/* * Copyright (c) 2007-2011 Nicira, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA */ #include "flow.h" #include "datapath.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct kmem_cache *flow_cache; static int check_header(struct sk_buff *skb, int len) { if (unlikely(skb->len < len)) return -EINVAL; if (unlikely(!pskb_may_pull(skb, len))) return -ENOMEM; return 0; } static bool arphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_network_offset(skb) + sizeof(struct arp_eth_header)); } static int check_iphdr(struct sk_buff *skb) { unsigned int nh_ofs = skb_network_offset(skb); unsigned int ip_len; int err; err = check_header(skb, nh_ofs + sizeof(struct iphdr)); if (unlikely(err)) return err; ip_len = ip_hdrlen(skb); if (unlikely(ip_len < sizeof(struct iphdr) || skb->len < nh_ofs + ip_len)) return -EINVAL; skb_set_transport_header(skb, nh_ofs + ip_len); return 0; } static bool tcphdr_ok(struct sk_buff *skb) { int th_ofs = skb_transport_offset(skb); int tcp_len; if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) return false; tcp_len = tcp_hdrlen(skb); if (unlikely(tcp_len < sizeof(struct tcphdr) || skb->len < th_ofs + tcp_len)) return false; return true; } static bool udphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)); } static bool icmphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct icmphdr)); } u64 ovs_flow_used_time(unsigned long flow_jiffies) { struct timespec cur_ts; u64 cur_ms, idle_ms; ktime_get_ts(&cur_ts); idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + cur_ts.tv_nsec / NSEC_PER_MSEC; return cur_ms - idle_ms; } #define SW_FLOW_KEY_OFFSET(field) \ (offsetof(struct sw_flow_key, field) + \ FIELD_SIZEOF(struct sw_flow_key, field)) static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key, int *key_lenp) { unsigned int nh_ofs = skb_network_offset(skb); unsigned int nh_len; int payload_ofs; struct ipv6hdr *nh; uint8_t nexthdr; __be16 frag_off; int err; *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label); err = check_header(skb, nh_ofs + sizeof(*nh)); if (unlikely(err)) return err; nh = ipv6_hdr(skb); nexthdr = nh->nexthdr; payload_ofs = (u8 *)(nh + 1) - skb->data; key->ip.proto = NEXTHDR_NONE; key->ip.tos = ipv6_get_dsfield(nh); key->ip.ttl = nh->hop_limit; key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); key->ipv6.addr.src = nh->saddr; key->ipv6.addr.dst = nh->daddr; payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); if (unlikely(payload_ofs < 0)) return -EINVAL; if (frag_off) { if (frag_off & htons(~0x7)) key->ip.frag = OVS_FRAG_TYPE_LATER; else key->ip.frag = OVS_FRAG_TYPE_FIRST; } nh_len = payload_ofs - nh_ofs; skb_set_transport_header(skb, nh_ofs + nh_len); key->ip.proto = nexthdr; return nh_len; } static bool icmp6hdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct icmp6hdr)); } #define TCP_FLAGS_OFFSET 13 #define TCP_FLAG_MASK 0x3f void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb) { u8 tcp_flags = 0; if ((flow->key.eth.type == htons(ETH_P_IP) || flow->key.eth.type == htons(ETH_P_IPV6)) && flow->key.ip.proto == IPPROTO_TCP && likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) { u8 *tcp = (u8 *)tcp_hdr(skb); tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; } spin_lock(&flow->lock); flow->used = jiffies; flow->packet_count++; flow->byte_count += skb->len; flow->tcp_flags |= tcp_flags; spin_unlock(&flow->lock); } struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions) { int actions_len = nla_len(actions); struct sw_flow_actions *sfa; /* At least DP_MAX_PORTS actions are required to be able to flood a * packet to every port. Factor of 2 allows for setting VLAN tags, * etc. */ if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4)) return ERR_PTR(-EINVAL); sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL); if (!sfa) return ERR_PTR(-ENOMEM); sfa->actions_len = actions_len; memcpy(sfa->actions, nla_data(actions), actions_len); return sfa; } struct sw_flow *ovs_flow_alloc(void) { struct sw_flow *flow; flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); if (!flow) return ERR_PTR(-ENOMEM); spin_lock_init(&flow->lock); flow->sf_acts = NULL; return flow; } static struct hlist_head *find_bucket(struct flow_table *table, u32 hash) { hash = jhash_1word(hash, table->hash_seed); return flex_array_get(table->buckets, (hash & (table->n_buckets - 1))); } static struct flex_array *alloc_buckets(unsigned int n_buckets) { struct flex_array *buckets; int i, err; buckets = flex_array_alloc(sizeof(struct hlist_head *), n_buckets, GFP_KERNEL); if (!buckets) return NULL; err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL); if (err) { flex_array_free(buckets); return NULL; } for (i = 0; i < n_buckets; i++) INIT_HLIST_HEAD((struct hlist_head *) flex_array_get(buckets, i)); return buckets; } static void free_buckets(struct flex_array *buckets) { flex_array_free(buckets); } struct flow_table *ovs_flow_tbl_alloc(int new_size) { struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL); if (!table) return NULL; table->buckets = alloc_buckets(new_size); if (!table->buckets) { kfree(table); return NULL; } table->n_buckets = new_size; table->count = 0; table->node_ver = 0; table->keep_flows = false; get_random_bytes(&table->hash_seed, sizeof(u32)); return table; } void ovs_flow_tbl_destroy(struct flow_table *table) { int i; if (!table) return; if (table->keep_flows) goto skip_flows; for (i = 0; i < table->n_buckets; i++) { struct sw_flow *flow; struct hlist_head *head = flex_array_get(table->buckets, i); struct hlist_node *node, *n; int ver = table->node_ver; hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) { hlist_del_rcu(&flow->hash_node[ver]); ovs_flow_free(flow); } } skip_flows: free_buckets(table->buckets); kfree(table); } static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) { struct flow_table *table = container_of(rcu, struct flow_table, rcu); ovs_flow_tbl_destroy(table); } void ovs_flow_tbl_deferred_destroy(struct flow_table *table) { if (!table) return; call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb); } struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last) { struct sw_flow *flow; struct hlist_head *head; struct hlist_node *n; int ver; int i; ver = table->node_ver; while (*bucket < table->n_buckets) { i = 0; head = flex_array_get(table->buckets, *bucket); hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) { if (i < *last) { i++; continue; } *last = i + 1; return flow; } (*bucket)++; *last = 0; } return NULL; } static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new) { int old_ver; int i; old_ver = old->node_ver; new->node_ver = !old_ver; /* Insert in new table. */ for (i = 0; i < old->n_buckets; i++) { struct sw_flow *flow; struct hlist_head *head; struct hlist_node *n; head = flex_array_get(old->buckets, i); hlist_for_each_entry(flow, n, head, hash_node[old_ver]) ovs_flow_tbl_insert(new, flow); } old->keep_flows = true; } static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets) { struct flow_table *new_table; new_table = ovs_flow_tbl_alloc(n_buckets); if (!new_table) return ERR_PTR(-ENOMEM); flow_table_copy_flows(table, new_table); return new_table; } struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table) { return __flow_tbl_rehash(table, table->n_buckets); } struct flow_table *ovs_flow_tbl_expand(struct flow_table *table) { return __flow_tbl_rehash(table, table->n_buckets * 2); } void ovs_flow_free(struct sw_flow *flow) { if (unlikely(!flow)) return; kfree((struct sf_flow_acts __force *)flow->sf_acts); kmem_cache_free(flow_cache, flow); } /* RCU callback used by ovs_flow_deferred_free. */ static void rcu_free_flow_callback(struct rcu_head *rcu) { struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); ovs_flow_free(flow); } /* Schedules 'flow' to be freed after the next RCU grace period. * The caller must hold rcu_read_lock for this to be sensible. */ void ovs_flow_deferred_free(struct sw_flow *flow) { call_rcu(&flow->rcu, rcu_free_flow_callback); } /* RCU callback used by ovs_flow_deferred_free_acts. */ static void rcu_free_acts_callback(struct rcu_head *rcu) { struct sw_flow_actions *sf_acts = container_of(rcu, struct sw_flow_actions, rcu); kfree(sf_acts); } /* Schedules 'sf_acts' to be freed after the next RCU grace period. * The caller must hold rcu_read_lock for this to be sensible. */ void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts) { call_rcu(&sf_acts->rcu, rcu_free_acts_callback); } static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) { struct qtag_prefix { __be16 eth_type; /* ETH_P_8021Q */ __be16 tci; }; struct qtag_prefix *qp; if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) return 0; if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + sizeof(__be16)))) return -ENOMEM; qp = (struct qtag_prefix *) skb->data; key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); __skb_pull(skb, sizeof(struct qtag_prefix)); return 0; } static __be16 parse_ethertype(struct sk_buff *skb) { struct llc_snap_hdr { u8 dsap; /* Always 0xAA */ u8 ssap; /* Always 0xAA */ u8 ctrl; u8 oui[3]; __be16 ethertype; }; struct llc_snap_hdr *llc; __be16 proto; proto = *(__be16 *) skb->data; __skb_pull(skb, sizeof(__be16)); if (ntohs(proto) >= 1536) return proto; if (skb->len < sizeof(struct llc_snap_hdr)) return htons(ETH_P_802_2); if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) return htons(0); llc = (struct llc_snap_hdr *) skb->data; if (llc->dsap != LLC_SAP_SNAP || llc->ssap != LLC_SAP_SNAP || (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) return htons(ETH_P_802_2); __skb_pull(skb, sizeof(struct llc_snap_hdr)); return llc->ethertype; } static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, int *key_lenp, int nh_len) { struct icmp6hdr *icmp = icmp6_hdr(skb); int error = 0; int key_len; /* The ICMPv6 type and code fields use the 16-bit transport port * fields, so we need to store them in 16-bit network byte order. */ key->ipv6.tp.src = htons(icmp->icmp6_type); key->ipv6.tp.dst = htons(icmp->icmp6_code); key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); if (icmp->icmp6_code == 0 && (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { int icmp_len = skb->len - skb_transport_offset(skb); struct nd_msg *nd; int offset; key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); /* In order to process neighbor discovery options, we need the * entire packet. */ if (unlikely(icmp_len < sizeof(*nd))) goto out; if (unlikely(skb_linearize(skb))) { error = -ENOMEM; goto out; } nd = (struct nd_msg *)skb_transport_header(skb); key->ipv6.nd.target = nd->target; key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); icmp_len -= sizeof(*nd); offset = 0; while (icmp_len >= 8) { struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd->opt + offset); int opt_len = nd_opt->nd_opt_len * 8; if (unlikely(!opt_len || opt_len > icmp_len)) goto invalid; /* Store the link layer address if the appropriate * option is provided. It is considered an error if * the same link layer option is specified twice. */ if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR && opt_len == 8) { if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) goto invalid; memcpy(key->ipv6.nd.sll, &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR && opt_len == 8) { if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) goto invalid; memcpy(key->ipv6.nd.tll, &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); } icmp_len -= opt_len; offset += opt_len; } } goto out; invalid: memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); out: *key_lenp = key_len; return error; } /** * ovs_flow_extract - extracts a flow key from an Ethernet frame. * @skb: sk_buff that contains the frame, with skb->data pointing to the * Ethernet header * @in_port: port number on which @skb was received. * @key: output flow key * @key_lenp: length of output flow key * * The caller must ensure that skb->len >= ETH_HLEN. * * Returns 0 if successful, otherwise a negative errno value. * * Initializes @skb header pointers as follows: * * - skb->mac_header: the Ethernet header. * * - skb->network_header: just past the Ethernet header, or just past the * VLAN header, to the first byte of the Ethernet payload. * * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6 * on output, then just past the IP header, if one is present and * of a correct length, otherwise the same as skb->network_header. * For other key->dl_type values it is left untouched. */ int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key, int *key_lenp) { int error = 0; int key_len = SW_FLOW_KEY_OFFSET(eth); struct ethhdr *eth; memset(key, 0, sizeof(*key)); key->phy.priority = skb->priority; key->phy.in_port = in_port; skb_reset_mac_header(skb); /* Link layer. We are guaranteed to have at least the 14 byte Ethernet * header in the linear data area. */ eth = eth_hdr(skb); memcpy(key->eth.src, eth->h_source, ETH_ALEN); memcpy(key->eth.dst, eth->h_dest, ETH_ALEN); __skb_pull(skb, 2 * ETH_ALEN); if (vlan_tx_tag_present(skb)) key->eth.tci = htons(skb->vlan_tci); else if (eth->h_proto == htons(ETH_P_8021Q)) if (unlikely(parse_vlan(skb, key))) return -ENOMEM; key->eth.type = parse_ethertype(skb); if (unlikely(key->eth.type == htons(0))) return -ENOMEM; skb_reset_network_header(skb); __skb_push(skb, skb->data - skb_mac_header(skb)); /* Network layer. */ if (key->eth.type == htons(ETH_P_IP)) { struct iphdr *nh; __be16 offset; key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); error = check_iphdr(skb); if (unlikely(error)) { if (error == -EINVAL) { skb->transport_header = skb->network_header; error = 0; } goto out; } nh = ip_hdr(skb); key->ipv4.addr.src = nh->saddr; key->ipv4.addr.dst = nh->daddr; key->ip.proto = nh->protocol; key->ip.tos = nh->tos; key->ip.ttl = nh->ttl; offset = nh->frag_off & htons(IP_OFFSET); if (offset) { key->ip.frag = OVS_FRAG_TYPE_LATER; goto out; } if (nh->frag_off & htons(IP_MF) || skb_shinfo(skb)->gso_type & SKB_GSO_UDP) key->ip.frag = OVS_FRAG_TYPE_FIRST; /* Transport layer. */ if (key->ip.proto == IPPROTO_TCP) { key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); if (tcphdr_ok(skb)) { struct tcphdr *tcp = tcp_hdr(skb); key->ipv4.tp.src = tcp->source; key->ipv4.tp.dst = tcp->dest; } } else if (key->ip.proto == IPPROTO_UDP) { key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); if (udphdr_ok(skb)) { struct udphdr *udp = udp_hdr(skb); key->ipv4.tp.src = udp->source; key->ipv4.tp.dst = udp->dest; } } else if (key->ip.proto == IPPROTO_ICMP) { key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); if (icmphdr_ok(skb)) { struct icmphdr *icmp = icmp_hdr(skb); /* The ICMP type and code fields use the 16-bit * transport port fields, so we need to store * them in 16-bit network byte order. */ key->ipv4.tp.src = htons(icmp->type); key->ipv4.tp.dst = htons(icmp->code); } } } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) { struct arp_eth_header *arp; arp = (struct arp_eth_header *)skb_network_header(skb); if (arp->ar_hrd == htons(ARPHRD_ETHER) && arp->ar_pro == htons(ETH_P_IP) && arp->ar_hln == ETH_ALEN && arp->ar_pln == 4) { /* We only match on the lower 8 bits of the opcode. */ if (ntohs(arp->ar_op) <= 0xff) key->ip.proto = ntohs(arp->ar_op); if (key->ip.proto == ARPOP_REQUEST || key->ip.proto == ARPOP_REPLY) { memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN); memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN); key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); } } } else if (key->eth.type == htons(ETH_P_IPV6)) { int nh_len; /* IPv6 Header + Extensions */ nh_len = parse_ipv6hdr(skb, key, &key_len); if (unlikely(nh_len < 0)) { if (nh_len == -EINVAL) skb->transport_header = skb->network_header; else error = nh_len; goto out; } if (key->ip.frag == OVS_FRAG_TYPE_LATER) goto out; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) key->ip.frag = OVS_FRAG_TYPE_FIRST; /* Transport layer. */ if (key->ip.proto == NEXTHDR_TCP) { key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); if (tcphdr_ok(skb)) { struct tcphdr *tcp = tcp_hdr(skb); key->ipv6.tp.src = tcp->source; key->ipv6.tp.dst = tcp->dest; } } else if (key->ip.proto == NEXTHDR_UDP) { key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); if (udphdr_ok(skb)) { struct udphdr *udp = udp_hdr(skb); key->ipv6.tp.src = udp->source; key->ipv6.tp.dst = udp->dest; } } else if (key->ip.proto == NEXTHDR_ICMP) { key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); if (icmp6hdr_ok(skb)) { error = parse_icmpv6(skb, key, &key_len, nh_len); if (error < 0) goto out; } } } out: *key_lenp = key_len; return error; } u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len) { return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0); } struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table, struct sw_flow_key *key, int key_len) { struct sw_flow *flow; struct hlist_node *n; struct hlist_head *head; u32 hash; hash = ovs_flow_hash(key, key_len); head = find_bucket(table, hash); hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) { if (flow->hash == hash && !memcmp(&flow->key, key, key_len)) { return flow; } } return NULL; } void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow) { struct hlist_head *head; head = find_bucket(table, flow->hash); hlist_add_head_rcu(&flow->hash_node[table->node_ver], head); table->count++; } void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow) { hlist_del_rcu(&flow->hash_node[table->node_ver]); table->count--; BUG_ON(table->count < 0); } /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { [OVS_KEY_ATTR_ENCAP] = -1, [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), [OVS_KEY_ATTR_VLAN] = sizeof(__be16), [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), }; static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, const struct nlattr *a[], u32 *attrs) { const struct ovs_key_icmp *icmp_key; const struct ovs_key_tcp *tcp_key; const struct ovs_key_udp *udp_key; switch (swkey->ip.proto) { case IPPROTO_TCP: if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) return -EINVAL; *attrs &= ~(1 << OVS_KEY_ATTR_TCP); *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); swkey->ipv4.tp.src = tcp_key->tcp_src; swkey->ipv4.tp.dst = tcp_key->tcp_dst; break; case IPPROTO_UDP: if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) return -EINVAL; *attrs &= ~(1 << OVS_KEY_ATTR_UDP); *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); swkey->ipv4.tp.src = udp_key->udp_src; swkey->ipv4.tp.dst = udp_key->udp_dst; break; case IPPROTO_ICMP: if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP))) return -EINVAL; *attrs &= ~(1 << OVS_KEY_ATTR_ICMP); *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); swkey->ipv4.tp.src = htons(icmp_key->icmp_type); swkey->ipv4.tp.dst = htons(icmp_key->icmp_code); break; } return 0; } static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, const struct nlattr *a[], u32 *attrs) { const struct ovs_key_icmpv6 *icmpv6_key; const struct ovs_key_tcp *tcp_key; const struct ovs_key_udp *udp_key; switch (swkey->ip.proto) { case IPPROTO_TCP: if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) return -EINVAL; *attrs &= ~(1 << OVS_KEY_ATTR_TCP); *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); swkey->ipv6.tp.src = tcp_key->tcp_src; swkey->ipv6.tp.dst = tcp_key->tcp_dst; break; case IPPROTO_UDP: if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) return -EINVAL; *attrs &= ~(1 << OVS_KEY_ATTR_UDP); *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); swkey->ipv6.tp.src = udp_key->udp_src; swkey->ipv6.tp.dst = udp_key->udp_dst; break; case IPPROTO_ICMPV6: if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6))) return -EINVAL; *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type); swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code); if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { const struct ovs_key_nd *nd_key; if (!(*attrs & (1 << OVS_KEY_ATTR_ND))) return -EINVAL; *attrs &= ~(1 << OVS_KEY_ATTR_ND); *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); nd_key = nla_data(a[OVS_KEY_ATTR_ND]); memcpy(&swkey->ipv6.nd.target, nd_key->nd_target, sizeof(swkey->ipv6.nd.target)); memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN); memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN); } break; } return 0; } static int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], u32 *attrsp) { const struct nlattr *nla; u32 attrs; int rem; attrs = 0; nla_for_each_nested(nla, attr, rem) { u16 type = nla_type(nla); int expected_len; if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type)) return -EINVAL; expected_len = ovs_key_lens[type]; if (nla_len(nla) != expected_len && expected_len != -1) return -EINVAL; attrs |= 1 << type; a[type] = nla; } if (rem) return -EINVAL; *attrsp = attrs; return 0; } /** * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key. * @swkey: receives the extracted flow key. * @key_lenp: number of bytes used in @swkey. * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute * sequence. */ int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp, const struct nlattr *attr) { const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; const struct ovs_key_ethernet *eth_key; int key_len; u32 attrs; int err; memset(swkey, 0, sizeof(struct sw_flow_key)); key_len = SW_FLOW_KEY_OFFSET(eth); err = parse_flow_nlattrs(attr, a, &attrs); if (err) return err; /* Metadata attributes. */ if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]); attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); } if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); if (in_port >= DP_MAX_PORTS) return -EINVAL; swkey->phy.in_port = in_port; attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); } else { swkey->phy.in_port = USHRT_MAX; } /* Data attributes. */ if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET))) return -EINVAL; attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN); memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN); if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) && nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) { const struct nlattr *encap; __be16 tci; if (attrs != ((1 << OVS_KEY_ATTR_VLAN) | (1 << OVS_KEY_ATTR_ETHERTYPE) | (1 << OVS_KEY_ATTR_ENCAP))) return -EINVAL; encap = a[OVS_KEY_ATTR_ENCAP]; tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); if (tci & htons(VLAN_TAG_PRESENT)) { swkey->eth.tci = tci; err = parse_flow_nlattrs(encap, a, &attrs); if (err) return err; } else if (!tci) { /* Corner case for truncated 802.1Q header. */ if (nla_len(encap)) return -EINVAL; swkey->eth.type = htons(ETH_P_8021Q); *key_lenp = key_len; return 0; } else { return -EINVAL; } } if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); if (ntohs(swkey->eth.type) < 1536) return -EINVAL; attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); } else { swkey->eth.type = htons(ETH_P_802_2); } if (swkey->eth.type == htons(ETH_P_IP)) { const struct ovs_key_ipv4 *ipv4_key; if (!(attrs & (1 << OVS_KEY_ATTR_IPV4))) return -EINVAL; attrs &= ~(1 << OVS_KEY_ATTR_IPV4); key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) return -EINVAL; swkey->ip.proto = ipv4_key->ipv4_proto; swkey->ip.tos = ipv4_key->ipv4_tos; swkey->ip.ttl = ipv4_key->ipv4_ttl; swkey->ip.frag = ipv4_key->ipv4_frag; swkey->ipv4.addr.src = ipv4_key->ipv4_src; swkey->ipv4.addr.dst = ipv4_key->ipv4_dst; if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs); if (err) return err; } } else if (swkey->eth.type == htons(ETH_P_IPV6)) { const struct ovs_key_ipv6 *ipv6_key; if (!(attrs & (1 << OVS_KEY_ATTR_IPV6))) return -EINVAL; attrs &= ~(1 << OVS_KEY_ATTR_IPV6); key_len = SW_FLOW_KEY_OFFSET(ipv6.label); ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) return -EINVAL; swkey->ipv6.label = ipv6_key->ipv6_label; swkey->ip.proto = ipv6_key->ipv6_proto; swkey->ip.tos = ipv6_key->ipv6_tclass; swkey->ip.ttl = ipv6_key->ipv6_hlimit; swkey->ip.frag = ipv6_key->ipv6_frag; memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src, sizeof(swkey->ipv6.addr.src)); memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst, sizeof(swkey->ipv6.addr.dst)); if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs); if (err) return err; } } else if (swkey->eth.type == htons(ETH_P_ARP)) { const struct ovs_key_arp *arp_key; if (!(attrs & (1 << OVS_KEY_ATTR_ARP))) return -EINVAL; attrs &= ~(1 << OVS_KEY_ATTR_ARP); key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); swkey->ipv4.addr.src = arp_key->arp_sip; swkey->ipv4.addr.dst = arp_key->arp_tip; if (arp_key->arp_op & htons(0xff00)) return -EINVAL; swkey->ip.proto = ntohs(arp_key->arp_op); memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN); memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN); } if (attrs) return -EINVAL; *key_lenp = key_len; return 0; } /** * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key. * @in_port: receives the extracted input port. * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute * sequence. * * This parses a series of Netlink attributes that form a flow key, which must * take the same form accepted by flow_from_nlattrs(), but only enough of it to * get the metadata, that is, the parts of the flow key that cannot be * extracted from the packet itself. */ int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port, const struct nlattr *attr) { const struct nlattr *nla; int rem; *in_port = USHRT_MAX; *priority = 0; nla_for_each_nested(nla, attr, rem) { int type = nla_type(nla); if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) { if (nla_len(nla) != ovs_key_lens[type]) return -EINVAL; switch (type) { case OVS_KEY_ATTR_PRIORITY: *priority = nla_get_u32(nla); break; case OVS_KEY_ATTR_IN_PORT: if (nla_get_u32(nla) >= DP_MAX_PORTS) return -EINVAL; *in_port = nla_get_u32(nla); break; } } } if (rem) return -EINVAL; return 0; } int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb) { struct ovs_key_ethernet *eth_key; struct nlattr *nla, *encap; if (swkey->phy.priority) NLA_PUT_U32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority); if (swkey->phy.in_port != USHRT_MAX) NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port); nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); if (!nla) goto nla_put_failure; eth_key = nla_data(nla); memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN); memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN); if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)); NLA_PUT_BE16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci); encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); if (!swkey->eth.tci) goto unencap; } else { encap = NULL; } if (swkey->eth.type == htons(ETH_P_802_2)) goto unencap; NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type); if (swkey->eth.type == htons(ETH_P_IP)) { struct ovs_key_ipv4 *ipv4_key; nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); if (!nla) goto nla_put_failure; ipv4_key = nla_data(nla); ipv4_key->ipv4_src = swkey->ipv4.addr.src; ipv4_key->ipv4_dst = swkey->ipv4.addr.dst; ipv4_key->ipv4_proto = swkey->ip.proto; ipv4_key->ipv4_tos = swkey->ip.tos; ipv4_key->ipv4_ttl = swkey->ip.ttl; ipv4_key->ipv4_frag = swkey->ip.frag; } else if (swkey->eth.type == htons(ETH_P_IPV6)) { struct ovs_key_ipv6 *ipv6_key; nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); if (!nla) goto nla_put_failure; ipv6_key = nla_data(nla); memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src, sizeof(ipv6_key->ipv6_src)); memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst, sizeof(ipv6_key->ipv6_dst)); ipv6_key->ipv6_label = swkey->ipv6.label; ipv6_key->ipv6_proto = swkey->ip.proto; ipv6_key->ipv6_tclass = swkey->ip.tos; ipv6_key->ipv6_hlimit = swkey->ip.ttl; ipv6_key->ipv6_frag = swkey->ip.frag; } else if (swkey->eth.type == htons(ETH_P_ARP)) { struct ovs_key_arp *arp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); if (!nla) goto nla_put_failure; arp_key = nla_data(nla); memset(arp_key, 0, sizeof(struct ovs_key_arp)); arp_key->arp_sip = swkey->ipv4.addr.src; arp_key->arp_tip = swkey->ipv4.addr.dst; arp_key->arp_op = htons(swkey->ip.proto); memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN); memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN); } if ((swkey->eth.type == htons(ETH_P_IP) || swkey->eth.type == htons(ETH_P_IPV6)) && swkey->ip.frag != OVS_FRAG_TYPE_LATER) { if (swkey->ip.proto == IPPROTO_TCP) { struct ovs_key_tcp *tcp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); if (!nla) goto nla_put_failure; tcp_key = nla_data(nla); if (swkey->eth.type == htons(ETH_P_IP)) { tcp_key->tcp_src = swkey->ipv4.tp.src; tcp_key->tcp_dst = swkey->ipv4.tp.dst; } else if (swkey->eth.type == htons(ETH_P_IPV6)) { tcp_key->tcp_src = swkey->ipv6.tp.src; tcp_key->tcp_dst = swkey->ipv6.tp.dst; } } else if (swkey->ip.proto == IPPROTO_UDP) { struct ovs_key_udp *udp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); if (!nla) goto nla_put_failure; udp_key = nla_data(nla); if (swkey->eth.type == htons(ETH_P_IP)) { udp_key->udp_src = swkey->ipv4.tp.src; udp_key->udp_dst = swkey->ipv4.tp.dst; } else if (swkey->eth.type == htons(ETH_P_IPV6)) { udp_key->udp_src = swkey->ipv6.tp.src; udp_key->udp_dst = swkey->ipv6.tp.dst; } } else if (swkey->eth.type == htons(ETH_P_IP) && swkey->ip.proto == IPPROTO_ICMP) { struct ovs_key_icmp *icmp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); if (!nla) goto nla_put_failure; icmp_key = nla_data(nla); icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src); icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst); } else if (swkey->eth.type == htons(ETH_P_IPV6) && swkey->ip.proto == IPPROTO_ICMPV6) { struct ovs_key_icmpv6 *icmpv6_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, sizeof(*icmpv6_key)); if (!nla) goto nla_put_failure; icmpv6_key = nla_data(nla); icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src); icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst); if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { struct ovs_key_nd *nd_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); if (!nla) goto nla_put_failure; nd_key = nla_data(nla); memcpy(nd_key->nd_target, &swkey->ipv6.nd.target, sizeof(nd_key->nd_target)); memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN); memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN); } } } unencap: if (encap) nla_nest_end(skb, encap); return 0; nla_put_failure: return -EMSGSIZE; } /* Initializes the flow module. * Returns zero if successful or a negative error code. */ int ovs_flow_init(void) { flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, 0, NULL); if (flow_cache == NULL) return -ENOMEM; return 0; } /* Uninitializes the flow module. */ void ovs_flow_exit(void) { kmem_cache_destroy(flow_cache); }