/* * Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver * * Copyright (C) 2013 Freescale Semiconductor, Inc. * * Based on stmp3xxx_spdif_dai.c * Vladimir Barinov * Copyright 2008 SigmaTel, Inc * Copyright 2008 Embedded Alley Solutions, Inc * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include "fsl_spdif.h" #include "imx-pcm.h" #define FSL_SPDIF_TXFIFO_WML 0x8 #define FSL_SPDIF_RXFIFO_WML 0x8 #define INTR_FOR_PLAYBACK (INT_TXFIFO_RESYNC) #define INTR_FOR_CAPTURE (INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL | INT_URX_OV|\ INT_QRX_FUL | INT_QRX_OV | INT_UQ_SYNC | INT_UQ_ERR |\ INT_RXFIFO_RESYNC | INT_LOSS_LOCK | INT_DPLL_LOCKED) /* Index list for the values that has if (DPLL Locked) condition */ static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb }; #define SRPC_NODPLL_START1 0x5 #define SRPC_NODPLL_START2 0xc #define DEFAULT_RXCLK_SRC 1 /* * SPDIF control structure * Defines channel status, subcode and Q sub */ struct spdif_mixer_control { /* spinlock to access control data */ spinlock_t ctl_lock; /* IEC958 channel tx status bit */ unsigned char ch_status[4]; /* User bits */ unsigned char subcode[2 * SPDIF_UBITS_SIZE]; /* Q subcode part of user bits */ unsigned char qsub[2 * SPDIF_QSUB_SIZE]; /* Buffer offset for U/Q */ u32 upos; u32 qpos; /* Ready buffer index of the two buffers */ u32 ready_buf; }; struct fsl_spdif_priv { struct spdif_mixer_control fsl_spdif_control; struct snd_soc_dai_driver cpu_dai_drv; struct platform_device *pdev; struct regmap *regmap; bool dpll_locked; u8 txclk_div[SPDIF_TXRATE_MAX]; u8 txclk_src[SPDIF_TXRATE_MAX]; u8 rxclk_src; struct clk *txclk[SPDIF_TXRATE_MAX]; struct clk *rxclk; struct snd_dmaengine_dai_dma_data dma_params_tx; struct snd_dmaengine_dai_dma_data dma_params_rx; /* The name space will be allocated dynamically */ char name[0]; }; /* DPLL locked and lock loss interrupt handler */ static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv) { struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; u32 locked; regmap_read(regmap, REG_SPDIF_SRPC, &locked); locked &= SRPC_DPLL_LOCKED; dev_dbg(&pdev->dev, "isr: Rx dpll %s \n", locked ? "locked" : "loss lock"); spdif_priv->dpll_locked = locked ? true : false; } /* Receiver found illegal symbol interrupt handler */ static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv) { struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n"); if (!spdif_priv->dpll_locked) { /* DPLL unlocked seems no audio stream */ regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0); } } /* U/Q Channel receive register full */ static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name) { struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; u32 *pos, size, val, reg; switch (name) { case 'U': pos = &ctrl->upos; size = SPDIF_UBITS_SIZE; reg = REG_SPDIF_SRU; break; case 'Q': pos = &ctrl->qpos; size = SPDIF_QSUB_SIZE; reg = REG_SPDIF_SRQ; break; default: dev_err(&pdev->dev, "unsupported channel name\n"); return; } dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name); if (*pos >= size * 2) { *pos = 0; } else if (unlikely((*pos % size) + 3 > size)) { dev_err(&pdev->dev, "User bit receivce buffer overflow\n"); return; } regmap_read(regmap, reg, &val); ctrl->subcode[*pos++] = val >> 16; ctrl->subcode[*pos++] = val >> 8; ctrl->subcode[*pos++] = val; } /* U/Q Channel sync found */ static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv) { struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; struct platform_device *pdev = spdif_priv->pdev; dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n"); /* U/Q buffer reset */ if (ctrl->qpos == 0) return; /* Set ready to this buffer */ ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1; } /* U/Q Channel framing error */ static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv) { struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; u32 val; dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n"); /* Read U/Q data to clear the irq and do buffer reset */ regmap_read(regmap, REG_SPDIF_SRU, &val); regmap_read(regmap, REG_SPDIF_SRQ, &val); /* Drop this U/Q buffer */ ctrl->ready_buf = 0; ctrl->upos = 0; ctrl->qpos = 0; } /* Get spdif interrupt status and clear the interrupt */ static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv) { struct regmap *regmap = spdif_priv->regmap; u32 val, val2; regmap_read(regmap, REG_SPDIF_SIS, &val); regmap_read(regmap, REG_SPDIF_SIE, &val2); regmap_write(regmap, REG_SPDIF_SIC, val & val2); return val; } static irqreturn_t spdif_isr(int irq, void *devid) { struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid; struct platform_device *pdev = spdif_priv->pdev; u32 sis; sis = spdif_intr_status_clear(spdif_priv); if (sis & INT_DPLL_LOCKED) spdif_irq_dpll_lock(spdif_priv); if (sis & INT_TXFIFO_UNOV) dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n"); if (sis & INT_TXFIFO_RESYNC) dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n"); if (sis & INT_CNEW) dev_dbg(&pdev->dev, "isr: cstatus new\n"); if (sis & INT_VAL_NOGOOD) dev_dbg(&pdev->dev, "isr: validity flag no good\n"); if (sis & INT_SYM_ERR) spdif_irq_sym_error(spdif_priv); if (sis & INT_BIT_ERR) dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n"); if (sis & INT_URX_FUL) spdif_irq_uqrx_full(spdif_priv, 'U'); if (sis & INT_URX_OV) dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n"); if (sis & INT_QRX_FUL) spdif_irq_uqrx_full(spdif_priv, 'Q'); if (sis & INT_QRX_OV) dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n"); if (sis & INT_UQ_SYNC) spdif_irq_uq_sync(spdif_priv); if (sis & INT_UQ_ERR) spdif_irq_uq_err(spdif_priv); if (sis & INT_RXFIFO_UNOV) dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n"); if (sis & INT_RXFIFO_RESYNC) dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n"); if (sis & INT_LOSS_LOCK) spdif_irq_dpll_lock(spdif_priv); /* FIXME: Write Tx FIFO to clear TxEm */ if (sis & INT_TX_EM) dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n"); /* FIXME: Read Rx FIFO to clear RxFIFOFul */ if (sis & INT_RXFIFO_FUL) dev_dbg(&pdev->dev, "isr: Rx FIFO full\n"); return IRQ_HANDLED; } static int spdif_softreset(struct fsl_spdif_priv *spdif_priv) { struct regmap *regmap = spdif_priv->regmap; u32 val, cycle = 1000; regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET); /* * RESET bit would be cleared after finishing its reset procedure, * which typically lasts 8 cycles. 1000 cycles will keep it safe. */ do { regmap_read(regmap, REG_SPDIF_SCR, &val); } while ((val & SCR_SOFT_RESET) && cycle--); if (cycle) return 0; else return -EBUSY; } static void spdif_set_cstatus(struct spdif_mixer_control *ctrl, u8 mask, u8 cstatus) { ctrl->ch_status[3] &= ~mask; ctrl->ch_status[3] |= cstatus & mask; } static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv) { struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; u32 ch_status; ch_status = (bitrev8(ctrl->ch_status[0]) << 16) | (bitrev8(ctrl->ch_status[1]) << 8) | bitrev8(ctrl->ch_status[2]); regmap_write(regmap, REG_SPDIF_STCSCH, ch_status); dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status); ch_status = bitrev8(ctrl->ch_status[3]) << 16; regmap_write(regmap, REG_SPDIF_STCSCL, ch_status); dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status); } /* Set SPDIF PhaseConfig register for rx clock */ static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv, enum spdif_gainsel gainsel, int dpll_locked) { struct regmap *regmap = spdif_priv->regmap; u8 clksrc = spdif_priv->rxclk_src; if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX) return -EINVAL; regmap_update_bits(regmap, REG_SPDIF_SRPC, SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK, SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel)); return 0; } static int spdif_set_sample_rate(struct snd_pcm_substream *substream, int sample_rate) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; unsigned long csfs = 0; u32 stc, mask, rate; u8 clk, div; int ret; switch (sample_rate) { case 32000: rate = SPDIF_TXRATE_32000; csfs = IEC958_AES3_CON_FS_32000; break; case 44100: rate = SPDIF_TXRATE_44100; csfs = IEC958_AES3_CON_FS_44100; break; case 48000: rate = SPDIF_TXRATE_48000; csfs = IEC958_AES3_CON_FS_48000; break; default: dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate); return -EINVAL; } clk = spdif_priv->txclk_src[rate]; if (clk >= STC_TXCLK_SRC_MAX) { dev_err(&pdev->dev, "tx clock source is out of range\n"); return -EINVAL; } div = spdif_priv->txclk_div[rate]; if (div == 0) { dev_err(&pdev->dev, "the divisor can't be zero\n"); return -EINVAL; } /* * The S/PDIF block needs a clock of 64 * fs * div. The S/PDIF block * will divide by (div). So request 64 * fs * (div+1) which will * get rounded. */ ret = clk_set_rate(spdif_priv->txclk[rate], 64 * sample_rate * (div + 1)); if (ret) { dev_err(&pdev->dev, "failed to set tx clock rate\n"); return ret; } dev_dbg(&pdev->dev, "expected clock rate = %d\n", (64 * sample_rate * div)); dev_dbg(&pdev->dev, "actual clock rate = %ld\n", clk_get_rate(spdif_priv->txclk[rate])); /* set fs field in consumer channel status */ spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs); /* select clock source and divisor */ stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) | STC_TXCLK_DIV(div); mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK | STC_TXCLK_DIV_MASK; regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc); dev_dbg(&pdev->dev, "set sample rate to %d\n", sample_rate); return 0; } static int fsl_spdif_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); struct platform_device *pdev = spdif_priv->pdev; struct regmap *regmap = spdif_priv->regmap; u32 scr, mask, i; int ret; /* Reset module and interrupts only for first initialization */ if (!cpu_dai->active) { ret = spdif_softreset(spdif_priv); if (ret) { dev_err(&pdev->dev, "failed to soft reset\n"); return ret; } /* Disable all the interrupts */ regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0); } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL | SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP | SCR_TXFIFO_FSEL_IF8; mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK | SCR_TXSEL_MASK | SCR_USRC_SEL_MASK | SCR_TXFIFO_FSEL_MASK; for (i = 0; i < SPDIF_TXRATE_MAX; i++) clk_prepare_enable(spdif_priv->txclk[i]); } else { scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC; mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK| SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK; clk_prepare_enable(spdif_priv->rxclk); } regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr); /* Power up SPDIF module */ regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0); return 0; } static void fsl_spdif_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 scr, mask, i; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { scr = 0; mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK | SCR_TXSEL_MASK | SCR_USRC_SEL_MASK | SCR_TXFIFO_FSEL_MASK; for (i = 0; i < SPDIF_TXRATE_MAX; i++) clk_disable_unprepare(spdif_priv->txclk[i]); } else { scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO; mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK| SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK; clk_disable_unprepare(spdif_priv->rxclk); } regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr); /* Power down SPDIF module only if tx&rx are both inactive */ if (!cpu_dai->active) { spdif_intr_status_clear(spdif_priv); regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, SCR_LOW_POWER); } } static int fsl_spdif_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; struct platform_device *pdev = spdif_priv->pdev; u32 sample_rate = params_rate(params); int ret = 0; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { ret = spdif_set_sample_rate(substream, sample_rate); if (ret) { dev_err(&pdev->dev, "%s: set sample rate failed: %d\n", __func__, sample_rate); return ret; } spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK, IEC958_AES3_CON_CLOCK_1000PPM); spdif_write_channel_status(spdif_priv); } else { /* Setup rx clock source */ ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1); } return ret; } static int fsl_spdif_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); struct regmap *regmap = spdif_priv->regmap; int is_playack = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); u32 intr = is_playack ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE; u32 dmaen = is_playack ? SCR_DMA_TX_EN : SCR_DMA_RX_EN;; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr); regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0); regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0); break; default: return -EINVAL; } return 0; } static struct snd_soc_dai_ops fsl_spdif_dai_ops = { .startup = fsl_spdif_startup, .hw_params = fsl_spdif_hw_params, .trigger = fsl_spdif_trigger, .shutdown = fsl_spdif_shutdown, }; /* * FSL SPDIF IEC958 controller(mixer) functions * * Channel status get/put control * User bit value get/put control * Valid bit value get control * DPLL lock status get control * User bit sync mode selection control */ static int fsl_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *uvalue) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; uvalue->value.iec958.status[0] = ctrl->ch_status[0]; uvalue->value.iec958.status[1] = ctrl->ch_status[1]; uvalue->value.iec958.status[2] = ctrl->ch_status[2]; uvalue->value.iec958.status[3] = ctrl->ch_status[3]; return 0; } static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *uvalue) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; ctrl->ch_status[0] = uvalue->value.iec958.status[0]; ctrl->ch_status[1] = uvalue->value.iec958.status[1]; ctrl->ch_status[2] = uvalue->value.iec958.status[2]; ctrl->ch_status[3] = uvalue->value.iec958.status[3]; spdif_write_channel_status(spdif_priv); return 0; } /* Get channel status from SPDIF_RX_CCHAN register */ static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 cstatus, val; regmap_read(regmap, REG_SPDIF_SIS, &val); if (!(val & INT_CNEW)) { return -EAGAIN; } regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus); ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF; ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF; ucontrol->value.iec958.status[2] = cstatus & 0xFF; regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus); ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF; ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF; ucontrol->value.iec958.status[5] = cstatus & 0xFF; /* Clear intr */ regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW); return 0; } /* * Get User bits (subcode) from chip value which readed out * in UChannel register. */ static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; unsigned long flags; int ret = 0; spin_lock_irqsave(&ctrl->ctl_lock, flags); if (ctrl->ready_buf) { int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE; memcpy(&ucontrol->value.iec958.subcode[0], &ctrl->subcode[idx], SPDIF_UBITS_SIZE); } else { ret = -EAGAIN; } spin_unlock_irqrestore(&ctrl->ctl_lock, flags); return ret; } /* Q-subcode infomation. The byte size is SPDIF_UBITS_SIZE/8 */ static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = SPDIF_QSUB_SIZE; return 0; } /* Get Q subcode from chip value which readed out in QChannel register */ static int fsl_spdif_qget(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; unsigned long flags; int ret = 0; spin_lock_irqsave(&ctrl->ctl_lock, flags); if (ctrl->ready_buf) { int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE; memcpy(&ucontrol->value.bytes.data[0], &ctrl->qsub[idx], SPDIF_QSUB_SIZE); } else { ret = -EAGAIN; } spin_unlock_irqrestore(&ctrl->ctl_lock, flags); return ret; } /* Valid bit infomation */ static int fsl_spdif_vbit_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } /* Get valid good bit from interrupt status register */ static int fsl_spdif_vbit_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 val; val = regmap_read(regmap, REG_SPDIF_SIS, &val); ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0; regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD); return 0; } /* DPLL lock infomation */ static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 16000; uinfo->value.integer.max = 96000; return 0; } static u32 gainsel_multi[GAINSEL_MULTI_MAX] = { 24, 16, 12, 8, 6, 4, 3, }; /* Get RX data clock rate given the SPDIF bus_clk */ static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv, enum spdif_gainsel gainsel) { struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; u64 tmpval64, busclk_freq = 0; u32 freqmeas, phaseconf; u8 clksrc; regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas); regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf); clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf; if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED)) { /* Get bus clock from system */ busclk_freq = clk_get_rate(spdif_priv->rxclk); } /* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */ tmpval64 = (u64) busclk_freq * freqmeas; do_div(tmpval64, gainsel_multi[gainsel] * 1024); do_div(tmpval64, 128 * 1024); dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas); dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq); dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64); return (int)tmpval64; } /* * Get DPLL lock or not info from stable interrupt status register. * User application must use this control to get locked, * then can do next PCM operation */ static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); int rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL); if (spdif_priv->dpll_locked) ucontrol->value.integer.value[0] = rate; else ucontrol->value.integer.value[0] = 0; return 0; } /* User bit sync mode info */ static int fsl_spdif_usync_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } /* * User bit sync mode: * 1 CD User channel subcode * 0 Non-CD data */ static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 val; regmap_read(regmap, REG_SPDIF_SRCD, &val); ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0; return 0; } /* * User bit sync mode: * 1 CD User channel subcode * 0 Non-CD data */ static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET; regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val); return 0; } /* FSL SPDIF IEC958 controller defines */ static struct snd_kcontrol_new fsl_spdif_ctrls[] = { /* Status cchanel controller */ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = fsl_spdif_info, .get = fsl_spdif_pb_get, .put = fsl_spdif_pb_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT), .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = fsl_spdif_info, .get = fsl_spdif_capture_get, }, /* User bits controller */ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Subcode Capture Default", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = fsl_spdif_info, .get = fsl_spdif_subcode_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Q-subcode Capture Default", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = fsl_spdif_qinfo, .get = fsl_spdif_qget, }, /* Valid bit error controller */ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 V-Bit Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = fsl_spdif_vbit_info, .get = fsl_spdif_vbit_get, }, /* DPLL lock info get controller */ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "RX Sample Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = fsl_spdif_rxrate_info, .get = fsl_spdif_rxrate_get, }, /* User bit sync mode set/get controller */ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 USyncMode CDText", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = fsl_spdif_usync_info, .get = fsl_spdif_usync_get, .put = fsl_spdif_usync_put, }, }; static int fsl_spdif_dai_probe(struct snd_soc_dai *dai) { struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai); dai->playback_dma_data = &spdif_private->dma_params_tx; dai->capture_dma_data = &spdif_private->dma_params_rx; snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls)); return 0; } static struct snd_soc_dai_driver fsl_spdif_dai = { .probe = &fsl_spdif_dai_probe, .playback = { .channels_min = 2, .channels_max = 2, .rates = FSL_SPDIF_RATES_PLAYBACK, .formats = FSL_SPDIF_FORMATS_PLAYBACK, }, .capture = { .channels_min = 2, .channels_max = 2, .rates = FSL_SPDIF_RATES_CAPTURE, .formats = FSL_SPDIF_FORMATS_CAPTURE, }, .ops = &fsl_spdif_dai_ops, }; static const struct snd_soc_component_driver fsl_spdif_component = { .name = "fsl-spdif", }; /* FSL SPDIF REGMAP */ static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_SPDIF_SCR: case REG_SPDIF_SRCD: case REG_SPDIF_SRPC: case REG_SPDIF_SIE: case REG_SPDIF_SIS: case REG_SPDIF_SRL: case REG_SPDIF_SRR: case REG_SPDIF_SRCSH: case REG_SPDIF_SRCSL: case REG_SPDIF_SRU: case REG_SPDIF_SRQ: case REG_SPDIF_STCSCH: case REG_SPDIF_STCSCL: case REG_SPDIF_SRFM: case REG_SPDIF_STC: return true; default: return false; } } static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_SPDIF_SCR: case REG_SPDIF_SRCD: case REG_SPDIF_SRPC: case REG_SPDIF_SIE: case REG_SPDIF_SIC: case REG_SPDIF_STL: case REG_SPDIF_STR: case REG_SPDIF_STCSCH: case REG_SPDIF_STCSCL: case REG_SPDIF_STC: return true; default: return false; } } static const struct regmap_config fsl_spdif_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = REG_SPDIF_STC, .readable_reg = fsl_spdif_readable_reg, .writeable_reg = fsl_spdif_writeable_reg, }; static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv, struct clk *clk, u64 savesub, enum spdif_txrate index) { const u32 rate[] = { 32000, 44100, 48000 }; u64 rate_ideal, rate_actual, sub; u32 div, arate; for (div = 1; div <= 128; div++) { rate_ideal = rate[index] * (div + 1) * 64; rate_actual = clk_round_rate(clk, rate_ideal); arate = rate_actual / 64; arate /= div; if (arate == rate[index]) { /* We are lucky */ savesub = 0; spdif_priv->txclk_div[index] = div; break; } else if (arate / rate[index] == 1) { /* A little bigger than expect */ sub = (arate - rate[index]) * 100000; do_div(sub, rate[index]); if (sub < savesub) { savesub = sub; spdif_priv->txclk_div[index] = div; } } else if (rate[index] / arate == 1) { /* A little smaller than expect */ sub = (rate[index] - arate) * 100000; do_div(sub, rate[index]); if (sub < savesub) { savesub = sub; spdif_priv->txclk_div[index] = div; } } } return savesub; } static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv, enum spdif_txrate index) { const u32 rate[] = { 32000, 44100, 48000 }; struct platform_device *pdev = spdif_priv->pdev; struct device *dev = &pdev->dev; u64 savesub = 100000, ret; struct clk *clk; char tmp[16]; int i; for (i = 0; i < STC_TXCLK_SRC_MAX; i++) { sprintf(tmp, "rxtx%d", i); clk = devm_clk_get(&pdev->dev, tmp); if (IS_ERR(clk)) { dev_err(dev, "no rxtx%d clock in devicetree\n", i); return PTR_ERR(clk); } if (!clk_get_rate(clk)) continue; ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index); if (savesub == ret) continue; savesub = ret; spdif_priv->txclk[index] = clk; spdif_priv->txclk_src[index] = i; /* To quick catch a divisor, we allow a 0.1% deviation */ if (savesub < 100) break; } dev_dbg(&pdev->dev, "use rxtx%d as tx clock source for %dHz sample rate\n", spdif_priv->txclk_src[index], rate[index]); dev_dbg(&pdev->dev, "use divisor %d for %dHz sample rate\n", spdif_priv->txclk_div[index], rate[index]); return 0; } static int fsl_spdif_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct fsl_spdif_priv *spdif_priv; struct spdif_mixer_control *ctrl; struct resource *res; void __iomem *regs; int irq, ret, i; if (!np) return -ENODEV; spdif_priv = devm_kzalloc(&pdev->dev, sizeof(struct fsl_spdif_priv) + strlen(np->name) + 1, GFP_KERNEL); if (!spdif_priv) return -ENOMEM; strcpy(spdif_priv->name, np->name); spdif_priv->pdev = pdev; /* Initialize this copy of the CPU DAI driver structure */ memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai)); spdif_priv->cpu_dai_drv.name = spdif_priv->name; /* Get the addresses and IRQ */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(regs)) return PTR_ERR(regs); spdif_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "core", regs, &fsl_spdif_regmap_config); if (IS_ERR(spdif_priv->regmap)) { dev_err(&pdev->dev, "regmap init failed\n"); return PTR_ERR(spdif_priv->regmap); } irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "no irq for node %s\n", np->full_name); return irq; } ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0, spdif_priv->name, spdif_priv); if (ret) { dev_err(&pdev->dev, "could not claim irq %u\n", irq); return ret; } /* Select clock source for rx/tx clock */ spdif_priv->rxclk = devm_clk_get(&pdev->dev, "rxtx1"); if (IS_ERR(spdif_priv->rxclk)) { dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n"); return PTR_ERR(spdif_priv->rxclk); } spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC; for (i = 0; i < SPDIF_TXRATE_MAX; i++) { ret = fsl_spdif_probe_txclk(spdif_priv, i); if (ret) return ret; } /* Initial spinlock for control data */ ctrl = &spdif_priv->fsl_spdif_control; spin_lock_init(&ctrl->ctl_lock); /* Init tx channel status default value */ ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_5015; ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID; ctrl->ch_status[2] = 0x00; ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 | IEC958_AES3_CON_CLOCK_1000PPM; spdif_priv->dpll_locked = false; spdif_priv->dma_params_tx.maxburst = FSL_SPDIF_TXFIFO_WML; spdif_priv->dma_params_rx.maxburst = FSL_SPDIF_RXFIFO_WML; spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL; spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL; /* Register with ASoC */ dev_set_drvdata(&pdev->dev, spdif_priv); ret = snd_soc_register_component(&pdev->dev, &fsl_spdif_component, &spdif_priv->cpu_dai_drv, 1); if (ret) { dev_err(&pdev->dev, "failed to register DAI: %d\n", ret); return ret; } ret = imx_pcm_dma_init(pdev); if (ret) { dev_err(&pdev->dev, "imx_pcm_dma_init failed: %d\n", ret); goto error_component; } return ret; error_component: snd_soc_unregister_component(&pdev->dev); return ret; } static int fsl_spdif_remove(struct platform_device *pdev) { imx_pcm_dma_exit(pdev); snd_soc_unregister_component(&pdev->dev); return 0; } static const struct of_device_id fsl_spdif_dt_ids[] = { { .compatible = "fsl,imx35-spdif", }, {} }; MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids); static struct platform_driver fsl_spdif_driver = { .driver = { .name = "fsl-spdif-dai", .owner = THIS_MODULE, .of_match_table = fsl_spdif_dt_ids, }, .probe = fsl_spdif_probe, .remove = fsl_spdif_remove, }; module_platform_driver(fsl_spdif_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:fsl-spdif-dai");