xfffffffful; pr_debug("Candidate legacy IO: %pR\n", res); if (request_resource(&hose->io_resource, res)) { printk(KERN_DEBUG "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", pci_domain_nr(bus), bus->number, res); kfree(res); } no_io: /* Check for memory */ offset = hose->pci_mem_offset; pr_debug("hose mem offset: %016llx\n", (unsigned long long)offset); for (i = 0; i < 3; i++) { pres = &hose->mem_resources[i]; if (!(pres->flags & IORESOURCE_MEM)) continue; pr_debug("hose mem res: %pR\n", pres); if ((pres->start - offset) <= 0xa0000 && (pres->end - offset) >= 0xbffff) break; } if (i >= 3) return; res = kzalloc(sizeof(struct resource), GFP_KERNEL); BUG_ON(res == NULL); res->name = "Legacy VGA memory"; res->flags = IORESOURCE_MEM; res->start = 0xa0000 + offset; res->end = 0xbffff + offset; pr_debug("Candidate VGA memory: %pR\n", res); if (request_resource(pres, res)) { printk(KERN_DEBUG "PCI %04x:%02x Cannot reserve VGA memory %pR\n", pci_domain_nr(bus), bus->number, res); kfree(res); } } void __init pcibios_resource_survey(void) { struct pci_bus *b; /* Allocate and assign resources. If we re-assign everything, then * we skip the allocate phase */ list_for_each_entry(b, &pci_root_buses, node) pcibios_allocate_bus_resources(b); pcibios_allocate_resources(0); pcibios_allocate_resources(1); /* Before we start assigning unassigned resource, we try to reserve * the low IO area and the VGA memory area if they intersect the * bus available resources to avoid allocating things on top of them */ list_for_each_entry(b, &pci_root_buses, node) pcibios_reserve_legacy_regions(b); /* Now proceed to assigning things that were left unassigned */ pr_debug("PCI: Assigning unassigned resources...\n"); pci_assign_unassigned_resources(); } #ifdef CONFIG_HOTPLUG /* This is used by the PCI hotplug driver to allocate resource * of newly plugged busses. We can try to consolidate with the * rest of the code later, for now, keep it as-is as our main * resource allocation function doesn't deal with sub-trees yet. */ void __devinit pcibios_claim_one_bus(struct pci_bus *bus) { struct pci_dev *dev; struct pci_bus *child_bus; list_for_each_entry(dev, &bus->devices, bus_list) { int i; for (i = 0; i < PCI_NUM_RESOURCES; i++) { struct resource *r = &dev->resource[i]; if (r->parent || !r->start || !r->flags) continue; pr_debug("PCI: Claiming %s: " "Resource %d: %016llx..%016llx [%x]\n", pci_name(dev), i, (unsigned long long)r->start, (unsigned long long)r->end, (unsigned int)r->flags); pci_claim_resource(dev, i); } } list_for_each_entry(child_bus, &bus->children, node) pcibios_claim_one_bus(child_bus); } EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); /* pcibios_finish_adding_to_bus * * This is to be called by the hotplug code after devices have been * added to a bus, this include calling it for a PHB that is just * being added */ void pcibios_finish_adding_to_bus(struct pci_bus *bus) { pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", pci_domain_nr(bus), bus->number); /* Allocate bus and devices resources */ pcibios_allocate_bus_resources(bus); pcibios_claim_one_bus(bus); /* Add new devices to global lists. Register in proc, sysfs. */ pci_bus_add_devices(bus); /* Fixup EEH */ /* eeh_add_device_tree_late(bus); */ } EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); #endif /* CONFIG_HOTPLUG */ int pcibios_enable_device(struct pci_dev *dev, int mask) { return pci_enable_resources(dev, mask); } static void __devinit pcibios_setup_phb_resources(struct pci_controller *hose, struct list_head *resources) { unsigned long io_offset; struct resource *res; int i; /* Hookup PHB IO resource */ res = &hose->io_resource; /* Fixup IO space offset */ io_offset = (unsigned long)hose->io_base_virt - isa_io_base; res->start = (res->start + io_offset) & 0xffffffffu; res->end = (res->end + io_offset) & 0xffffffffu; if (!res->flags) { printk(KERN_WARNING "PCI: I/O resource not set for host" " bridge %s (domain %d)\n", hose->dn->full_name, hose->global_number); /* Workaround for lack of IO resource only on 32-bit */ res->start = (unsigned long)hose->io_base_virt - isa_io_base; res->end = res->start + IO_SPACE_LIMIT; res->flags = IORESOURCE_IO; } pci_add_resource_offset(resources, res, hose->io_base_virt - _IO_BASE); pr_debug("PCI: PHB IO resource = %016llx-%016llx [%lx]\n", (unsigned long long)res->start, (unsigned long long)res->end, (unsigned long)res->flags); /* Hookup PHB Memory resources */ for (i = 0; i < 3; ++i) { res = &hose->mem_resources[i]; if (!res->flags) { if (i > 0) continue; printk(KERN_ERR "PCI: Memory resource 0 not set for " "host bridge %s (domain %d)\n", hose->dn->full_name, hose->global_number); /* Workaround for lack of MEM resource only on 32-bit */ res->start = hose->pci_mem_offset; res->end = (resource_size_t)-1LL; res->flags = IORESOURCE_MEM; } pci_add_resource_offset(resources, res, hose->pci_mem_offset); pr_debug("PCI: PHB MEM resource %d = %016llx-%016llx [%lx]\n", i, (unsigned long long)res->start, (unsigned long long)res->end, (unsigned long)res->flags); } pr_debug("PCI: PHB MEM offset = %016llx\n", (unsigned long long)hose->pci_mem_offset); pr_debug("PCI: PHB IO offset = %08lx\n", (unsigned long)hose->io_base_virt - _IO_BASE); } struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) { struct pci_controller *hose = bus->sysdata; return of_node_get(hose->dn); } static void __devinit pcibios_scan_phb(struct pci_controller *hose) { LIST_HEAD(resources); struct pci_bus *bus; struct device_node *node = hose->dn; pr_debug("PCI: Scanning PHB %s\n", node ? node->full_name : ""); pcibios_setup_phb_resources(hose, &resources); bus = pci_scan_root_bus(hose->parent, hose->first_busno, hose->ops, hose, &resources); if (bus == NULL) { printk(KERN_ERR "Failed to create bus for PCI domain %04x\n", hose->global_number); pci_free_resource_list(&resources); return; } bus->busn_res.start = hose->first_busno; hose->bus = bus; hose->last_busno = bus->busn_res.end; } static int __init pcibios_init(void) { struct pci_controller *hose, *tmp; int next_busno = 0; printk(KERN_INFO "PCI: Probing PCI hardware\n"); /* Scan all of the recorded PCI controllers. */ list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { hose->last_busno = 0xff; pcibios_scan_phb(hose); if (next_busno <= hose->last_busno) next_busno = hose->last_busno + 1; } pci_bus_count = next_busno; /* Call common code to handle resource allocation */ pcibios_resource_survey(); return 0; } subsys_initcall(pcibios_init); static struct pci_controller *pci_bus_to_hose(int bus) { struct pci_controller *hose, *tmp; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) if (bus >= hose->first_busno && bus <= hose->last_busno) return hose; return NULL; } /* Provide information on locations of various I/O regions in physical * memory. Do this on a per-card basis so that we choose the right * root bridge. * Note that the returned IO or memory base is a physical address */ long sys_pciconfig_iobase(long which, unsigned long bus, unsigned long devfn) { struct pci_controller *hose; long result = -EOPNOTSUPP; hose = pci_bus_to_hose(bus); if (!hose) return -ENODEV; switch (which) { case IOBASE_BRIDGE_NUMBER: return (long)hose->first_busno; case IOBASE_MEMORY: return (long)hose->pci_mem_offset; case IOBASE_IO: return (long)hose->io_base_phys; case IOBASE_ISA_IO: return (long)isa_io_base; case IOBASE_ISA_MEM: return (long)isa_mem_base; } return result; } /* * Null PCI config access functions, for the case when we can't * find a hose. */ #define NULL_PCI_OP(rw, size, type) \ static int \ null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ { \ return PCIBIOS_DEVICE_NOT_FOUND; \ } static int null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, int len, u32 *val) { return PCIBIOS_DEVICE_NOT_FOUND; } static int null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, int len, u32 val) { return PCIBIOS_DEVICE_NOT_FOUND; } static struct pci_ops null_pci_ops = { .read = null_read_config, .write = null_write_config, }; /* * These functions are used early on before PCI scanning is done * and all of the pci_dev and pci_bus structures have been created. */ static struct pci_bus * fake_pci_bus(struct pci_controller *hose, int busnr) { static struct pci_bus bus; if (!hose) printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); bus.number = busnr; bus.sysdata = hose; bus.ops = hose ? hose->ops : &null_pci_ops; return &bus; } #define EARLY_PCI_OP(rw, size, type) \ int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ int devfn, int offset, type value) \ { \ return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ devfn, offset, value); \ } EARLY_PCI_OP(read, byte, u8 *) EARLY_PCI_OP(read, word, u16 *) EARLY_PCI_OP(read, dword, u32 *) EARLY_PCI_OP(write, byte, u8) EARLY_PCI_OP(write, word, u16) EARLY_PCI_OP(write, dword, u32) int early_find_capability(struct pci_controller *hose, int bus, int devfn, int cap) { return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); }