/* * Copyright IBM Corp. 2006, 2012 * Author(s): Cornelia Huck * Martin Schwidefsky * Ralph Wuerthner * Felix Beck * Holger Dengler * * Adjunct processor bus. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define KMSG_COMPONENT "ap" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ap_bus.h" /* * Module description. */ MODULE_AUTHOR("IBM Corporation"); MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \ "Copyright IBM Corp. 2006, 2012"); MODULE_LICENSE("GPL"); MODULE_ALIAS_CRYPTO("z90crypt"); /* * Module parameter */ int ap_domain_index = -1; /* Adjunct Processor Domain Index */ module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP); MODULE_PARM_DESC(domain, "domain index for ap devices"); EXPORT_SYMBOL(ap_domain_index); static int ap_thread_flag = 0; module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP); MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); static struct device *ap_root_device = NULL; static struct ap_config_info *ap_configuration; static DEFINE_SPINLOCK(ap_device_list_lock); static LIST_HEAD(ap_device_list); /* * Workqueue & timer for bus rescan. */ static struct workqueue_struct *ap_work_queue; static struct timer_list ap_config_timer; static int ap_config_time = AP_CONFIG_TIME; static void ap_scan_bus(struct work_struct *); static DECLARE_WORK(ap_config_work, ap_scan_bus); /* * Tasklet & timer for AP request polling and interrupts */ static void ap_tasklet_fn(unsigned long); static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0); static atomic_t ap_poll_requests = ATOMIC_INIT(0); static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); static struct task_struct *ap_poll_kthread = NULL; static DEFINE_MUTEX(ap_poll_thread_mutex); static DEFINE_SPINLOCK(ap_poll_timer_lock); static struct hrtimer ap_poll_timer; /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/ static unsigned long long poll_timeout = 250000; /* Suspend flag */ static int ap_suspend_flag; /* Maximum domain id */ static int ap_max_domain_id; /* Flag to check if domain was set through module parameter domain=. This is * important when supsend and resume is done in a z/VM environment where the * domain might change. */ static int user_set_domain = 0; static struct bus_type ap_bus_type; /* Adapter interrupt definitions */ static void ap_interrupt_handler(struct airq_struct *airq); static int ap_airq_flag; static struct airq_struct ap_airq = { .handler = ap_interrupt_handler, .isc = AP_ISC, }; /** * ap_using_interrupts() - Returns non-zero if interrupt support is * available. */ static inline int ap_using_interrupts(void) { return ap_airq_flag; } /** * ap_intructions_available() - Test if AP instructions are available. * * Returns 0 if the AP instructions are installed. */ static inline int ap_instructions_available(void) { register unsigned long reg0 asm ("0") = AP_MKQID(0,0); register unsigned long reg1 asm ("1") = -ENODEV; register unsigned long reg2 asm ("2") = 0UL; asm volatile( " .long 0xb2af0000\n" /* PQAP(TAPQ) */ "0: la %1,0\n" "1:\n" EX_TABLE(0b, 1b) : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" ); return reg1; } /** * ap_interrupts_available(): Test if AP interrupts are available. * * Returns 1 if AP interrupts are available. */ static int ap_interrupts_available(void) { return test_facility(65); } /** * ap_configuration_available(): Test if AP configuration * information is available. * * Returns 1 if AP configuration information is available. */ static int ap_configuration_available(void) { return test_facility(12); } /** * ap_test_queue(): Test adjunct processor queue. * @qid: The AP queue number * @info: Pointer to queue descriptor * * Returns AP queue status structure. */ static inline struct ap_queue_status ap_test_queue(ap_qid_t qid, unsigned long *info) { register unsigned long reg0 asm ("0") = qid; register struct ap_queue_status reg1 asm ("1"); register unsigned long reg2 asm ("2") = 0UL; if (test_facility(15)) reg0 |= 1UL << 23; /* set APFT T bit*/ asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */ : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc"); if (info) *info = reg2; return reg1; } /** * ap_reset_queue(): Reset adjunct processor queue. * @qid: The AP queue number * * Returns AP queue status structure. */ static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid) { register unsigned long reg0 asm ("0") = qid | 0x01000000UL; register struct ap_queue_status reg1 asm ("1"); register unsigned long reg2 asm ("2") = 0UL; asm volatile( ".long 0xb2af0000" /* PQAP(RAPQ) */ : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc"); return reg1; } /** * ap_queue_interruption_control(): Enable interruption for a specific AP. * @qid: The AP queue number * @ind: The notification indicator byte * * Returns AP queue status. */ static inline struct ap_queue_status ap_queue_interruption_control(ap_qid_t qid, void *ind) { register unsigned long reg0 asm ("0") = qid | 0x03000000UL; register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC; register struct ap_queue_status reg1_out asm ("1"); register void *reg2 asm ("2") = ind; asm volatile( ".long 0xb2af0000" /* PQAP(AQIC) */ : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2) : : "cc" ); return reg1_out; } /** * ap_query_configuration(): Get AP configuration data * * Returns 0 on success, or -EOPNOTSUPP. */ static inline int ap_query_configuration(void) { register unsigned long reg0 asm ("0") = 0x04000000UL; register unsigned long reg1 asm ("1") = -EINVAL; register void *reg2 asm ("2") = (void *) ap_configuration; if (!ap_configuration) return -EOPNOTSUPP; asm volatile( ".long 0xb2af0000\n" /* PQAP(QCI) */ "0: la %1,0\n" "1:\n" EX_TABLE(0b, 1b) : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc"); return reg1; } /** * ap_init_configuration(): Allocate and query configuration array. */ static void ap_init_configuration(void) { if (!ap_configuration_available()) return; ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL); if (!ap_configuration) return; if (ap_query_configuration() != 0) { kfree(ap_configuration); ap_configuration = NULL; return; } } /* * ap_test_config(): helper function to extract the nrth bit * within the unsigned int array field. */ static inline int ap_test_config(unsigned int *field, unsigned int nr) { return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); } /* * ap_test_config_card_id(): Test, whether an AP card ID is configured. * @id AP card ID * * Returns 0 if the card is not configured * 1 if the card is configured or * if the configuration information is not available */ static inline int ap_test_config_card_id(unsigned int id) { if (!ap_configuration) /* QCI not supported */ return 1; return ap_test_config(ap_configuration->apm, id); } /* * ap_test_config_domain(): Test, whether an AP usage domain is configured. * @domain AP usage domain ID * * Returns 0 if the usage domain is not configured * 1 if the usage domain is configured or * if the configuration information is not available */ static inline int ap_test_config_domain(unsigned int domain) { if (!ap_configuration) /* QCI not supported */ return domain < 16; return ap_test_config(ap_configuration->aqm, domain); } /** * ap_queue_enable_interruption(): Enable interruption on an AP. * @qid: The AP queue number * @ind: the notification indicator byte * * Enables interruption on AP queue via ap_queue_interruption_control(). Based * on the return value it waits a while and tests the AP queue if interrupts * have been switched on using ap_test_queue(). */ static int ap_queue_enable_interruption(struct ap_device *ap_dev, void *ind) { struct ap_queue_status status; status = ap_queue_interruption_control(ap_dev->qid, ind); switch (status.response_code) { case AP_RESPONSE_NORMAL: case AP_RESPONSE_OTHERWISE_CHANGED: return 0; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: case AP_RESPONSE_INVALID_ADDRESS: pr_err("Registering adapter interrupts for AP %d failed\n", AP_QID_DEVICE(ap_dev->qid)); return -EOPNOTSUPP; case AP_RESPONSE_RESET_IN_PROGRESS: case AP_RESPONSE_BUSY: default: return -EBUSY; } } /** * __ap_send(): Send message to adjunct processor queue. * @qid: The AP queue number * @psmid: The program supplied message identifier * @msg: The message text * @length: The message length * @special: Special Bit * * Returns AP queue status structure. * Condition code 1 on NQAP can't happen because the L bit is 1. * Condition code 2 on NQAP also means the send is incomplete, * because a segment boundary was reached. The NQAP is repeated. */ static inline struct ap_queue_status __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length, unsigned int special) { typedef struct { char _[length]; } msgblock; register unsigned long reg0 asm ("0") = qid | 0x40000000UL; register struct ap_queue_status reg1 asm ("1"); register unsigned long reg2 asm ("2") = (unsigned long) msg; register unsigned long reg3 asm ("3") = (unsigned long) length; register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32); register unsigned long reg5 asm ("5") = psmid & 0xffffffff; if (special == 1) reg0 |= 0x400000UL; asm volatile ( "0: .long 0xb2ad0042\n" /* NQAP */ " brc 2,0b" : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3) : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg) : "cc" ); return reg1; } int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length) { struct ap_queue_status status; status = __ap_send(qid, psmid, msg, length, 0); switch (status.response_code) { case AP_RESPONSE_NORMAL: return 0; case AP_RESPONSE_Q_FULL: case AP_RESPONSE_RESET_IN_PROGRESS: return -EBUSY; case AP_RESPONSE_REQ_FAC_NOT_INST: return -EINVAL; default: /* Device is gone. */ return -ENODEV; } } EXPORT_SYMBOL(ap_send); /** * __ap_recv(): Receive message from adjunct processor queue. * @qid: The AP queue number * @psmid: Pointer to program supplied message identifier * @msg: The message text * @length: The message length * * Returns AP queue status structure. * Condition code 1 on DQAP means the receive has taken place * but only partially. The response is incomplete, hence the * DQAP is repeated. * Condition code 2 on DQAP also means the receive is incomplete, * this time because a segment boundary was reached. Again, the * DQAP is repeated. * Note that gpr2 is used by the DQAP instruction to keep track of * any 'residual' length, in case the instruction gets interrupted. * Hence it gets zeroed before the instruction. */ static inline struct ap_queue_status __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length) { typedef struct { char _[length]; } msgblock; register unsigned long reg0 asm("0") = qid | 0x80000000UL; register struct ap_queue_status reg1 asm ("1"); register unsigned long reg2 asm("2") = 0UL; register unsigned long reg4 asm("4") = (unsigned long) msg; register unsigned long reg5 asm("5") = (unsigned long) length; register unsigned long reg6 asm("6") = 0UL; register unsigned long reg7 asm("7") = 0UL; asm volatile( "0: .long 0xb2ae0064\n" /* DQAP */ " brc 6,0b\n" : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7), "=m" (*(msgblock *) msg) : : "cc" ); *psmid = (((unsigned long long) reg6) << 32) + reg7; return reg1; } int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length) { struct ap_queue_status status; status = __ap_recv(qid, psmid, msg, length); switch (status.response_code) { case AP_RESPONSE_NORMAL: return 0; case AP_RESPONSE_NO_PENDING_REPLY: if (status.queue_empty) return -ENOENT; return -EBUSY; case AP_RESPONSE_RESET_IN_PROGRESS: return -EBUSY; default: return -ENODEV; } } EXPORT_SYMBOL(ap_recv); /** * ap_query_queue(): Check if an AP queue is available. * @qid: The AP queue number * @queue_depth: Pointer to queue depth value * @device_type: Pointer to device type value * @facilities: Pointer to facility indicator */ static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type, unsigned int *facilities) { struct ap_queue_status status; unsigned long info; int nd; if (!ap_test_config_card_id(AP_QID_DEVICE(qid))) return -ENODEV; status = ap_test_queue(qid, &info); switch (status.response_code) { case AP_RESPONSE_NORMAL: *queue_depth = (int)(info & 0xff); *device_type = (int)((info >> 24) & 0xff); *facilities = (unsigned int)(info >> 32); /* Update maximum domain id */ nd = (info >> 16) & 0xff; if ((info & (1UL << 57)) && nd > 0) ap_max_domain_id = nd; return 0; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: case AP_RESPONSE_INVALID_ADDRESS: return -ENODEV; case AP_RESPONSE_RESET_IN_PROGRESS: case AP_RESPONSE_OTHERWISE_CHANGED: case AP_RESPONSE_BUSY: return -EBUSY; default: BUG(); } } /* State machine definitions and helpers */ static void ap_sm_wait(enum ap_wait wait) { ktime_t hr_time; switch (wait) { case AP_WAIT_AGAIN: case AP_WAIT_INTERRUPT: if (ap_using_interrupts()) break; if (ap_poll_kthread) { wake_up(&ap_poll_wait); break; } /* Fall through */ case AP_WAIT_TIMEOUT: spin_lock_bh(&ap_poll_timer_lock); if (!hrtimer_is_queued(&ap_poll_timer)) { hr_time = ktime_set(0, poll_timeout); hrtimer_forward_now(&ap_poll_timer, hr_time); hrtimer_restart(&ap_poll_timer); } spin_unlock_bh(&ap_poll_timer_lock); break; case AP_WAIT_NONE: default: break; } } static enum ap_wait ap_sm_nop(struct ap_device *ap_dev) { return AP_WAIT_NONE; } /** * ap_sm_recv(): Receive pending reply messages from an AP device but do * not change the state of the device. * @ap_dev: pointer to the AP device * * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT */ static struct ap_queue_status ap_sm_recv(struct ap_device *ap_dev) { struct ap_queue_status status; struct ap_message *ap_msg; status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid, ap_dev->reply->message, ap_dev->reply->length); switch (status.response_code) { case AP_RESPONSE_NORMAL: atomic_dec(&ap_poll_requests); ap_dev->queue_count--; if (ap_dev->queue_count > 0) mod_timer(&ap_dev->timeout, jiffies + ap_dev->drv->request_timeout); list_for_each_entry(ap_msg, &ap_dev->pendingq, list) { if (ap_msg->psmid != ap_dev->reply->psmid) continue; list_del_init(&ap_msg->list); ap_dev->pendingq_count--; ap_msg->receive(ap_dev, ap_msg, ap_dev->reply); break; } case AP_RESPONSE_NO_PENDING_REPLY: if (!status.queue_empty || ap_dev->queue_count <= 0) break; /* The card shouldn't forget requests but who knows. */ atomic_sub(ap_dev->queue_count, &ap_poll_requests); ap_dev->queue_count = 0; list_splice_init(&ap_dev->pendingq, &ap_dev->requestq); ap_dev->requestq_count += ap_dev->pendingq_count; ap_dev->pendingq_count = 0; break; default: break; } return status; } /** * ap_sm_read(): Receive pending reply messages from an AP device. * @ap_dev: pointer to the AP device * * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT */ static enum ap_wait ap_sm_read(struct ap_device *ap_dev) { struct ap_queue_status status; status = ap_sm_recv(ap_dev); switch (status.response_code) { case AP_RESPONSE_NORMAL: if (ap_dev->queue_count > 0) return AP_WAIT_AGAIN; ap_dev->state = AP_STATE_IDLE; return AP_WAIT_NONE; case AP_RESPONSE_NO_PENDING_REPLY: if (ap_dev->queue_count > 0) return AP_WAIT_INTERRUPT; ap_dev->state = AP_STATE_IDLE; return AP_WAIT_NONE; default: ap_dev->state = AP_STATE_BORKED; return AP_WAIT_NONE; } } /** * ap_sm_write(): Send messages from the request queue to an AP device. * @ap_dev: pointer to the AP device * * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT */ static enum ap_wait ap_sm_write(struct ap_device *ap_dev) { struct ap_queue_status status; struct ap_message *ap_msg; if (ap_dev->requestq_count <= 0) return AP_WAIT_NONE; /* Start the next request on the queue. */ ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list); status = __ap_send(ap_dev->qid, ap_msg->psmid, ap_msg->message, ap_msg->length, ap_msg->special); switch (status.response_code) { case AP_RESPONSE_NORMAL: atomic_inc(&ap_poll_requests); ap_dev->queue_count++; if (ap_dev->queue_count == 1) mod_timer(&ap_dev->timeout, jiffies + ap_dev->drv->request_timeout); list_move_tail(&ap_msg->list, &ap_dev->pendingq); ap_dev->requestq_count--; ap_dev->pendingq_count++; if (ap_dev->queue_count < ap_dev->queue_depth) { ap_dev->state = AP_STATE_WORKING; return AP_WAIT_AGAIN; } /* fall through */ case AP_RESPONSE_Q_FULL: ap_dev->state = AP_STATE_QUEUE_FULL; return AP_WAIT_INTERRUPT; case AP_RESPONSE_RESET_IN_PROGRESS: ap_dev->state = AP_STATE_RESET_WAIT; return AP_WAIT_TIMEOUT; case AP_RESPONSE_MESSAGE_TOO_BIG: case AP_RESPONSE_REQ_FAC_NOT_INST: list_del_init(&ap_msg->list); ap_dev->requestq_count--; ap_msg->rc = -EINVAL; ap_msg->receive(ap_dev, ap_msg, NULL); return AP_WAIT_AGAIN; default: ap_dev->state = AP_STATE_BORKED; return AP_WAIT_NONE; } } /** * ap_sm_read_write(): Send and receive messages to/from an AP device. * @ap_dev: pointer to the AP device * * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT */ static enum ap_wait ap_sm_read_write(struct ap_device *ap_dev) { return min(ap_sm_read(ap_dev), ap_sm_write(ap_dev)); } /** * ap_sm_reset(): Reset an AP queue. * @qid: The AP queue number * * Submit the Reset command to an AP queue. */ static enum ap_wait ap_sm_reset(struct ap_device *ap_dev) { struct ap_queue_status status; status = ap_reset_queue(ap_dev->qid); switch (status.response_code) { case AP_RESPONSE_NORMAL: case AP_RESPONSE_RESET_IN_PROGRESS: ap_dev->state = AP_STATE_RESET_WAIT; ap_dev->interrupt = AP_INTR_DISABLED; return AP_WAIT_TIMEOUT; case AP_RESPONSE_BUSY: return AP_WAIT_TIMEOUT; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: default: ap_dev->state = AP_STATE_BORKED; return AP_WAIT_NONE; } } /** * ap_sm_reset_wait(): Test queue for completion of the reset operation * @ap_dev: pointer to the AP device * * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0. */ static enum ap_wait ap_sm_reset_wait(struct ap_device *ap_dev) { struct ap_queue_status status; unsigned long info; if (ap_dev->queue_count > 0) /* Try to read a completed message and get the status */ status = ap_sm_recv(ap_dev); else /* Get the status with TAPQ */ status = ap_test_queue(ap_dev->qid, &info); switch (status.response_code) { case AP_RESPONSE_NORMAL: if (ap_using_interrupts() && ap_queue_enable_interruption(ap_dev, ap_airq.lsi_ptr) == 0) ap_dev->state = AP_STATE_SETIRQ_WAIT; else ap_dev->state = (ap_dev->queue_count > 0) ? AP_STATE_WORKING : AP_STATE_IDLE; return AP_WAIT_AGAIN; case AP_RESPONSE_BUSY: case AP_RESPONSE_RESET_IN_PROGRESS: return AP_WAIT_TIMEOUT; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: default: ap_dev->state = AP_STATE_BORKED; return AP_WAIT_NONE; } } /** * ap_sm_setirq_wait(): Test queue for completion of the irq enablement * @ap_dev: pointer to the AP device * * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0. */ static enum ap_wait ap_sm_setirq_wait(struct ap_device *ap_dev) { struct ap_queue_status status; unsigned long info; if (ap_dev->queue_count > 0) /* Try to read a completed message and get the status */ status = ap_sm_recv(ap_dev); else /* Get the status with TAPQ */ status = ap_test_queue(ap_dev->qid, &info); if (status.int_enabled == 1) { /* Irqs are now enabled */ ap_dev->interrupt = AP_INTR_ENABLED; ap_dev->state = (ap_dev->queue_count > 0) ? AP_STATE_WORKING : AP_STATE_IDLE; } switch (status.response_code) { case AP_RESPONSE_NORMAL: if (ap_dev->queue_count > 0) return AP_WAIT_AGAIN; /* fallthrough */ case AP_RESPONSE_NO_PENDING_REPLY: return AP_WAIT_TIMEOUT; default: ap_dev->state = AP_STATE_BORKED; return AP_WAIT_NONE; } } /* * AP state machine jump table */ ap_func_t *ap_jumptable[NR_AP_STATES][NR_AP_EVENTS] = { [AP_STATE_RESET_START] = { [AP_EVENT_POLL] = ap_sm_reset, [AP_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_STATE_RESET_WAIT] = { [AP_EVENT_POLL] = ap_sm_reset_wait, [AP_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_STATE_SETIRQ_WAIT] = { [AP_EVENT_POLL] = ap_sm_setirq_wait, [AP_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_STATE_IDLE] = { [AP_EVENT_POLL] = ap_sm_write, [AP_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_STATE_WORKING] = { [AP_EVENT_POLL] = ap_sm_read_write, [AP_EVENT_TIMEOUT] = ap_sm_reset, }, [AP_STATE_QUEUE_FULL] = { [AP_EVENT_POLL] = ap_sm_read, [AP_EVENT_TIMEOUT] = ap_sm_reset, }, [AP_STATE_SUSPEND_WAIT] = { [AP_EVENT_POLL] = ap_sm_read, [AP_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_STATE_BORKED] = { [AP_EVENT_POLL] = ap_sm_nop, [AP_EVENT_TIMEOUT] = ap_sm_nop, }, }; static inline enum ap_wait ap_sm_event(struct ap_device *ap_dev, enum ap_event event) { return ap_jumptable[ap_dev->state][event](ap_dev); } static inline enum ap_wait ap_sm_event_loop(struct ap_device *ap_dev, enum ap_event event) { enum ap_wait wait; while ((wait = ap_sm_event(ap_dev, event)) == AP_WAIT_AGAIN) ; return wait; } /** * ap_request_timeout(): Handling of request timeouts * @data: Holds the AP device. * * Handles request timeouts. */ static void ap_request_timeout(unsigned long data) { struct ap_device *ap_dev = (struct ap_device *) data; if (ap_suspend_flag) return; spin_lock_bh(&ap_dev->lock); ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_TIMEOUT)); spin_unlock_bh(&ap_dev->lock); } /** * ap_poll_timeout(): AP receive polling for finished AP requests. * @unused: Unused pointer. * * Schedules the AP tasklet using a high resolution timer. */ static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) { if (!ap_suspend_flag) tasklet_schedule(&ap_tasklet); return HRTIMER_NORESTART; } /** * ap_interrupt_handler() - Schedule ap_tasklet on interrupt * @airq: pointer to adapter interrupt descriptor */ static void ap_interrupt_handler(struct airq_struct *airq) { inc_irq_stat(IRQIO_APB); if (!ap_suspend_flag) tasklet_schedule(&ap_tasklet); } /** * ap_tasklet_fn(): Tasklet to poll all AP devices. * @dummy: Unused variable * * Poll all AP devices on the bus. */ static void ap_tasklet_fn(unsigned long dummy) { struct ap_device *ap_dev; enum ap_wait wait = AP_WAIT_NONE; /* Reset the indicator if interrupts are used. Thus new interrupts can * be received. Doing it in the beginning of the tasklet is therefor * important that no requests on any AP get lost. */ if (ap_using_interrupts()) xchg(ap_airq.lsi_ptr, 0); spin_lock(&ap_device_list_lock); list_for_each_entry(ap_dev, &ap_device_list, list) { spin_lock_bh(&ap_dev->lock); wait = min(wait, ap_sm_event_loop(ap_dev, AP_EVENT_POLL)); spin_unlock_bh(&ap_dev->lock); } spin_unlock(&ap_device_list_lock); ap_sm_wait(wait); } /** * ap_poll_thread(): Thread that polls for finished requests. * @data: Unused pointer * * AP bus poll thread. The purpose of this thread is to poll for * finished requests in a loop if there is a "free" cpu - that is * a cpu that doesn't have anything better to do. The polling stops * as soon as there is another task or if all messages have been * delivered. */ static int ap_poll_thread(void *data) { DECLARE_WAITQUEUE(wait, current); set_user_nice(current, MAX_NICE); set_freezable(); while (!kthread_should_stop()) { add_wait_queue(&ap_poll_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); if (ap_suspend_flag || atomic_read(&ap_poll_requests) <= 0) { schedule(); try_to_freeze(); } set_current_state(TASK_RUNNING); remove_wait_queue(&ap_poll_wait, &wait); if (need_resched()) { schedule(); try_to_freeze(); continue; } ap_tasklet_fn(0); } while (!kthread_should_stop()); return 0; } static int ap_poll_thread_start(void) { int rc; if (ap_using_interrupts() || ap_poll_kthread) return 0; mutex_lock(&ap_poll_thread_mutex); ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); rc = PTR_RET(ap_poll_kthread); if (rc) ap_poll_kthread = NULL; mutex_unlock(&ap_poll_thread_mutex); return rc; } static void ap_poll_thread_stop(void) { if (!ap_poll_kthread) return; mutex_lock(&ap_poll_thread_mutex); kthread_stop(ap_poll_kthread); ap_poll_kthread = NULL; mutex_unlock(&ap_poll_thread_mutex); } /** * ap_queue_message(): Queue a request to an AP device. * @ap_dev: The AP device to queue the message to * @ap_msg: The message that is to be added */ void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg) { /* For asynchronous message handling a valid receive-callback * is required. */ BUG_ON(!ap_msg->receive); spin_lock_bh(&ap_dev->lock); /* Queue the message. */ list_add_tail(&ap_msg->list, &ap_dev->requestq); ap_dev->requestq_count++; ap_dev->total_request_count++; /* Send/receive as many request from the queue as possible. */ ap_sm_wait(ap_sm_event_loop(ap_dev, AP_EVENT_POLL)); spin_unlock_bh(&ap_dev->lock); } EXPORT_SYMBOL(ap_queue_message); /** * ap_cancel_message(): Cancel a crypto request. * @ap_dev: The AP device that has the message queued * @ap_msg: The message that is to be removed * * Cancel a crypto request. This is done by removing the request * from the device pending or request queue. Note that the * request stays on the AP queue. When it finishes the message * reply will be discarded because the psmid can't be found. */ void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg) { struct ap_message *tmp; spin_lock_bh(&ap_dev->lock); if (!list_empty(&ap_msg->list)) { list_for_each_entry(tmp, &ap_dev->pendingq, list) if (tmp->psmid == ap_msg->psmid) { ap_dev->pendingq_count--; goto found; } ap_dev->requestq_count--; found: list_del_init(&ap_msg->list); } spin_unlock_bh(&ap_dev->lock); } EXPORT_SYMBOL(ap_cancel_message); /* * AP device related attributes. */ static ssize_t ap_hwtype_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_device *ap_dev = to_ap_dev(dev); return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type); } static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL); static ssize_t ap_raw_hwtype_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_device *ap_dev = to_ap_dev(dev); return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->raw_hwtype); } static DEVICE_ATTR(raw_hwtype, 0444, ap_raw_hwtype_show, NULL); static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_device *ap_dev = to_ap_dev(dev); return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth); } static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL); static ssize_t ap_request_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_device *ap_dev = to_ap_dev(dev); int rc; spin_lock_bh(&ap_dev->lock); rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count); spin_unlock_bh(&ap_dev->lock); return rc; } static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL); static ssize_t ap_requestq_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_device *ap_dev = to_ap_dev(dev); int rc; spin_lock_bh(&ap_dev->lock); rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->requestq_count); spin_unlock_bh(&ap_dev->lock); return rc; } static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL); static ssize_t ap_pendingq_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_device *ap_dev = to_ap_dev(dev); int rc; spin_lock_bh(&ap_dev->lock); rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->pendingq_count); spin_unlock_bh(&ap_dev->lock); return rc; } static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL); static ssize_t ap_reset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_device *ap_dev = to_ap_dev(dev); int rc = 0; spin_lock_bh(&ap_dev->lock); switch (ap_dev->state) { case AP_STATE_RESET_START: case AP_STATE_RESET_WAIT: rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n"); break; case AP_STATE_WORKING: case AP_STATE_QUEUE_FULL: rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n"); break; default: rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n"); } spin_unlock_bh(&ap_dev->lock); return rc; } static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL); static ssize_t ap_interrupt_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_device *ap_dev = to_ap_dev(dev); int rc = 0; spin_lock_bh(&ap_dev->lock); if (ap_dev->state == AP_STATE_SETIRQ_WAIT) rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n"); else if (ap_dev->interrupt == AP_INTR_ENABLED) rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n"); else rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n"); spin_unlock_bh(&ap_dev->lock); return rc; } static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL); static ssize_t ap_modalias_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "ap:t%02X\n", to_ap_dev(dev)->device_type); } static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL); static ssize_t ap_functions_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_device *ap_dev = to_ap_dev(dev); return snprintf(buf, PAGE_SIZE, "0x%08X\n", ap_dev->functions); } static DEVICE_ATTR(ap_functions, 0444, ap_functions_show, NULL); static struct attribute *ap_dev_attrs[] = { &dev_attr_hwtype.attr, &dev_attr_raw_hwtype.attr, &dev_attr_depth.attr, &dev_attr_request_count.attr, &dev_attr_requestq_count.attr, &dev_attr_pendingq_count.attr, &dev_attr_reset.attr, &dev_attr_interrupt.attr, &dev_attr_modalias.attr, &dev_attr_ap_functions.attr, NULL }; static struct attribute_group ap_dev_attr_group = { .attrs = ap_dev_attrs }; /** * ap_bus_match() * @dev: Pointer to device * @drv: Pointer to device_driver * * AP bus driver registration/unregistration. */ static int ap_bus_match(struct device *dev, struct device_driver *drv) { struct ap_device *ap_dev = to_ap_dev(dev); struct ap_driver *ap_drv = to_ap_drv(drv); struct ap_device_id *id; /* * Compare device type of the device with the list of * supported types of the device_driver. */ for (id = ap_drv->ids; id->match_flags; id++) { if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) && (id->dev_type != ap_dev->device_type)) continue; return 1; } return 0; } /** * ap_uevent(): Uevent function for AP devices. * @dev: Pointer to device * @env: Pointer to kobj_uevent_env * * It sets up a single environment variable DEV_TYPE which contains the * hardware device type. */ static int ap_uevent (struct device *dev, struct kobj_uevent_env *env) { struct ap_device *ap_dev = to_ap_dev(dev); int retval = 0; if (!ap_dev) return -ENODEV; /* Set up DEV_TYPE environment variable. */ retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); if (retval) return retval; /* Add MODALIAS= */ retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); return retval; } static int ap_dev_suspend(struct device *dev, pm_message_t state) { struct ap_device *ap_dev = to_ap_dev(dev); /* Poll on the device until all requests are finished. */ spin_lock_bh(&ap_dev->lock); ap_dev->state = AP_STATE_SUSPEND_WAIT; while (ap_sm_event(ap_dev, AP_EVENT_POLL) != AP_WAIT_NONE) ; ap_dev->state = AP_STATE_BORKED; spin_unlock_bh(&ap_dev->lock); return 0; } static int ap_dev_resume(struct device *dev) { return 0; } static void ap_bus_suspend(void) { ap_suspend_flag = 1; /* * Disable scanning for devices, thus we do not want to scan * for them after removing. */ flush_workqueue(ap_work_queue); tasklet_disable(&ap_tasklet); } static int __ap_devices_unregister(struct device *dev, void *dummy) { device_unregister(dev); return 0; } static void ap_bus_resume(void) { int rc; /* Unconditionally remove all AP devices */ bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister); /* Reset thin interrupt setting */ if (ap_interrupts_available() && !ap_using_interrupts()) { rc = register_adapter_interrupt(&ap_airq); ap_airq_flag = (rc == 0); } if (!ap_interrupts_available() && ap_using_interrupts()) { unregister_adapter_interrupt(&ap_airq); ap_airq_flag = 0; } /* Reset domain */ if (!user_set_domain) ap_domain_index = -1; /* Get things going again */ ap_suspend_flag = 0; if (ap_airq_flag) xchg(ap_airq.lsi_ptr, 0); tasklet_enable(&ap_tasklet); queue_work(ap_work_queue, &ap_config_work); } static int ap_power_event(struct notifier_block *this, unsigned long event, void *ptr) { switch (event) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: ap_bus_suspend(); break; case PM_POST_HIBERNATION: case PM_POST_SUSPEND: ap_bus_resume(); break; default: break; } return NOTIFY_DONE; } static struct notifier_block ap_power_notifier = { .notifier_call = ap_power_event, }; static struct bus_type ap_bus_type = { .name = "ap", .match = &ap_bus_match, .uevent = &ap_uevent, .suspend = ap_dev_suspend, .resume = ap_dev_resume, }; static int ap_device_probe(struct device *dev) { struct ap_device *ap_dev = to_ap_dev(dev); struct ap_driver *ap_drv = to_ap_drv(dev->driver); int rc; ap_dev->drv = ap_drv; rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; if (rc) ap_dev->drv = NULL; return rc; } /** * __ap_flush_queue(): Flush requests. * @ap_dev: Pointer to the AP device * * Flush all requests from the request/pending queue of an AP device. */ static void __ap_flush_queue(struct ap_device *ap_dev) { struct ap_message *ap_msg, *next; list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) { list_del_init(&ap_msg->list); ap_dev->pendingq_count--; ap_msg->rc = -EAGAIN; ap_msg->receive(ap_dev, ap_msg, NULL); } list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) { list_del_init(&ap_msg->list); ap_dev->requestq_count--; ap_msg->rc = -EAGAIN; ap_msg->receive(ap_dev, ap_msg, NULL); } } void ap_flush_queue(struct ap_device *ap_dev) { spin_lock_bh(&ap_dev->lock); __ap_flush_queue(ap_dev); spin_unlock_bh(&ap_dev->lock); } EXPORT_SYMBOL(ap_flush_queue); static int ap_device_remove(struct device *dev) { struct ap_device *ap_dev = to_ap_dev(dev); struct ap_driver *ap_drv = ap_dev->drv; ap_flush_queue(ap_dev); del_timer_sync(&ap_dev->timeout); spin_lock_bh(&ap_device_list_lock); list_del_init(&ap_dev->list); spin_unlock_bh(&ap_device_list_lock); if (ap_drv->remove) ap_drv->remove(ap_dev); spin_lock_bh(&ap_dev->lock); atomic_sub(ap_dev->queue_count, &ap_poll_requests); spin_unlock_bh(&ap_dev->lock); return 0; } static void ap_device_release(struct device *dev) { kfree(to_ap_dev(dev)); } int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, char *name) { struct device_driver *drv = &ap_drv->driver; drv->bus = &ap_bus_type; drv->probe = ap_device_probe; drv->remove = ap_device_remove; drv->owner = owner; drv->name = name; return driver_register(drv); } EXPORT_SYMBOL(ap_driver_register); void ap_driver_unregister(struct ap_driver *ap_drv) { driver_unregister(&ap_drv->driver); } EXPORT_SYMBOL(ap_driver_unregister); void ap_bus_force_rescan(void) { if (ap_suspend_flag) return; /* processing a asynchronous bus rescan */ del_timer(&ap_config_timer); queue_work(ap_work_queue, &ap_config_work); flush_work(&ap_config_work); } EXPORT_SYMBOL(ap_bus_force_rescan); /* * AP bus attributes. */ static ssize_t ap_domain_show(struct bus_type *bus, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); } static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL); static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) { if (!ap_configuration) /* QCI not supported */ return snprintf(buf, PAGE_SIZE, "not supported\n"); if (!test_facility(76)) /* format 0 - 16 bit domain field */ return snprintf(buf, PAGE_SIZE, "%08x%08x\n", ap_configuration->adm[0], ap_configuration->adm[1]); /* format 1 - 256 bit domain field */ return snprintf(buf, PAGE_SIZE, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", ap_configuration->adm[0], ap_configuration->adm[1], ap_configuration->adm[2], ap_configuration->adm[3], ap_configuration->adm[4], ap_configuration->adm[5], ap_configuration->adm[6], ap_configuration->adm[7]); } static BUS_ATTR(ap_control_domain_mask, 0444, ap_control_domain_mask_show, NULL); static ssize_t ap_config_time_show(struct bus_type *bus, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); } static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", ap_using_interrupts() ? 1 : 0); } static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL); static ssize_t ap_config_time_store(struct bus_type *bus, const char *buf, size_t count) { int time; if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) return -EINVAL; ap_config_time = time; mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); return count; } static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store); static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); } static ssize_t ap_poll_thread_store(struct bus_type *bus, const char *buf, size_t count) { int flag, rc; if (sscanf(buf, "%d\n", &flag) != 1) return -EINVAL; if (flag) { rc = ap_poll_thread_start(); if (rc) count = rc; } else ap_poll_thread_stop(); return count; } static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store); static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) { return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); } static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, size_t count) { unsigned long long time; ktime_t hr_time; /* 120 seconds = maximum poll interval */ if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || time > 120000000000ULL) return -EINVAL; poll_timeout = time; hr_time = ktime_set(0, poll_timeout); spin_lock_bh(&ap_poll_timer_lock); hrtimer_cancel(&ap_poll_timer); hrtimer_set_expires(&ap_poll_timer, hr_time); hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); spin_unlock_bh(&ap_poll_timer_lock); return count; } static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store); static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) { int max_domain_id; if (ap_configuration) max_domain_id = ap_max_domain_id ? : -1; else max_domain_id = 15; return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id); } static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL); static struct bus_attribute *const ap_bus_attrs[] = { &bus_attr_ap_domain, &bus_attr_ap_control_domain_mask, &bus_attr_config_time, &bus_attr_poll_thread, &bus_attr_ap_interrupts, &bus_attr_poll_timeout, &bus_attr_ap_max_domain_id, NULL, }; /** * ap_select_domain(): Select an AP domain. * * Pick one of the 16 AP domains. */ static int ap_select_domain(void) { int count, max_count, best_domain; struct ap_queue_status status; int i, j; /* * We want to use a single domain. Either the one specified with * the "domain=" parameter or the domain with the maximum number * of devices. */ if (ap_domain_index >= 0) /* Domain has already been selected. */ return 0; best_domain = -1; max_count = 0; for (i = 0; i < AP_DOMAINS; i++) { if (!ap_test_config_domain(i)) continue; count = 0; for (j = 0; j < AP_DEVICES; j++) { if (!ap_test_config_card_id(j)) continue; status = ap_test_queue(AP_MKQID(j, i), NULL); if (status.response_code != AP_RESPONSE_NORMAL) continue; count++; } if (count > max_count) { max_count = count; best_domain = i; } } if (best_domain >= 0){ ap_domain_index = best_domain; return 0; } return -ENODEV; } /** * __ap_scan_bus(): Scan the AP bus. * @dev: Pointer to device * @data: Pointer to data * * Scan the AP bus for new devices. */ static int __ap_scan_bus(struct device *dev, void *data) { return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data; } static void ap_scan_bus(struct work_struct *unused) { struct ap_device *ap_dev; struct device *dev; ap_qid_t qid; int queue_depth = 0, device_type = 0; unsigned int device_functions = 0; int rc, i, borked; ap_query_configuration(); if (ap_select_domain() != 0) goto out; for (i = 0; i < AP_DEVICES; i++) { qid = AP_MKQID(i, ap_domain_index); dev = bus_find_device(&ap_bus_type, NULL, (void *)(unsigned long)qid, __ap_scan_bus); rc = ap_query_queue(qid, &queue_depth, &device_type, &device_functions); if (dev) { ap_dev = to_ap_dev(dev); spin_lock_bh(&ap_dev->lock); if (rc == -ENODEV) ap_dev->state = AP_STATE_BORKED; borked = ap_dev->state == AP_STATE_BORKED; spin_unlock_bh(&ap_dev->lock); if (borked) /* Remove broken device */ device_unregister(dev); put_device(dev); if (!borked) continue; } if (rc) continue; ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL); if (!ap_dev) break; ap_dev->qid = qid; ap_dev->state = AP_STATE_RESET_START; ap_dev->interrupt = AP_INTR_DISABLED; ap_dev->queue_depth = queue_depth; ap_dev->raw_hwtype = device_type; ap_dev->device_type = device_type; ap_dev->functions = device_functions; spin_lock_init(&ap_dev->lock); INIT_LIST_HEAD(&ap_dev->pendingq); INIT_LIST_HEAD(&ap_dev->requestq); INIT_LIST_HEAD(&ap_dev->list); setup_timer(&ap_dev->timeout, ap_request_timeout, (unsigned long) ap_dev); ap_dev->device.bus = &ap_bus_type; ap_dev->device.parent = ap_root_device; rc = dev_set_name(&ap_dev->device, "card%02x", AP_QID_DEVICE(ap_dev->qid)); if (rc) { kfree(ap_dev); continue; } /* Add to list of devices */ spin_lock_bh(&ap_device_list_lock); list_add(&ap_dev->list, &ap_device_list); spin_unlock_bh(&ap_device_list_lock); /* Start with a device reset */ spin_lock_bh(&ap_dev->lock); ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL)); spin_unlock_bh(&ap_dev->lock); /* Register device */ ap_dev->device.release = ap_device_release; rc = device_register(&ap_dev->device); if (rc) { spin_lock_bh(&ap_dev->lock); list_del_init(&ap_dev->list); spin_unlock_bh(&ap_dev->lock); put_device(&ap_dev->device); continue; } /* Add device attributes. */ rc = sysfs_create_group(&ap_dev->device.kobj, &ap_dev_attr_group); if (rc) { device_unregister(&ap_dev->device); continue; } } out: mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); } static void ap_config_timeout(unsigned long ptr) { if (ap_suspend_flag) return; queue_work(ap_work_queue, &ap_config_work); } static void ap_reset_domain(void) { int i; if (ap_domain_index == -1 || !ap_test_config_domain(ap_domain_index)) return; for (i = 0; i < AP_DEVICES; i++) ap_reset_queue(AP_MKQID(i, ap_domain_index)); } static void ap_reset_all(void) { int i, j; for (i = 0; i < AP_DOMAINS; i++) { if (!ap_test_config_domain(i)) continue; for (j = 0; j < AP_DEVICES; j++) { if (!ap_test_config_card_id(j)) continue; ap_reset_queue(AP_MKQID(j, i)); } } } static struct reset_call ap_reset_call = { .fn = ap_reset_all, }; /** * ap_module_init(): The module initialization code. * * Initializes the module. */ int __init ap_module_init(void) { int max_domain_id; int rc, i; if (ap_instructions_available() != 0) { pr_warn("The hardware system does not support AP instructions\n"); return -ENODEV; } /* Get AP configuration data if available */ ap_init_configuration(); if (ap_configuration) max_domain_id = ap_max_domain_id ? : (AP_DOMAINS - 1); else max_domain_id = 15; if (ap_domain_index < -1 || ap_domain_index > max_domain_id) { pr_warn("%d is not a valid cryptographic domain\n", ap_domain_index); return -EINVAL; } /* In resume callback we need to know if the user had set the domain. * If so, we can not just reset it. */ if (ap_domain_index >= 0) user_set_domain = 1; if (ap_interrupts_available()) { rc = register_adapter_interrupt(&ap_airq); ap_airq_flag = (rc == 0); } register_reset_call(&ap_reset_call); /* Create /sys/bus/ap. */ rc = bus_register(&ap_bus_type); if (rc) goto out; for (i = 0; ap_bus_attrs[i]; i++) { rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]); if (rc) goto out_bus; } /* Create /sys/devices/ap. */ ap_root_device = root_device_register("ap"); rc = PTR_RET(ap_root_device); if (rc) goto out_bus; ap_work_queue = create_singlethread_workqueue("kapwork"); if (!ap_work_queue) { rc = -ENOMEM; goto out_root; } /* Setup the AP bus rescan timer. */ setup_timer(&ap_config_timer, ap_config_timeout, 0); /* * Setup the high resultion poll timer. * If we are running under z/VM adjust polling to z/VM polling rate. */ if (MACHINE_IS_VM) poll_timeout = 1500000; spin_lock_init(&ap_poll_timer_lock); hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); ap_poll_timer.function = ap_poll_timeout; /* Start the low priority AP bus poll thread. */ if (ap_thread_flag) { rc = ap_poll_thread_start(); if (rc) goto out_work; } rc = register_pm_notifier(&ap_power_notifier); if (rc) goto out_pm; queue_work(ap_work_queue, &ap_config_work); return 0; out_pm: ap_poll_thread_stop(); out_work: hrtimer_cancel(&ap_poll_timer); destroy_workqueue(ap_work_queue); out_root: root_device_unregister(ap_root_device); out_bus: while (i--) bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); bus_unregister(&ap_bus_type); out: unregister_reset_call(&ap_reset_call); if (ap_using_interrupts()) unregister_adapter_interrupt(&ap_airq); kfree(ap_configuration); return rc; } /** * ap_modules_exit(): The module termination code * * Terminates the module. */ void ap_module_exit(void) { int i; ap_reset_domain(); ap_poll_thread_stop(); del_timer_sync(&ap_config_timer); hrtimer_cancel(&ap_poll_timer); destroy_workqueue(ap_work_queue); tasklet_kill(&ap_tasklet); bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister); for (i = 0; ap_bus_attrs[i]; i++) bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); unregister_pm_notifier(&ap_power_notifier); root_device_unregister(ap_root_device); bus_unregister(&ap_bus_type); kfree(ap_configuration); unregister_reset_call(&ap_reset_call); if (ap_using_interrupts()) unregister_adapter_interrupt(&ap_airq); } module_init(ap_module_init); module_exit(ap_module_exit);