/* * Performance counter support - powerpc architecture code * * Copyright 2008-2009 Paul Mackerras, IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include struct cpu_hw_counters { int n_counters; int n_percpu; int disabled; int n_added; int n_limited; u8 pmcs_enabled; struct perf_counter *counter[MAX_HWCOUNTERS]; u64 events[MAX_HWCOUNTERS]; unsigned int flags[MAX_HWCOUNTERS]; u64 mmcr[3]; struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS]; u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; }; DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters); struct power_pmu *ppmu; /* * Normally, to ignore kernel events we set the FCS (freeze counters * in supervisor mode) bit in MMCR0, but if the kernel runs with the * hypervisor bit set in the MSR, or if we are running on a processor * where the hypervisor bit is forced to 1 (as on Apple G5 processors), * then we need to use the FCHV bit to ignore kernel events. */ static unsigned int freeze_counters_kernel = MMCR0_FCS; static void perf_counter_interrupt(struct pt_regs *regs); void perf_counter_print_debug(void) { } /* * Read one performance monitor counter (PMC). */ static unsigned long read_pmc(int idx) { unsigned long val; switch (idx) { case 1: val = mfspr(SPRN_PMC1); break; case 2: val = mfspr(SPRN_PMC2); break; case 3: val = mfspr(SPRN_PMC3); break; case 4: val = mfspr(SPRN_PMC4); break; case 5: val = mfspr(SPRN_PMC5); break; case 6: val = mfspr(SPRN_PMC6); break; case 7: val = mfspr(SPRN_PMC7); break; case 8: val = mfspr(SPRN_PMC8); break; default: printk(KERN_ERR "oops trying to read PMC%d\n", idx); val = 0; } return val; } /* * Write one PMC. */ static void write_pmc(int idx, unsigned long val) { switch (idx) { case 1: mtspr(SPRN_PMC1, val); break; case 2: mtspr(SPRN_PMC2, val); break; case 3: mtspr(SPRN_PMC3, val); break; case 4: mtspr(SPRN_PMC4, val); break; case 5: mtspr(SPRN_PMC5, val); break; case 6: mtspr(SPRN_PMC6, val); break; case 7: mtspr(SPRN_PMC7, val); break; case 8: mtspr(SPRN_PMC8, val); break; default: printk(KERN_ERR "oops trying to write PMC%d\n", idx); } } /* * Check if a set of events can all go on the PMU at once. * If they can't, this will look at alternative codes for the events * and see if any combination of alternative codes is feasible. * The feasible set is returned in event[]. */ static int power_check_constraints(u64 event[], unsigned int cflags[], int n_ev) { u64 mask, value, nv; u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS]; int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS]; int i, j; u64 addf = ppmu->add_fields; u64 tadd = ppmu->test_adder; if (n_ev > ppmu->n_counter) return -1; /* First see if the events will go on as-is */ for (i = 0; i < n_ev; ++i) { if ((cflags[i] & PPMU_LIMITED_PMC_REQD) && !ppmu->limited_pmc_event(event[i])) { ppmu->get_alternatives(event[i], cflags[i], alternatives[i]); event[i] = alternatives[i][0]; } if (ppmu->get_constraint(event[i], &amasks[i][0], &avalues[i][0])) return -1; } value = mask = 0; for (i = 0; i < n_ev; ++i) { nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf); if ((((nv + tadd) ^ value) & mask) != 0 || (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0) break; value = nv; mask |= amasks[i][0]; } if (i == n_ev) return 0; /* all OK */ /* doesn't work, gather alternatives... */ if (!ppmu->get_alternatives) return -1; for (i = 0; i < n_ev; ++i) { choice[i] = 0; n_alt[i] = ppmu->get_alternatives(event[i], cflags[i], alternatives[i]); for (j = 1; j < n_alt[i]; ++j) ppmu->get_constraint(alternatives[i][j], &amasks[i][j], &avalues[i][j]); } /* enumerate all possibilities and see if any will work */ i = 0; j = -1; value = mask = nv = 0; while (i < n_ev) { if (j >= 0) { /* we're backtracking, restore context */ value = svalues[i]; mask = smasks[i]; j = choice[i]; } /* * See if any alternative k for event i, * where k > j, will satisfy the constraints. */ while (++j < n_alt[i]) { nv = (value | avalues[i][j]) + (value & avalues[i][j] & addf); if ((((nv + tadd) ^ value) & mask) == 0 && (((nv + tadd) ^ avalues[i][j]) & amasks[i][j]) == 0) break; } if (j >= n_alt[i]) { /* * No feasible alternative, backtrack * to event i-1 and continue enumerating its * alternatives from where we got up to. */ if (--i < 0) return -1; } else { /* * Found a feasible alternative for event i, * remember where we got up to with this event, * go on to the next event, and start with * the first alternative for it. */ choice[i] = j; svalues[i] = value; smasks[i] = mask; value = nv; mask |= amasks[i][j]; ++i; j = -1; } } /* OK, we have a feasible combination, tell the caller the solution */ for (i = 0; i < n_ev; ++i) event[i] = alternatives[i][choice[i]]; return 0; } /* * Check if newly-added counters have consistent settings for * exclude_{user,kernel,hv} with each other and any previously * added counters. */ static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[], int n_prev, int n_new) { int eu = 0, ek = 0, eh = 0; int i, n, first; struct perf_counter *counter; n = n_prev + n_new; if (n <= 1) return 0; first = 1; for (i = 0; i < n; ++i) { if (cflags[i] & PPMU_LIMITED_PMC_OK) { cflags[i] &= ~PPMU_LIMITED_PMC_REQD; continue; } counter = ctrs[i]; if (first) { eu = counter->attr.exclude_user; ek = counter->attr.exclude_kernel; eh = counter->attr.exclude_hv; first = 0; } else if (counter->attr.exclude_user != eu || counter->attr.exclude_kernel != ek || counter->attr.exclude_hv != eh) { return -EAGAIN; } } if (eu || ek || eh) for (i = 0; i < n; ++i) if (cflags[i] & PPMU_LIMITED_PMC_OK) cflags[i] |= PPMU_LIMITED_PMC_REQD; return 0; } static void power_pmu_read(struct perf_counter *counter) { long val, delta, prev; if (!counter->hw.idx) return; /* * Performance monitor interrupts come even when interrupts * are soft-disabled, as long as interrupts are hard-enabled. * Therefore we treat them like NMIs. */ do { prev = atomic64_read(&counter->hw.prev_count); barrier(); val = read_pmc(counter->hw.idx); } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev); /* The counters are only 32 bits wide */ delta = (val - prev) & 0xfffffffful; atomic64_add(delta, &counter->count); atomic64_sub(delta, &counter->hw.period_left); } /* * On some machines, PMC5 and PMC6 can't be written, don't respect * the freeze conditions, and don't generate interrupts. This tells * us if `counter' is using such a PMC. */ static int is_limited_pmc(int pmcnum) { return (ppmu->flags & PPMU_LIMITED_PMC5_6) && (pmcnum == 5 || pmcnum == 6); } static void freeze_limited_counters(struct cpu_hw_counters *cpuhw, unsigned long pmc5, unsigned long pmc6) { struct perf_counter *counter; u64 val, prev, delta; int i; for (i = 0; i < cpuhw->n_limited; ++i) { counter = cpuhw->limited_counter[i]; if (!counter->hw.idx) continue; val = (counter->hw.idx == 5) ? pmc5 : pmc6; prev = atomic64_read(&counter->hw.prev_count); counter->hw.idx = 0; delta = (val - prev) & 0xfffffffful; atomic64_add(delta, &counter->count); } } static void thaw_limited_counters(struct cpu_hw_counters *cpuhw, unsigned long pmc5, unsigned long pmc6) { struct perf_counter *counter; u64 val; int i; for (i = 0; i < cpuhw->n_limited; ++i) { counter = cpuhw->limited_counter[i]; counter->hw.idx = cpuhw->limited_hwidx[i]; val = (counter->hw.idx == 5) ? pmc5 : pmc6; atomic64_set(&counter->hw.prev_count, val); perf_counter_update_userpage(counter); } } /* * Since limited counters don't respect the freeze conditions, we * have to read them immediately after freezing or unfreezing the * other counters. We try to keep the values from the limited * counters as consistent as possible by keeping the delay (in * cycles and instructions) between freezing/unfreezing and reading * the limited counters as small and consistent as possible. * Therefore, if any limited counters are in use, we read them * both, and always in the same order, to minimize variability, * and do it inside the same asm that writes MMCR0. */ static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0) { unsigned long pmc5, pmc6; if (!cpuhw->n_limited) { mtspr(SPRN_MMCR0, mmcr0); return; } /* * Write MMCR0, then read PMC5 and PMC6 immediately. * To ensure we don't get a performance monitor interrupt * between writing MMCR0 and freezing/thawing the limited * counters, we first write MMCR0 with the counter overflow * interrupt enable bits turned off. */ asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" : "=&r" (pmc5), "=&r" (pmc6) : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), "i" (SPRN_MMCR0), "i" (SPRN_PMC5), "i" (SPRN_PMC6)); if (mmcr0 & MMCR0_FC) freeze_limited_counters(cpuhw, pmc5, pmc6); else thaw_limited_counters(cpuhw, pmc5, pmc6); /* * Write the full MMCR0 including the counter overflow interrupt * enable bits, if necessary. */ if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) mtspr(SPRN_MMCR0, mmcr0); } /* * Disable all counters to prevent PMU interrupts and to allow * counters to be added or removed. */ void hw_perf_disable(void) { struct cpu_hw_counters *cpuhw; unsigned long ret; unsigned long flags; local_irq_save(flags); cpuhw = &__get_cpu_var(cpu_hw_counters); ret = cpuhw->disabled; if (!ret) { cpuhw->disabled = 1; cpuhw->n_added = 0; /* * Check if we ever enabled the PMU on this cpu. */ if (!cpuhw->pmcs_enabled) { if (ppc_md.enable_pmcs) ppc_md.enable_pmcs(); cpuhw->pmcs_enabled = 1; } /* * Disable instruction sampling if it was enabled */ if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); mb(); } /* * Set the 'freeze counters' bit. * The barrier is to make sure the mtspr has been * executed and the PMU has frozen the counters * before we return. */ write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC); mb(); } local_irq_restore(flags); } /* * Re-enable all counters if disable == 0. * If we were previously disabled and counters were added, then * put the new config on the PMU. */ void hw_perf_enable(void) { struct perf_counter *counter; struct cpu_hw_counters *cpuhw; unsigned long flags; long i; unsigned long val; s64 left; unsigned int hwc_index[MAX_HWCOUNTERS]; int n_lim; int idx; local_irq_save(flags); cpuhw = &__get_cpu_var(cpu_hw_counters); if (!cpuhw->disabled) { local_irq_restore(flags); return; } cpuhw->disabled = 0; /* * If we didn't change anything, or only removed counters, * no need to recalculate MMCR* settings and reset the PMCs. * Just reenable the PMU with the current MMCR* settings * (possibly updated for removal of counters). */ if (!cpuhw->n_added) { mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); if (cpuhw->n_counters == 0) get_lppaca()->pmcregs_in_use = 0; goto out_enable; } /* * Compute MMCR* values for the new set of counters */ if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index, cpuhw->mmcr)) { /* shouldn't ever get here */ printk(KERN_ERR "oops compute_mmcr failed\n"); goto out; } /* * Add in MMCR0 freeze bits corresponding to the * attr.exclude_* bits for the first counter. * We have already checked that all counters have the * same values for these bits as the first counter. */ counter = cpuhw->counter[0]; if (counter->attr.exclude_user) cpuhw->mmcr[0] |= MMCR0_FCP; if (counter->attr.exclude_kernel) cpuhw->mmcr[0] |= freeze_counters_kernel; if (counter->attr.exclude_hv) cpuhw->mmcr[0] |= MMCR0_FCHV; /* * Write the new configuration to MMCR* with the freeze * bit set and set the hardware counters to their initial values. * Then unfreeze the counters. */ get_lppaca()->pmcregs_in_use = 1; mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) | MMCR0_FC); /* * Read off any pre-existing counters that need to move * to another PMC. */ for (i = 0; i < cpuhw->n_counters; ++i) { counter = cpuhw->counter[i]; if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) { power_pmu_read(counter); write_pmc(counter->hw.idx, 0); counter->hw.idx = 0; } } /* * Initialize the PMCs for all the new and moved counters. */ cpuhw->n_limited = n_lim = 0; for (i = 0; i < cpuhw->n_counters; ++i) { counter = cpuhw->counter[i]; if (counter->hw.idx) continue; idx = hwc_index[i] + 1; if (is_limited_pmc(idx)) { cpuhw->limited_counter[n_lim] = counter; cpuhw->limited_hwidx[n_lim] = idx; ++n_lim; continue; } val = 0; if (counter->hw.sample_period) { left = atomic64_read(&counter->hw.period_left); if (left < 0x80000000L) val = 0x80000000L - left; } atomic64_set(&counter->hw.prev_count, val); counter->hw.idx = idx; write_pmc(idx, val); perf_counter_update_userpage(counter); } cpuhw->n_limited = n_lim; cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; out_enable: mb(); write_mmcr0(cpuhw, cpuhw->mmcr[0]); /* * Enable instruction sampling if necessary */ if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { mb(); mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); } out: local_irq_restore(flags); } static int collect_events(struct perf_counter *group, int max_count, struct perf_counter *ctrs[], u64 *events, unsigned int *flags) { int n = 0; struct perf_counter *counter; if (!is_software_counter(group)) { if (n >= max_count) return -1; ctrs[n] = group; flags[n] = group->hw.counter_base; events[n++] = group->hw.config; } list_for_each_entry(counter, &group->sibling_list, list_entry) { if (!is_software_counter(counter) && counter->state != PERF_COUNTER_STATE_OFF) { if (n >= max_count) return -1; ctrs[n] = counter; flags[n] = counter->hw.counter_base; events[n++] = counter->hw.config; } } return n; } static void counter_sched_in(struct perf_counter *counter, int cpu) { counter->state = PERF_COUNTER_STATE_ACTIVE; counter->oncpu = cpu; counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped; if (is_software_counter(counter)) counter->pmu->enable(counter); } /* * Called to enable a whole group of counters. * Returns 1 if the group was enabled, or -EAGAIN if it could not be. * Assumes the caller has disabled interrupts and has * frozen the PMU with hw_perf_save_disable. */ int hw_perf_group_sched_in(struct perf_counter *group_leader, struct perf_cpu_context *cpuctx, struct perf_counter_context *ctx, int cpu) { struct cpu_hw_counters *cpuhw; long i, n, n0; struct perf_counter *sub; cpuhw = &__get_cpu_var(cpu_hw_counters); n0 = cpuhw->n_counters; n = collect_events(group_leader, ppmu->n_counter - n0, &cpuhw->counter[n0], &cpuhw->events[n0], &cpuhw->flags[n0]); if (n < 0) return -EAGAIN; if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n)) return -EAGAIN; i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0); if (i < 0) return -EAGAIN; cpuhw->n_counters = n0 + n; cpuhw->n_added += n; /* * OK, this group can go on; update counter states etc., * and enable any software counters */ for (i = n0; i < n0 + n; ++i) cpuhw->counter[i]->hw.config = cpuhw->events[i]; cpuctx->active_oncpu += n; n = 1; counter_sched_in(group_leader, cpu); list_for_each_entry(sub, &group_leader->sibling_list, list_entry) { if (sub->state != PERF_COUNTER_STATE_OFF) { counter_sched_in(sub, cpu); ++n; } } ctx->nr_active += n; return 1; } /* * Add a counter to the PMU. * If all counters are not already frozen, then we disable and * re-enable the PMU in order to get hw_perf_enable to do the * actual work of reconfiguring the PMU. */ static int power_pmu_enable(struct perf_counter *counter) { struct cpu_hw_counters *cpuhw; unsigned long flags; int n0; int ret = -EAGAIN; local_irq_save(flags); perf_disable(); /* * Add the counter to the list (if there is room) * and check whether the total set is still feasible. */ cpuhw = &__get_cpu_var(cpu_hw_counters); n0 = cpuhw->n_counters; if (n0 >= ppmu->n_counter) goto out; cpuhw->counter[n0] = counter; cpuhw->events[n0] = counter->hw.config; cpuhw->flags[n0] = counter->hw.counter_base; if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1)) goto out; if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1)) goto out; counter->hw.config = cpuhw->events[n0]; ++cpuhw->n_counters; ++cpuhw->n_added; ret = 0; out: perf_enable(); local_irq_restore(flags); return ret; } /* * Remove a counter from the PMU. */ static void power_pmu_disable(struct perf_counter *counter) { struct cpu_hw_counters *cpuhw; long i; unsigned long flags; local_irq_save(flags); perf_disable(); power_pmu_read(counter); cpuhw = &__get_cpu_var(cpu_hw_counters); for (i = 0; i < cpuhw->n_counters; ++i) { if (counter == cpuhw->counter[i]) { while (++i < cpuhw->n_counters) cpuhw->counter[i-1] = cpuhw->counter[i]; --cpuhw->n_counters; ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr); if (counter->hw.idx) { write_pmc(counter->hw.idx, 0); counter->hw.idx = 0; } perf_counter_update_userpage(counter); break; } } for (i = 0; i < cpuhw->n_limited; ++i) if (counter == cpuhw->limited_counter[i]) break; if (i < cpuhw->n_limited) { while (++i < cpuhw->n_limited) { cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; } --cpuhw->n_limited; } if (cpuhw->n_counters == 0) { /* disable exceptions if no counters are running */ cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); } perf_enable(); local_irq_restore(flags); } /* * Re-enable interrupts on a counter after they were throttled * because they were coming too fast. */ static void power_pmu_unthrottle(struct perf_counter *counter) { s64 val, left; unsigned long flags; if (!counter->hw.idx || !counter->hw.sample_period) return; local_irq_save(flags); perf_disable(); power_pmu_read(counter); left = counter->hw.sample_period; counter->hw.last_period = left; val = 0; if (left < 0x80000000L) val = 0x80000000L - left; write_pmc(counter->hw.idx, val); atomic64_set(&counter->hw.prev_count, val); atomic64_set(&counter->hw.period_left, left); perf_counter_update_userpage(counter); perf_enable(); local_irq_restore(flags); } struct pmu power_pmu = { .enable = power_pmu_enable, .disable = power_pmu_disable, .read = power_pmu_read, .unthrottle = power_pmu_unthrottle, }; /* * Return 1 if we might be able to put counter on a limited PMC, * or 0 if not. * A counter can only go on a limited PMC if it counts something * that a limited PMC can count, doesn't require interrupts, and * doesn't exclude any processor mode. */ static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev, unsigned int flags) { int n; u64 alt[MAX_EVENT_ALTERNATIVES]; if (counter->attr.exclude_user || counter->attr.exclude_kernel || counter->attr.exclude_hv || counter->attr.sample_period) return 0; if (ppmu->limited_pmc_event(ev)) return 1; /* * The requested event isn't on a limited PMC already; * see if any alternative code goes on a limited PMC. */ if (!ppmu->get_alternatives) return 0; flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; n = ppmu->get_alternatives(ev, flags, alt); return n > 0; } /* * Find an alternative event that goes on a normal PMC, if possible, * and return the event code, or 0 if there is no such alternative. * (Note: event code 0 is "don't count" on all machines.) */ static u64 normal_pmc_alternative(u64 ev, unsigned long flags) { u64 alt[MAX_EVENT_ALTERNATIVES]; int n; flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); n = ppmu->get_alternatives(ev, flags, alt); if (!n) return 0; return alt[0]; } /* Number of perf_counters counting hardware events */ static atomic_t num_counters; /* Used to avoid races in calling reserve/release_pmc_hardware */ static DEFINE_MUTEX(pmc_reserve_mutex); /* * Release the PMU if this is the last perf_counter. */ static void hw_perf_counter_destroy(struct perf_counter *counter) { if (!atomic_add_unless(&num_counters, -1, 1)) { mutex_lock(&pmc_reserve_mutex); if (atomic_dec_return(&num_counters) == 0) release_pmc_hardware(); mutex_unlock(&pmc_reserve_mutex); } } const struct pmu *hw_perf_counter_init(struct perf_counter *counter) { u64 ev; unsigned long flags; struct perf_counter *ctrs[MAX_HWCOUNTERS]; u64 events[MAX_HWCOUNTERS]; unsigned int cflags[MAX_HWCOUNTERS]; int n; int err; if (!ppmu) return ERR_PTR(-ENXIO); if (counter->attr.type != PERF_TYPE_RAW) { ev = counter->attr.config; if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) return ERR_PTR(-EOPNOTSUPP); ev = ppmu->generic_events[ev]; } else { ev = counter->attr.config; } counter->hw.config_base = ev; counter->hw.idx = 0; /* * If we are not running on a hypervisor, force the * exclude_hv bit to 0 so that we don't care what * the user set it to. */ if (!firmware_has_feature(FW_FEATURE_LPAR)) counter->attr.exclude_hv = 0; /* * If this is a per-task counter, then we can use * PM_RUN_* events interchangeably with their non RUN_* * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. * XXX we should check if the task is an idle task. */ flags = 0; if (counter->ctx->task) flags |= PPMU_ONLY_COUNT_RUN; /* * If this machine has limited counters, check whether this * event could go on a limited counter. */ if (ppmu->flags & PPMU_LIMITED_PMC5_6) { if (can_go_on_limited_pmc(counter, ev, flags)) { flags |= PPMU_LIMITED_PMC_OK; } else if (ppmu->limited_pmc_event(ev)) { /* * The requested event is on a limited PMC, * but we can't use a limited PMC; see if any * alternative goes on a normal PMC. */ ev = normal_pmc_alternative(ev, flags); if (!ev) return ERR_PTR(-EINVAL); } } /* * If this is in a group, check if it can go on with all the * other hardware counters in the group. We assume the counter * hasn't been linked into its leader's sibling list at this point. */ n = 0; if (counter->group_leader != counter) { n = collect_events(counter->group_leader, ppmu->n_counter - 1, ctrs, events, cflags); if (n < 0) return ERR_PTR(-EINVAL); } events[n] = ev; ctrs[n] = counter; cflags[n] = flags; if (check_excludes(ctrs, cflags, n, 1)) return ERR_PTR(-EINVAL); if (power_check_constraints(events, cflags, n + 1)) return ERR_PTR(-EINVAL); counter->hw.config = events[n]; counter->hw.counter_base = cflags[n]; counter->hw.last_period = counter->hw.sample_period; atomic64_set(&counter->hw.period_left, counter->hw.last_period); /* * See if we need to reserve the PMU. * If no counters are currently in use, then we have to take a * mutex to ensure that we don't race with another task doing * reserve_pmc_hardware or release_pmc_hardware. */ err = 0; if (!atomic_inc_not_zero(&num_counters)) { mutex_lock(&pmc_reserve_mutex); if (atomic_read(&num_counters) == 0 && reserve_pmc_hardware(perf_counter_interrupt)) err = -EBUSY; else atomic_inc(&num_counters); mutex_unlock(&pmc_reserve_mutex); } counter->destroy = hw_perf_counter_destroy; if (err) return ERR_PTR(err); return &power_pmu; } /* * A counter has overflowed; update its count and record * things if requested. Note that interrupts are hard-disabled * here so there is no possibility of being interrupted. */ static void record_and_restart(struct perf_counter *counter, long val, struct pt_regs *regs, int nmi) { u64 period = counter->hw.sample_period; s64 prev, delta, left; int record = 0; u64 addr, mmcra, sdsync; /* we don't have to worry about interrupts here */ prev = atomic64_read(&counter->hw.prev_count); delta = (val - prev) & 0xfffffffful; atomic64_add(delta, &counter->count); /* * See if the total period for this counter has expired, * and update for the next period. */ val = 0; left = atomic64_read(&counter->hw.period_left) - delta; if (period) { if (left <= 0) { left += period; if (left <= 0) left = period; record = 1; } if (left < 0x80000000L) val = 0x80000000L - left; } /* * Finally record data if requested. */ if (record) { struct perf_sample_data data = { .regs = regs, .addr = 0, .period = counter->hw.last_period, }; if (counter->attr.sample_type & PERF_SAMPLE_ADDR) { /* * The user wants a data address recorded. * If we're not doing instruction sampling, * give them the SDAR (sampled data address). * If we are doing instruction sampling, then only * give them the SDAR if it corresponds to the * instruction pointed to by SIAR; this is indicated * by the [POWER6_]MMCRA_SDSYNC bit in MMCRA. */ mmcra = regs->dsisr; sdsync = (ppmu->flags & PPMU_ALT_SIPR) ? POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC; if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync)) data.addr = mfspr(SPRN_SDAR); } if (perf_counter_overflow(counter, nmi, &data)) { /* * Interrupts are coming too fast - throttle them * by setting the counter to 0, so it will be * at least 2^30 cycles until the next interrupt * (assuming each counter counts at most 2 counts * per cycle). */ val = 0; left = ~0ULL >> 1; } } write_pmc(counter->hw.idx, val); atomic64_set(&counter->hw.prev_count, val); atomic64_set(&counter->hw.period_left, left); perf_counter_update_userpage(counter); } /* * Called from generic code to get the misc flags (i.e. processor mode) * for an event. */ unsigned long perf_misc_flags(struct pt_regs *regs) { unsigned long mmcra; if (TRAP(regs) != 0xf00) { /* not a PMU interrupt */ return user_mode(regs) ? PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL; } mmcra = regs->dsisr; if (ppmu->flags & PPMU_ALT_SIPR) { if (mmcra & POWER6_MMCRA_SIHV) return PERF_EVENT_MISC_HYPERVISOR; return (mmcra & POWER6_MMCRA_SIPR) ? PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL; } if (mmcra & MMCRA_SIHV) return PERF_EVENT_MISC_HYPERVISOR; return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL; } /* * Called from generic code to get the instruction pointer * for an event. */ unsigned long perf_instruction_pointer(struct pt_regs *regs) { unsigned long mmcra; unsigned long ip; unsigned long slot; if (TRAP(regs) != 0xf00) return regs->nip; /* not a PMU interrupt */ ip = mfspr(SPRN_SIAR); mmcra = regs->dsisr; if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) { slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; if (slot > 1) ip += 4 * (slot - 1); } return ip; } /* * Performance monitor interrupt stuff */ static void perf_counter_interrupt(struct pt_regs *regs) { int i; struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters); struct perf_counter *counter; long val; int found = 0; int nmi; if (cpuhw->n_limited) freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), mfspr(SPRN_PMC6)); /* * Overload regs->dsisr to store MMCRA so we only need to read it once. */ regs->dsisr = mfspr(SPRN_MMCRA); /* * If interrupts were soft-disabled when this PMU interrupt * occurred, treat it as an NMI. */ nmi = !regs->softe; if (nmi) nmi_enter(); else irq_enter(); for (i = 0; i < cpuhw->n_counters; ++i) { counter = cpuhw->counter[i]; if (!counter->hw.idx || is_limited_pmc(counter->hw.idx)) continue; val = read_pmc(counter->hw.idx); if ((int)val < 0) { /* counter has overflowed */ found = 1; record_and_restart(counter, val, regs, nmi); } } /* * In case we didn't find and reset the counter that caused * the interrupt, scan all counters and reset any that are * negative, to avoid getting continual interrupts. * Any that we processed in the previous loop will not be negative. */ if (!found) { for (i = 0; i < ppmu->n_counter; ++i) { if (is_limited_pmc(i + 1)) continue; val = read_pmc(i + 1); if ((int)val < 0) write_pmc(i + 1, 0); } } /* * Reset MMCR0 to its normal value. This will set PMXE and * clear FC (freeze counters) and PMAO (perf mon alert occurred) * and thus allow interrupts to occur again. * XXX might want to use MSR.PM to keep the counters frozen until * we get back out of this interrupt. */ write_mmcr0(cpuhw, cpuhw->mmcr[0]); if (nmi) nmi_exit(); else irq_exit(); } void hw_perf_counter_setup(int cpu) { struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu); memset(cpuhw, 0, sizeof(*cpuhw)); cpuhw->mmcr[0] = MMCR0_FC; } extern struct power_pmu power4_pmu; extern struct power_pmu ppc970_pmu; extern struct power_pmu power5_pmu; extern struct power_pmu power5p_pmu; extern struct power_pmu power6_pmu; static int init_perf_counters(void) { unsigned long pvr; /* XXX should get this from cputable */ pvr = mfspr(SPRN_PVR); switch (PVR_VER(pvr)) { case PV_POWER4: case PV_POWER4p: ppmu = &power4_pmu; break; case PV_970: case PV_970FX: case PV_970MP: ppmu = &ppc970_pmu; break; case PV_POWER5: ppmu = &power5_pmu; break; case PV_POWER5p: ppmu = &power5p_pmu; break; case 0x3e: ppmu = &power6_pmu; break; } /* * Use FCHV to ignore kernel events if MSR.HV is set. */ if (mfmsr() & MSR_HV) freeze_counters_kernel = MMCR0_FCHV; return 0; } arch_initcall(init_perf_counters);