/* * Kernel-based Virtual Machine driver for Linux * * derived from drivers/kvm/kvm_main.c * * Copyright (C) 2006 Qumranet, Inc. * Copyright (C) 2008 Qumranet, Inc. * Copyright IBM Corporation, 2008 * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity * Yaniv Kamay * Amit Shah * Ben-Ami Yassour * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include #include "irq.h" #include "mmu.h" #include "i8254.h" #include "tss.h" #include "kvm_cache_regs.h" #include "x86.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include "trace.h" #include #include #include #include #include #include #include #include #include #define MAX_IO_MSRS 256 #define CR0_RESERVED_BITS \ (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) #define CR4_RESERVED_BITS \ (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \ | X86_CR4_OSXSAVE \ | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE)) #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) #define KVM_MAX_MCE_BANKS 32 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) /* EFER defaults: * - enable syscall per default because its emulated by KVM * - enable LME and LMA per default on 64 bit KVM */ #ifdef CONFIG_X86_64 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL; #else static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL; #endif #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU static void update_cr8_intercept(struct kvm_vcpu *vcpu); static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries); struct kvm_x86_ops *kvm_x86_ops; EXPORT_SYMBOL_GPL(kvm_x86_ops); int ignore_msrs = 0; module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR); #define KVM_NR_SHARED_MSRS 16 struct kvm_shared_msrs_global { int nr; u32 msrs[KVM_NR_SHARED_MSRS]; }; struct kvm_shared_msrs { struct user_return_notifier urn; bool registered; struct kvm_shared_msr_values { u64 host; u64 curr; } values[KVM_NR_SHARED_MSRS]; }; static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); struct kvm_stats_debugfs_item debugfs_entries[] = { { "pf_fixed", VCPU_STAT(pf_fixed) }, { "pf_guest", VCPU_STAT(pf_guest) }, { "tlb_flush", VCPU_STAT(tlb_flush) }, { "invlpg", VCPU_STAT(invlpg) }, { "exits", VCPU_STAT(exits) }, { "io_exits", VCPU_STAT(io_exits) }, { "mmio_exits", VCPU_STAT(mmio_exits) }, { "signal_exits", VCPU_STAT(signal_exits) }, { "irq_window", VCPU_STAT(irq_window_exits) }, { "nmi_window", VCPU_STAT(nmi_window_exits) }, { "halt_exits", VCPU_STAT(halt_exits) }, { "halt_wakeup", VCPU_STAT(halt_wakeup) }, { "hypercalls", VCPU_STAT(hypercalls) }, { "request_irq", VCPU_STAT(request_irq_exits) }, { "irq_exits", VCPU_STAT(irq_exits) }, { "host_state_reload", VCPU_STAT(host_state_reload) }, { "efer_reload", VCPU_STAT(efer_reload) }, { "fpu_reload", VCPU_STAT(fpu_reload) }, { "insn_emulation", VCPU_STAT(insn_emulation) }, { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, { "irq_injections", VCPU_STAT(irq_injections) }, { "nmi_injections", VCPU_STAT(nmi_injections) }, { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, { "mmu_pte_write", VM_STAT(mmu_pte_write) }, { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, { "mmu_flooded", VM_STAT(mmu_flooded) }, { "mmu_recycled", VM_STAT(mmu_recycled) }, { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, { "mmu_unsync", VM_STAT(mmu_unsync) }, { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, { "largepages", VM_STAT(lpages) }, { NULL } }; u64 __read_mostly host_xcr0; static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) { int i; for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) vcpu->arch.apf.gfns[i] = ~0; } static void kvm_on_user_return(struct user_return_notifier *urn) { unsigned slot; struct kvm_shared_msrs *locals = container_of(urn, struct kvm_shared_msrs, urn); struct kvm_shared_msr_values *values; for (slot = 0; slot < shared_msrs_global.nr; ++slot) { values = &locals->values[slot]; if (values->host != values->curr) { wrmsrl(shared_msrs_global.msrs[slot], values->host); values->curr = values->host; } } locals->registered = false; user_return_notifier_unregister(urn); } static void shared_msr_update(unsigned slot, u32 msr) { struct kvm_shared_msrs *smsr; u64 value; smsr = &__get_cpu_var(shared_msrs); /* only read, and nobody should modify it at this time, * so don't need lock */ if (slot >= shared_msrs_global.nr) { printk(KERN_ERR "kvm: invalid MSR slot!"); return; } rdmsrl_safe(msr, &value); smsr->values[slot].host = value; smsr->values[slot].curr = value; } void kvm_define_shared_msr(unsigned slot, u32 msr) { if (slot >= shared_msrs_global.nr) shared_msrs_global.nr = slot + 1; shared_msrs_global.msrs[slot] = msr; /* we need ensured the shared_msr_global have been updated */ smp_wmb(); } EXPORT_SYMBOL_GPL(kvm_define_shared_msr); static void kvm_shared_msr_cpu_online(void) { unsigned i; for (i = 0; i < shared_msrs_global.nr; ++i) shared_msr_update(i, shared_msrs_global.msrs[i]); } void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) { struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); if (((value ^ smsr->values[slot].curr) & mask) == 0) return; smsr->values[slot].curr = value; wrmsrl(shared_msrs_global.msrs[slot], value); if (!smsr->registered) { smsr->urn.on_user_return = kvm_on_user_return; user_return_notifier_register(&smsr->urn); smsr->registered = true; } } EXPORT_SYMBOL_GPL(kvm_set_shared_msr); static void drop_user_return_notifiers(void *ignore) { struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); if (smsr->registered) kvm_on_user_return(&smsr->urn); } u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) { if (irqchip_in_kernel(vcpu->kvm)) return vcpu->arch.apic_base; else return vcpu->arch.apic_base; } EXPORT_SYMBOL_GPL(kvm_get_apic_base); void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) { /* TODO: reserve bits check */ if (irqchip_in_kernel(vcpu->kvm)) kvm_lapic_set_base(vcpu, data); else vcpu->arch.apic_base = data; } EXPORT_SYMBOL_GPL(kvm_set_apic_base); #define EXCPT_BENIGN 0 #define EXCPT_CONTRIBUTORY 1 #define EXCPT_PF 2 static int exception_class(int vector) { switch (vector) { case PF_VECTOR: return EXCPT_PF; case DE_VECTOR: case TS_VECTOR: case NP_VECTOR: case SS_VECTOR: case GP_VECTOR: return EXCPT_CONTRIBUTORY; default: break; } return EXCPT_BENIGN; } static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned nr, bool has_error, u32 error_code, bool reinject) { u32 prev_nr; int class1, class2; kvm_make_request(KVM_REQ_EVENT, vcpu); if (!vcpu->arch.exception.pending) { queue: vcpu->arch.exception.pending = true; vcpu->arch.exception.has_error_code = has_error; vcpu->arch.exception.nr = nr; vcpu->arch.exception.error_code = error_code; vcpu->arch.exception.reinject = reinject; return; } /* to check exception */ prev_nr = vcpu->arch.exception.nr; if (prev_nr == DF_VECTOR) { /* triple fault -> shutdown */ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } class1 = exception_class(prev_nr); class2 = exception_class(nr); if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { /* generate double fault per SDM Table 5-5 */ vcpu->arch.exception.pending = true; vcpu->arch.exception.has_error_code = true; vcpu->arch.exception.nr = DF_VECTOR; vcpu->arch.exception.error_code = 0; } else /* replace previous exception with a new one in a hope that instruction re-execution will regenerate lost exception */ goto queue; } void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) { kvm_multiple_exception(vcpu, nr, false, 0, false); } EXPORT_SYMBOL_GPL(kvm_queue_exception); void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) { kvm_multiple_exception(vcpu, nr, false, 0, true); } EXPORT_SYMBOL_GPL(kvm_requeue_exception); void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) { if (err) kvm_inject_gp(vcpu, 0); else kvm_x86_ops->skip_emulated_instruction(vcpu); } EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) { ++vcpu->stat.pf_guest; vcpu->arch.cr2 = fault->address; kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); } void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) { if (mmu_is_nested(vcpu) && !fault->nested_page_fault) vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); else vcpu->arch.mmu.inject_page_fault(vcpu, fault); } void kvm_inject_nmi(struct kvm_vcpu *vcpu) { kvm_make_request(KVM_REQ_NMI, vcpu); kvm_make_request(KVM_REQ_EVENT, vcpu); } EXPORT_SYMBOL_GPL(kvm_inject_nmi); void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) { kvm_multiple_exception(vcpu, nr, true, error_code, false); } EXPORT_SYMBOL_GPL(kvm_queue_exception_e); void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) { kvm_multiple_exception(vcpu, nr, true, error_code, true); } EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); /* * Checks if cpl <= required_cpl; if true, return true. Otherwise queue * a #GP and return false. */ bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) { if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) return true; kvm_queue_exception_e(vcpu, GP_VECTOR, 0); return false; } EXPORT_SYMBOL_GPL(kvm_require_cpl); /* * This function will be used to read from the physical memory of the currently * running guest. The difference to kvm_read_guest_page is that this function * can read from guest physical or from the guest's guest physical memory. */ int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gfn_t ngfn, void *data, int offset, int len, u32 access) { gfn_t real_gfn; gpa_t ngpa; ngpa = gfn_to_gpa(ngfn); real_gfn = mmu->translate_gpa(vcpu, ngpa, access); if (real_gfn == UNMAPPED_GVA) return -EFAULT; real_gfn = gpa_to_gfn(real_gfn); return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); } EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, int len, u32 access) { return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, data, offset, len, access); } /* * Load the pae pdptrs. Return true is they are all valid. */ int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) { gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; int i; int ret; u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, offset * sizeof(u64), sizeof(pdpte), PFERR_USER_MASK|PFERR_WRITE_MASK); if (ret < 0) { ret = 0; goto out; } for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { if (is_present_gpte(pdpte[i]) && (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { ret = 0; goto out; } } ret = 1; memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_avail); __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_dirty); out: return ret; } EXPORT_SYMBOL_GPL(load_pdptrs); static bool pdptrs_changed(struct kvm_vcpu *vcpu) { u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; bool changed = true; int offset; gfn_t gfn; int r; if (is_long_mode(vcpu) || !is_pae(vcpu)) return false; if (!test_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_avail)) return true; gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), PFERR_USER_MASK | PFERR_WRITE_MASK); if (r < 0) goto out; changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; out: return changed; } int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { unsigned long old_cr0 = kvm_read_cr0(vcpu); unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | X86_CR0_CD | X86_CR0_NW; cr0 |= X86_CR0_ET; #ifdef CONFIG_X86_64 if (cr0 & 0xffffffff00000000UL) return 1; #endif cr0 &= ~CR0_RESERVED_BITS; if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) return 1; if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) return 1; if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { #ifdef CONFIG_X86_64 if ((vcpu->arch.efer & EFER_LME)) { int cs_db, cs_l; if (!is_pae(vcpu)) return 1; kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); if (cs_l) return 1; } else #endif if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) return 1; } kvm_x86_ops->set_cr0(vcpu, cr0); if ((cr0 ^ old_cr0) & X86_CR0_PG) { kvm_clear_async_pf_completion_queue(vcpu); kvm_async_pf_hash_reset(vcpu); } if ((cr0 ^ old_cr0) & update_bits) kvm_mmu_reset_context(vcpu); return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr0); void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) { (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); } EXPORT_SYMBOL_GPL(kvm_lmsw); int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) { u64 xcr0; /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ if (index != XCR_XFEATURE_ENABLED_MASK) return 1; xcr0 = xcr; if (kvm_x86_ops->get_cpl(vcpu) != 0) return 1; if (!(xcr0 & XSTATE_FP)) return 1; if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) return 1; if (xcr0 & ~host_xcr0) return 1; vcpu->arch.xcr0 = xcr0; vcpu->guest_xcr0_loaded = 0; return 0; } int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) { if (__kvm_set_xcr(vcpu, index, xcr)) { kvm_inject_gp(vcpu, 0); return 1; } return 0; } EXPORT_SYMBOL_GPL(kvm_set_xcr); static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; best = kvm_find_cpuid_entry(vcpu, 1, 0); return best && (best->ecx & bit(X86_FEATURE_XSAVE)); } static void update_cpuid(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; best = kvm_find_cpuid_entry(vcpu, 1, 0); if (!best) return; /* Update OSXSAVE bit */ if (cpu_has_xsave && best->function == 0x1) { best->ecx &= ~(bit(X86_FEATURE_OSXSAVE)); if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) best->ecx |= bit(X86_FEATURE_OSXSAVE); } } int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { unsigned long old_cr4 = kvm_read_cr4(vcpu); unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE; if (cr4 & CR4_RESERVED_BITS) return 1; if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) return 1; if (is_long_mode(vcpu)) { if (!(cr4 & X86_CR4_PAE)) return 1; } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) && ((cr4 ^ old_cr4) & pdptr_bits) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) return 1; if (cr4 & X86_CR4_VMXE) return 1; kvm_x86_ops->set_cr4(vcpu, cr4); if ((cr4 ^ old_cr4) & pdptr_bits) kvm_mmu_reset_context(vcpu); if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) update_cpuid(vcpu); return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr4); int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { kvm_mmu_sync_roots(vcpu); kvm_mmu_flush_tlb(vcpu); return 0; } if (is_long_mode(vcpu)) { if (cr3 & CR3_L_MODE_RESERVED_BITS) return 1; } else { if (is_pae(vcpu)) { if (cr3 & CR3_PAE_RESERVED_BITS) return 1; if (is_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) return 1; } /* * We don't check reserved bits in nonpae mode, because * this isn't enforced, and VMware depends on this. */ } /* * Does the new cr3 value map to physical memory? (Note, we * catch an invalid cr3 even in real-mode, because it would * cause trouble later on when we turn on paging anyway.) * * A real CPU would silently accept an invalid cr3 and would * attempt to use it - with largely undefined (and often hard * to debug) behavior on the guest side. */ if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) return 1; vcpu->arch.cr3 = cr3; __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); vcpu->arch.mmu.new_cr3(vcpu); return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr3); int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) { if (cr8 & CR8_RESERVED_BITS) return 1; if (irqchip_in_kernel(vcpu->kvm)) kvm_lapic_set_tpr(vcpu, cr8); else vcpu->arch.cr8 = cr8; return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr8); unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) { if (irqchip_in_kernel(vcpu->kvm)) return kvm_lapic_get_cr8(vcpu); else return vcpu->arch.cr8; } EXPORT_SYMBOL_GPL(kvm_get_cr8); static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) { switch (dr) { case 0 ... 3: vcpu->arch.db[dr] = val; if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) vcpu->arch.eff_db[dr] = val; break; case 4: if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) return 1; /* #UD */ /* fall through */ case 6: if (val & 0xffffffff00000000ULL) return -1; /* #GP */ vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; break; case 5: if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) return 1; /* #UD */ /* fall through */ default: /* 7 */ if (val & 0xffffffff00000000ULL) return -1; /* #GP */ vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7); vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK); } break; } return 0; } int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) { int res; res = __kvm_set_dr(vcpu, dr, val); if (res > 0) kvm_queue_exception(vcpu, UD_VECTOR); else if (res < 0) kvm_inject_gp(vcpu, 0); return res; } EXPORT_SYMBOL_GPL(kvm_set_dr); static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) { switch (dr) { case 0 ... 3: *val = vcpu->arch.db[dr]; break; case 4: if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) return 1; /* fall through */ case 6: *val = vcpu->arch.dr6; break; case 5: if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) return 1; /* fall through */ default: /* 7 */ *val = vcpu->arch.dr7; break; } return 0; } int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) { if (_kvm_get_dr(vcpu, dr, val)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } return 0; } EXPORT_SYMBOL_GPL(kvm_get_dr); /* * List of msr numbers which we expose to userspace through KVM_GET_MSRS * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. * * This list is modified at module load time to reflect the * capabilities of the host cpu. This capabilities test skips MSRs that are * kvm-specific. Those are put in the beginning of the list. */ #define KVM_SAVE_MSRS_BEGIN 8 static u32 msrs_to_save[] = { MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, MSR_STAR, #ifdef CONFIG_X86_64 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, #endif MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA }; static unsigned num_msrs_to_save; static u32 emulated_msrs[] = { MSR_IA32_MISC_ENABLE, MSR_IA32_MCG_STATUS, MSR_IA32_MCG_CTL, }; static int set_efer(struct kvm_vcpu *vcpu, u64 efer) { u64 old_efer = vcpu->arch.efer; if (efer & efer_reserved_bits) return 1; if (is_paging(vcpu) && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) return 1; if (efer & EFER_FFXSR) { struct kvm_cpuid_entry2 *feat; feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) return 1; } if (efer & EFER_SVME) { struct kvm_cpuid_entry2 *feat; feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) return 1; } efer &= ~EFER_LMA; efer |= vcpu->arch.efer & EFER_LMA; kvm_x86_ops->set_efer(vcpu, efer); vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; /* Update reserved bits */ if ((efer ^ old_efer) & EFER_NX) kvm_mmu_reset_context(vcpu); return 0; } void kvm_enable_efer_bits(u64 mask) { efer_reserved_bits &= ~mask; } EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); /* * Writes msr value into into the appropriate "register". * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) { return kvm_x86_ops->set_msr(vcpu, msr_index, data); } /* * Adapt set_msr() to msr_io()'s calling convention */ static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) { return kvm_set_msr(vcpu, index, *data); } static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) { int version; int r; struct pvclock_wall_clock wc; struct timespec boot; if (!wall_clock) return; r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); if (r) return; if (version & 1) ++version; /* first time write, random junk */ ++version; kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); /* * The guest calculates current wall clock time by adding * system time (updated by kvm_guest_time_update below) to the * wall clock specified here. guest system time equals host * system time for us, thus we must fill in host boot time here. */ getboottime(&boot); wc.sec = boot.tv_sec; wc.nsec = boot.tv_nsec; wc.version = version; kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); version++; kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); } static uint32_t div_frac(uint32_t dividend, uint32_t divisor) { uint32_t quotient, remainder; /* Don't try to replace with do_div(), this one calculates * "(dividend << 32) / divisor" */ __asm__ ( "divl %4" : "=a" (quotient), "=d" (remainder) : "0" (0), "1" (dividend), "r" (divisor) ); return quotient; } static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, s8 *pshift, u32 *pmultiplier) { uint64_t scaled64; int32_t shift = 0; uint64_t tps64; uint32_t tps32; tps64 = base_khz * 1000LL; scaled64 = scaled_khz * 1000LL; while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { tps64 >>= 1; shift--; } tps32 = (uint32_t)tps64; while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) scaled64 >>= 1; else tps32 <<= 1; shift++; } *pshift = shift; *pmultiplier = div_frac(scaled64, tps32); pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", __func__, base_khz, scaled_khz, shift, *pmultiplier); } static inline u64 get_kernel_ns(void) { struct timespec ts; WARN_ON(preemptible()); ktime_get_ts(&ts); monotonic_to_bootbased(&ts); return timespec_to_ns(&ts); } static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); unsigned long max_tsc_khz; static inline int kvm_tsc_changes_freq(void) { int cpu = get_cpu(); int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && cpufreq_quick_get(cpu) != 0; put_cpu(); return ret; } static inline u64 nsec_to_cycles(u64 nsec) { u64 ret; WARN_ON(preemptible()); if (kvm_tsc_changes_freq()) printk_once(KERN_WARNING "kvm: unreliable cycle conversion on adjustable rate TSC\n"); ret = nsec * __this_cpu_read(cpu_tsc_khz); do_div(ret, USEC_PER_SEC); return ret; } static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz) { /* Compute a scale to convert nanoseconds in TSC cycles */ kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, &kvm->arch.virtual_tsc_shift, &kvm->arch.virtual_tsc_mult); kvm->arch.virtual_tsc_khz = this_tsc_khz; } static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) { u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec, vcpu->kvm->arch.virtual_tsc_mult, vcpu->kvm->arch.virtual_tsc_shift); tsc += vcpu->arch.last_tsc_write; return tsc; } void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data) { struct kvm *kvm = vcpu->kvm; u64 offset, ns, elapsed; unsigned long flags; s64 sdiff; raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); offset = data - native_read_tsc(); ns = get_kernel_ns(); elapsed = ns - kvm->arch.last_tsc_nsec; sdiff = data - kvm->arch.last_tsc_write; if (sdiff < 0) sdiff = -sdiff; /* * Special case: close write to TSC within 5 seconds of * another CPU is interpreted as an attempt to synchronize * The 5 seconds is to accomodate host load / swapping as * well as any reset of TSC during the boot process. * * In that case, for a reliable TSC, we can match TSC offsets, * or make a best guest using elapsed value. */ if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) && elapsed < 5ULL * NSEC_PER_SEC) { if (!check_tsc_unstable()) { offset = kvm->arch.last_tsc_offset; pr_debug("kvm: matched tsc offset for %llu\n", data); } else { u64 delta = nsec_to_cycles(elapsed); offset += delta; pr_debug("kvm: adjusted tsc offset by %llu\n", delta); } ns = kvm->arch.last_tsc_nsec; } kvm->arch.last_tsc_nsec = ns; kvm->arch.last_tsc_write = data; kvm->arch.last_tsc_offset = offset; kvm_x86_ops->write_tsc_offset(vcpu, offset); raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); /* Reset of TSC must disable overshoot protection below */ vcpu->arch.hv_clock.tsc_timestamp = 0; vcpu->arch.last_tsc_write = data; vcpu->arch.last_tsc_nsec = ns; } EXPORT_SYMBOL_GPL(kvm_write_tsc); static int kvm_guest_time_update(struct kvm_vcpu *v) { unsigned long flags; struct kvm_vcpu_arch *vcpu = &v->arch; void *shared_kaddr; unsigned long this_tsc_khz; s64 kernel_ns, max_kernel_ns; u64 tsc_timestamp; /* Keep irq disabled to prevent changes to the clock */ local_irq_save(flags); kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp); kernel_ns = get_kernel_ns(); this_tsc_khz = __this_cpu_read(cpu_tsc_khz); if (unlikely(this_tsc_khz == 0)) { local_irq_restore(flags); kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); return 1; } /* * We may have to catch up the TSC to match elapsed wall clock * time for two reasons, even if kvmclock is used. * 1) CPU could have been running below the maximum TSC rate * 2) Broken TSC compensation resets the base at each VCPU * entry to avoid unknown leaps of TSC even when running * again on the same CPU. This may cause apparent elapsed * time to disappear, and the guest to stand still or run * very slowly. */ if (vcpu->tsc_catchup) { u64 tsc = compute_guest_tsc(v, kernel_ns); if (tsc > tsc_timestamp) { kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp); tsc_timestamp = tsc; } } local_irq_restore(flags); if (!vcpu->time_page) return 0; /* * Time as measured by the TSC may go backwards when resetting the base * tsc_timestamp. The reason for this is that the TSC resolution is * higher than the resolution of the other clock scales. Thus, many * possible measurments of the TSC correspond to one measurement of any * other clock, and so a spread of values is possible. This is not a * problem for the computation of the nanosecond clock; with TSC rates * around 1GHZ, there can only be a few cycles which correspond to one * nanosecond value, and any path through this code will inevitably * take longer than that. However, with the kernel_ns value itself, * the precision may be much lower, down to HZ granularity. If the * first sampling of TSC against kernel_ns ends in the low part of the * range, and the second in the high end of the range, we can get: * * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new * * As the sampling errors potentially range in the thousands of cycles, * it is possible such a time value has already been observed by the * guest. To protect against this, we must compute the system time as * observed by the guest and ensure the new system time is greater. */ max_kernel_ns = 0; if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) { max_kernel_ns = vcpu->last_guest_tsc - vcpu->hv_clock.tsc_timestamp; max_kernel_ns = pvclock_scale_delta(max_kernel_ns, vcpu->hv_clock.tsc_to_system_mul, vcpu->hv_clock.tsc_shift); max_kernel_ns += vcpu->last_kernel_ns; } if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, &vcpu->hv_clock.tsc_shift, &vcpu->hv_clock.tsc_to_system_mul); vcpu->hw_tsc_khz = this_tsc_khz; } if (max_kernel_ns > kernel_ns) kernel_ns = max_kernel_ns; /* With all the info we got, fill in the values */ vcpu->hv_clock.tsc_timestamp = tsc_timestamp; vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; vcpu->last_kernel_ns = kernel_ns; vcpu->last_guest_tsc = tsc_timestamp; vcpu->hv_clock.flags = 0; /* * The interface expects us to write an even number signaling that the * update is finished. Since the guest won't see the intermediate * state, we just increase by 2 at the end. */ vcpu->hv_clock.version += 2; shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0); memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, sizeof(vcpu->hv_clock)); kunmap_atomic(shared_kaddr, KM_USER0); mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); return 0; } static bool msr_mtrr_valid(unsigned msr) { switch (msr) { case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: case MSR_MTRRfix64K_00000: case MSR_MTRRfix16K_80000: case MSR_MTRRfix16K_A0000: case MSR_MTRRfix4K_C0000: case MSR_MTRRfix4K_C8000: case MSR_MTRRfix4K_D0000: case MSR_MTRRfix4K_D8000: case MSR_MTRRfix4K_E0000: case MSR_MTRRfix4K_E8000: case MSR_MTRRfix4K_F0000: case MSR_MTRRfix4K_F8000: case MSR_MTRRdefType: case MSR_IA32_CR_PAT: return true; case 0x2f8: return true; } return false; } static bool valid_pat_type(unsigned t) { return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ } static bool valid_mtrr_type(unsigned t) { return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ } static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) { int i; if (!msr_mtrr_valid(msr)) return false; if (msr == MSR_IA32_CR_PAT) { for (i = 0; i < 8; i++) if (!valid_pat_type((data >> (i * 8)) & 0xff)) return false; return true; } else if (msr == MSR_MTRRdefType) { if (data & ~0xcff) return false; return valid_mtrr_type(data & 0xff); } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { for (i = 0; i < 8 ; i++) if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) return false; return true; } /* variable MTRRs */ return valid_mtrr_type(data & 0xff); } static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) { u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; if (!mtrr_valid(vcpu, msr, data)) return 1; if (msr == MSR_MTRRdefType) { vcpu->arch.mtrr_state.def_type = data; vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; } else if (msr == MSR_MTRRfix64K_00000) p[0] = data; else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) p[1 + msr - MSR_MTRRfix16K_80000] = data; else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) p[3 + msr - MSR_MTRRfix4K_C0000] = data; else if (msr == MSR_IA32_CR_PAT) vcpu->arch.pat = data; else { /* Variable MTRRs */ int idx, is_mtrr_mask; u64 *pt; idx = (msr - 0x200) / 2; is_mtrr_mask = msr - 0x200 - 2 * idx; if (!is_mtrr_mask) pt = (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; else pt = (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; *pt = data; } kvm_mmu_reset_context(vcpu); return 0; } static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) { u64 mcg_cap = vcpu->arch.mcg_cap; unsigned bank_num = mcg_cap & 0xff; switch (msr) { case MSR_IA32_MCG_STATUS: vcpu->arch.mcg_status = data; break; case MSR_IA32_MCG_CTL: if (!(mcg_cap & MCG_CTL_P)) return 1; if (data != 0 && data != ~(u64)0) return -1; vcpu->arch.mcg_ctl = data; break; default: if (msr >= MSR_IA32_MC0_CTL && msr < MSR_IA32_MC0_CTL + 4 * bank_num) { u32 offset = msr - MSR_IA32_MC0_CTL; /* only 0 or all 1s can be written to IA32_MCi_CTL * some Linux kernels though clear bit 10 in bank 4 to * workaround a BIOS/GART TBL issue on AMD K8s, ignore * this to avoid an uncatched #GP in the guest */ if ((offset & 0x3) == 0 && data != 0 && (data | (1 << 10)) != ~(u64)0) return -1; vcpu->arch.mce_banks[offset] = data; break; } return 1; } return 0; } static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) { struct kvm *kvm = vcpu->kvm; int lm = is_long_mode(vcpu); u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 : kvm->arch.xen_hvm_config.blob_size_32; u32 page_num = data & ~PAGE_MASK; u64 page_addr = data & PAGE_MASK; u8 *page; int r; r = -E2BIG; if (page_num >= blob_size) goto out; r = -ENOMEM; page = kzalloc(PAGE_SIZE, GFP_KERNEL); if (!page) goto out; r = -EFAULT; if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE)) goto out_free; if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) goto out_free; r = 0; out_free: kfree(page); out: return r; } static bool kvm_hv_hypercall_enabled(struct kvm *kvm) { return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; } static bool kvm_hv_msr_partition_wide(u32 msr) { bool r = false; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: case HV_X64_MSR_HYPERCALL: r = true; break; } return r; } static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) { struct kvm *kvm = vcpu->kvm; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: kvm->arch.hv_guest_os_id = data; /* setting guest os id to zero disables hypercall page */ if (!kvm->arch.hv_guest_os_id) kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; break; case HV_X64_MSR_HYPERCALL: { u64 gfn; unsigned long addr; u8 instructions[4]; /* if guest os id is not set hypercall should remain disabled */ if (!kvm->arch.hv_guest_os_id) break; if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { kvm->arch.hv_hypercall = data; break; } gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; addr = gfn_to_hva(kvm, gfn); if (kvm_is_error_hva(addr)) return 1; kvm_x86_ops->patch_hypercall(vcpu, instructions); ((unsigned char *)instructions)[3] = 0xc3; /* ret */ if (copy_to_user((void __user *)addr, instructions, 4)) return 1; kvm->arch.hv_hypercall = data; break; } default: pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " "data 0x%llx\n", msr, data); return 1; } return 0; } static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) { switch (msr) { case HV_X64_MSR_APIC_ASSIST_PAGE: { unsigned long addr; if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { vcpu->arch.hv_vapic = data; break; } addr = gfn_to_hva(vcpu->kvm, data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); if (kvm_is_error_hva(addr)) return 1; if (clear_user((void __user *)addr, PAGE_SIZE)) return 1; vcpu->arch.hv_vapic = data; break; } case HV_X64_MSR_EOI: return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); case HV_X64_MSR_ICR: return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); case HV_X64_MSR_TPR: return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); default: pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " "data 0x%llx\n", msr, data); return 1; } return 0; } static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) { gpa_t gpa = data & ~0x3f; /* Bits 2:5 are resrved, Should be zero */ if (data & 0x3c) return 1; vcpu->arch.apf.msr_val = data; if (!(data & KVM_ASYNC_PF_ENABLED)) { kvm_clear_async_pf_completion_queue(vcpu); kvm_async_pf_hash_reset(vcpu); return 0; } if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) return 1; vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); kvm_async_pf_wakeup_all(vcpu); return 0; } static void kvmclock_reset(struct kvm_vcpu *vcpu) { if (vcpu->arch.time_page) { kvm_release_page_dirty(vcpu->arch.time_page); vcpu->arch.time_page = NULL; } } int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) { switch (msr) { case MSR_EFER: return set_efer(vcpu, data); case MSR_K7_HWCR: data &= ~(u64)0x40; /* ignore flush filter disable */ data &= ~(u64)0x100; /* ignore ignne emulation enable */ if (data != 0) { pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", data); return 1; } break; case MSR_FAM10H_MMIO_CONF_BASE: if (data != 0) { pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " "0x%llx\n", data); return 1; } break; case MSR_AMD64_NB_CFG: break; case MSR_IA32_DEBUGCTLMSR: if (!data) { /* We support the non-activated case already */ break; } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { /* Values other than LBR and BTF are vendor-specific, thus reserved and should throw a #GP */ return 1; } pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", __func__, data); break; case MSR_IA32_UCODE_REV: case MSR_IA32_UCODE_WRITE: case MSR_VM_HSAVE_PA: case MSR_AMD64_PATCH_LOADER: break; case 0x200 ... 0x2ff: return set_msr_mtrr(vcpu, msr, data); case MSR_IA32_APICBASE: kvm_set_apic_base(vcpu, data); break; case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: return kvm_x2apic_msr_write(vcpu, msr, data); case MSR_IA32_MISC_ENABLE: vcpu->arch.ia32_misc_enable_msr = data; break; case MSR_KVM_WALL_CLOCK_NEW: case MSR_KVM_WALL_CLOCK: vcpu->kvm->arch.wall_clock = data; kvm_write_wall_clock(vcpu->kvm, data); break; case MSR_KVM_SYSTEM_TIME_NEW: case MSR_KVM_SYSTEM_TIME: { kvmclock_reset(vcpu); vcpu->arch.time = data; kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); /* we verify if the enable bit is set... */ if (!(data & 1)) break; /* ...but clean it before doing the actual write */ vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); vcpu->arch.time_page = gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); if (is_error_page(vcpu->arch.time_page)) { kvm_release_page_clean(vcpu->arch.time_page); vcpu->arch.time_page = NULL; } break; } case MSR_KVM_ASYNC_PF_EN: if (kvm_pv_enable_async_pf(vcpu, data)) return 1; break; case MSR_IA32_MCG_CTL: case MSR_IA32_MCG_STATUS: case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: return set_msr_mce(vcpu, msr, data); /* Performance counters are not protected by a CPUID bit, * so we should check all of them in the generic path for the sake of * cross vendor migration. * Writing a zero into the event select MSRs disables them, * which we perfectly emulate ;-). Any other value should be at least * reported, some guests depend on them. */ case MSR_P6_EVNTSEL0: case MSR_P6_EVNTSEL1: case MSR_K7_EVNTSEL0: case MSR_K7_EVNTSEL1: case MSR_K7_EVNTSEL2: case MSR_K7_EVNTSEL3: if (data != 0) pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; /* at least RHEL 4 unconditionally writes to the perfctr registers, * so we ignore writes to make it happy. */ case MSR_P6_PERFCTR0: case MSR_P6_PERFCTR1: case MSR_K7_PERFCTR0: case MSR_K7_PERFCTR1: case MSR_K7_PERFCTR2: case MSR_K7_PERFCTR3: pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; case MSR_K7_CLK_CTL: /* * Ignore all writes to this no longer documented MSR. * Writes are only relevant for old K7 processors, * all pre-dating SVM, but a recommended workaround from * AMD for these chips. It is possible to speicify the * affected processor models on the command line, hence * the need to ignore the workaround. */ break; case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: if (kvm_hv_msr_partition_wide(msr)) { int r; mutex_lock(&vcpu->kvm->lock); r = set_msr_hyperv_pw(vcpu, msr, data); mutex_unlock(&vcpu->kvm->lock); return r; } else return set_msr_hyperv(vcpu, msr, data); break; case MSR_IA32_BBL_CR_CTL3: /* Drop writes to this legacy MSR -- see rdmsr * counterpart for further detail. */ pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); break; default: if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) return xen_hvm_config(vcpu, data); if (!ignore_msrs) { pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data); return 1; } else { pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); break; } } return 0; } EXPORT_SYMBOL_GPL(kvm_set_msr_common); /* * Reads an msr value (of 'msr_index') into 'pdata'. * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) { return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); } static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; if (!msr_mtrr_valid(msr)) return 1; if (msr == MSR_MTRRdefType) *pdata = vcpu->arch.mtrr_state.def_type + (vcpu->arch.mtrr_state.enabled << 10); else if (msr == MSR_MTRRfix64K_00000) *pdata = p[0]; else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; else if (msr == MSR_IA32_CR_PAT) *pdata = vcpu->arch.pat; else { /* Variable MTRRs */ int idx, is_mtrr_mask; u64 *pt; idx = (msr - 0x200) / 2; is_mtrr_mask = msr - 0x200 - 2 * idx; if (!is_mtrr_mask) pt = (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; else pt = (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; *pdata = *pt; } return 0; } static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 data; u64 mcg_cap = vcpu->arch.mcg_cap; unsigned bank_num = mcg_cap & 0xff; switch (msr) { case MSR_IA32_P5_MC_ADDR: case MSR_IA32_P5_MC_TYPE: data = 0; break; case MSR_IA32_MCG_CAP: data = vcpu->arch.mcg_cap; break; case MSR_IA32_MCG_CTL: if (!(mcg_cap & MCG_CTL_P)) return 1; data = vcpu->arch.mcg_ctl; break; case MSR_IA32_MCG_STATUS: data = vcpu->arch.mcg_status; break; default: if (msr >= MSR_IA32_MC0_CTL && msr < MSR_IA32_MC0_CTL + 4 * bank_num) { u32 offset = msr - MSR_IA32_MC0_CTL; data = vcpu->arch.mce_banks[offset]; break; } return 1; } *pdata = data; return 0; } static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 data = 0; struct kvm *kvm = vcpu->kvm; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: data = kvm->arch.hv_guest_os_id; break; case HV_X64_MSR_HYPERCALL: data = kvm->arch.hv_hypercall; break; default: pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); return 1; } *pdata = data; return 0; } static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 data = 0; switch (msr) { case HV_X64_MSR_VP_INDEX: { int r; struct kvm_vcpu *v; kvm_for_each_vcpu(r, v, vcpu->kvm) if (v == vcpu) data = r; break; } case HV_X64_MSR_EOI: return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); case HV_X64_MSR_ICR: return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); case HV_X64_MSR_TPR: return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); default: pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); return 1; } *pdata = data; return 0; } int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 data; switch (msr) { case MSR_IA32_PLATFORM_ID: case MSR_IA32_UCODE_REV: case MSR_IA32_EBL_CR_POWERON: case MSR_IA32_DEBUGCTLMSR: case MSR_IA32_LASTBRANCHFROMIP: case MSR_IA32_LASTBRANCHTOIP: case MSR_IA32_LASTINTFROMIP: case MSR_IA32_LASTINTTOIP: case MSR_K8_SYSCFG: case MSR_K7_HWCR: case MSR_VM_HSAVE_PA: case MSR_P6_PERFCTR0: case MSR_P6_PERFCTR1: case MSR_P6_EVNTSEL0: case MSR_P6_EVNTSEL1: case MSR_K7_EVNTSEL0: case MSR_K7_PERFCTR0: case MSR_K8_INT_PENDING_MSG: case MSR_AMD64_NB_CFG: case MSR_FAM10H_MMIO_CONF_BASE: data = 0; break; case MSR_MTRRcap: data = 0x500 | KVM_NR_VAR_MTRR; break; case 0x200 ... 0x2ff: return get_msr_mtrr(vcpu, msr, pdata); case 0xcd: /* fsb frequency */ data = 3; break; /* * MSR_EBC_FREQUENCY_ID * Conservative value valid for even the basic CPU models. * Models 0,1: 000 in bits 23:21 indicating a bus speed of * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, * and 266MHz for model 3, or 4. Set Core Clock * Frequency to System Bus Frequency Ratio to 1 (bits * 31:24) even though these are only valid for CPU * models > 2, however guests may end up dividing or * multiplying by zero otherwise. */ case MSR_EBC_FREQUENCY_ID: data = 1 << 24; break; case MSR_IA32_APICBASE: data = kvm_get_apic_base(vcpu); break; case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: return kvm_x2apic_msr_read(vcpu, msr, pdata); break; case MSR_IA32_MISC_ENABLE: data = vcpu->arch.ia32_misc_enable_msr; break; case MSR_IA32_PERF_STATUS: /* TSC increment by tick */ data = 1000ULL; /* CPU multiplier */ data |= (((uint64_t)4ULL) << 40); break; case MSR_EFER: data = vcpu->arch.efer; break; case MSR_KVM_WALL_CLOCK: case MSR_KVM_WALL_CLOCK_NEW: data = vcpu->kvm->arch.wall_clock; break; case MSR_KVM_SYSTEM_TIME: case MSR_KVM_SYSTEM_TIME_NEW: data = vcpu->arch.time; break; case MSR_KVM_ASYNC_PF_EN: data = vcpu->arch.apf.msr_val; break; case MSR_IA32_P5_MC_ADDR: case MSR_IA32_P5_MC_TYPE: case MSR_IA32_MCG_CAP: case MSR_IA32_MCG_CTL: case MSR_IA32_MCG_STATUS: case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: return get_msr_mce(vcpu, msr, pdata); case MSR_K7_CLK_CTL: /* * Provide expected ramp-up count for K7. All other * are set to zero, indicating minimum divisors for * every field. * * This prevents guest kernels on AMD host with CPU * type 6, model 8 and higher from exploding due to * the rdmsr failing. */ data = 0x20000000; break; case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: if (kvm_hv_msr_partition_wide(msr)) { int r; mutex_lock(&vcpu->kvm->lock); r = get_msr_hyperv_pw(vcpu, msr, pdata); mutex_unlock(&vcpu->kvm->lock); return r; } else return get_msr_hyperv(vcpu, msr, pdata); break; case MSR_IA32_BBL_CR_CTL3: /* This legacy MSR exists but isn't fully documented in current * silicon. It is however accessed by winxp in very narrow * scenarios where it sets bit #19, itself documented as * a "reserved" bit. Best effort attempt to source coherent * read data here should the balance of the register be * interpreted by the guest: * * L2 cache control register 3: 64GB range, 256KB size, * enabled, latency 0x1, configured */ data = 0xbe702111; break; default: if (!ignore_msrs) { pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); return 1; } else { pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); data = 0; } break; } *pdata = data; return 0; } EXPORT_SYMBOL_GPL(kvm_get_msr_common); /* * Read or write a bunch of msrs. All parameters are kernel addresses. * * @return number of msrs set successfully. */ static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, struct kvm_msr_entry *entries, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data)) { int i, idx; idx = srcu_read_lock(&vcpu->kvm->srcu); for (i = 0; i < msrs->nmsrs; ++i) if (do_msr(vcpu, entries[i].index, &entries[i].data)) break; srcu_read_unlock(&vcpu->kvm->srcu, idx); return i; } /* * Read or write a bunch of msrs. Parameters are user addresses. * * @return number of msrs set successfully. */ static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data), int writeback) { struct kvm_msrs msrs; struct kvm_msr_entry *entries; int r, n; unsigned size; r = -EFAULT; if (copy_from_user(&msrs, user_msrs, sizeof msrs)) goto out; r = -E2BIG; if (msrs.nmsrs >= MAX_IO_MSRS) goto out; r = -ENOMEM; size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; entries = kmalloc(size, GFP_KERNEL); if (!entries) goto out; r = -EFAULT; if (copy_from_user(entries, user_msrs->entries, size)) goto out_free; r = n = __msr_io(vcpu, &msrs, entries, do_msr); if (r < 0) goto out_free; r = -EFAULT; if (writeback && copy_to_user(user_msrs->entries, entries, size)) goto out_free; r = n; out_free: kfree(entries); out: return r; } int kvm_dev_ioctl_check_extension(long ext) { int r; switch (ext) { case KVM_CAP_IRQCHIP: case KVM_CAP_HLT: case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: case KVM_CAP_SET_TSS_ADDR: case KVM_CAP_EXT_CPUID: case KVM_CAP_CLOCKSOURCE: case KVM_CAP_PIT: case KVM_CAP_NOP_IO_DELAY: case KVM_CAP_MP_STATE: case KVM_CAP_SYNC_MMU: case KVM_CAP_USER_NMI: case KVM_CAP_REINJECT_CONTROL: case KVM_CAP_IRQ_INJECT_STATUS: case KVM_CAP_ASSIGN_DEV_IRQ: case KVM_CAP_IRQFD: case KVM_CAP_IOEVENTFD: case KVM_CAP_PIT2: case KVM_CAP_PIT_STATE2: case KVM_CAP_SET_IDENTITY_MAP_ADDR: case KVM_CAP_XEN_HVM: case KVM_CAP_ADJUST_CLOCK: case KVM_CAP_VCPU_EVENTS: case KVM_CAP_HYPERV: case KVM_CAP_HYPERV_VAPIC: case KVM_CAP_HYPERV_SPIN: case KVM_CAP_PCI_SEGMENT: case KVM_CAP_DEBUGREGS: case KVM_CAP_X86_ROBUST_SINGLESTEP: case KVM_CAP_XSAVE: case KVM_CAP_ASYNC_PF: r = 1; break; case KVM_CAP_COALESCED_MMIO: r = KVM_COALESCED_MMIO_PAGE_OFFSET; break; case KVM_CAP_VAPIC: r = !kvm_x86_ops->cpu_has_accelerated_tpr(); break; case KVM_CAP_NR_VCPUS: r = KVM_MAX_VCPUS; break; case KVM_CAP_NR_MEMSLOTS: r = KVM_MEMORY_SLOTS; break; case KVM_CAP_PV_MMU: /* obsolete */ r = 0; break; case KVM_CAP_IOMMU: r = iommu_found(); break; case KVM_CAP_MCE: r = KVM_MAX_MCE_BANKS; break; case KVM_CAP_XCRS: r = cpu_has_xsave; break; default: r = 0; break; } return r; } long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { void __user *argp = (void __user *)arg; long r; switch (ioctl) { case KVM_GET_MSR_INDEX_LIST: { struct kvm_msr_list __user *user_msr_list = argp; struct kvm_msr_list msr_list; unsigned n; r = -EFAULT; if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) goto out; n = msr_list.nmsrs; msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) goto out; r = -E2BIG; if (n < msr_list.nmsrs) goto out; r = -EFAULT; if (copy_to_user(user_msr_list->indices, &msrs_to_save, num_msrs_to_save * sizeof(u32))) goto out; if (copy_to_user(user_msr_list->indices + num_msrs_to_save, &emulated_msrs, ARRAY_SIZE(emulated_msrs) * sizeof(u32))) goto out; r = 0; break; } case KVM_GET_SUPPORTED_CPUID: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, cpuid_arg->entries); if (r) goto out; r = -EFAULT; if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) goto out; r = 0; break; } case KVM_X86_GET_MCE_CAP_SUPPORTED: { u64 mce_cap; mce_cap = KVM_MCE_CAP_SUPPORTED; r = -EFAULT; if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) goto out; r = 0; break; } default: r = -EINVAL; } out: return r; } static void wbinvd_ipi(void *garbage) { wbinvd(); } static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) { return vcpu->kvm->arch.iommu_domain && !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { /* Address WBINVD may be executed by guest */ if (need_emulate_wbinvd(vcpu)) { if (kvm_x86_ops->has_wbinvd_exit()) cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); else if (vcpu->cpu != -1 && vcpu->cpu != cpu) smp_call_function_single(vcpu->cpu, wbinvd_ipi, NULL, 1); } kvm_x86_ops->vcpu_load(vcpu, cpu); if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { /* Make sure TSC doesn't go backwards */ s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : native_read_tsc() - vcpu->arch.last_host_tsc; if (tsc_delta < 0) mark_tsc_unstable("KVM discovered backwards TSC"); if (check_tsc_unstable()) { kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta); vcpu->arch.tsc_catchup = 1; kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); } if (vcpu->cpu != cpu) kvm_migrate_timers(vcpu); vcpu->cpu = cpu; } } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { kvm_x86_ops->vcpu_put(vcpu); kvm_put_guest_fpu(vcpu); vcpu->arch.last_host_tsc = native_read_tsc(); } static int is_efer_nx(void) { unsigned long long efer = 0; rdmsrl_safe(MSR_EFER, &efer); return efer & EFER_NX; } static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) { int i; struct kvm_cpuid_entry2 *e, *entry; entry = NULL; for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { e = &vcpu->arch.cpuid_entries[i]; if (e->function == 0x80000001) { entry = e; break; } } if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) { entry->edx &= ~(1 << 20); printk(KERN_INFO "kvm: guest NX capability removed\n"); } } /* when an old userspace process fills a new kernel module */ static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid *cpuid, struct kvm_cpuid_entry __user *entries) { int r, i; struct kvm_cpuid_entry *cpuid_entries; r = -E2BIG; if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) goto out; r = -ENOMEM; cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent); if (!cpuid_entries) goto out; r = -EFAULT; if (copy_from_user(cpuid_entries, entries, cpuid->nent * sizeof(struct kvm_cpuid_entry))) goto out_free; for (i = 0; i < cpuid->nent; i++) { vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; vcpu->arch.cpuid_entries[i].index = 0; vcpu->arch.cpuid_entries[i].flags = 0; vcpu->arch.cpuid_entries[i].padding[0] = 0; vcpu->arch.cpuid_entries[i].padding[1] = 0; vcpu->arch.cpuid_entries[i].padding[2] = 0; } vcpu->arch.cpuid_nent = cpuid->nent; cpuid_fix_nx_cap(vcpu); r = 0; kvm_apic_set_version(vcpu); kvm_x86_ops->cpuid_update(vcpu); update_cpuid(vcpu); out_free: vfree(cpuid_entries); out: return r; } static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries) { int r; r = -E2BIG; if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) goto out; r = -EFAULT; if (copy_from_user(&vcpu->arch.cpuid_entries, entries, cpuid->nent * sizeof(struct kvm_cpuid_entry2))) goto out; vcpu->arch.cpuid_nent = cpuid->nent; kvm_apic_set_version(vcpu); kvm_x86_ops->cpuid_update(vcpu); update_cpuid(vcpu); return 0; out: return r; } static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries) { int r; r = -E2BIG; if (cpuid->nent < vcpu->arch.cpuid_nent) goto out; r = -EFAULT; if (copy_to_user(entries, &vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) goto out; return 0; out: cpuid->nent = vcpu->arch.cpuid_nent; return r; } static void cpuid_mask(u32 *word, int wordnum) { *word &= boot_cpu_data.x86_capability[wordnum]; } static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function, u32 index) { entry->function = function; entry->index = index; cpuid_count(entry->function, entry->index, &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); entry->flags = 0; } #define F(x) bit(X86_FEATURE_##x) static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, u32 index, int *nent, int maxnent) { unsigned f_nx = is_efer_nx() ? F(NX) : 0; #ifdef CONFIG_X86_64 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL) ? F(GBPAGES) : 0; unsigned f_lm = F(LM); #else unsigned f_gbpages = 0; unsigned f_lm = 0; #endif unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0; /* cpuid 1.edx */ const u32 kvm_supported_word0_x86_features = F(FPU) | F(VME) | F(DE) | F(PSE) | F(TSC) | F(MSR) | F(PAE) | F(MCE) | F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) | 0 /* Reserved, DS, ACPI */ | F(MMX) | F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | 0 /* HTT, TM, Reserved, PBE */; /* cpuid 0x80000001.edx */ const u32 kvm_supported_word1_x86_features = F(FPU) | F(VME) | F(DE) | F(PSE) | F(TSC) | F(MSR) | F(PAE) | F(MCE) | F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | F(PAT) | F(PSE36) | 0 /* Reserved */ | f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp | 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW); /* cpuid 1.ecx */ const u32 kvm_supported_word4_x86_features = F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | 0 /* DS-CPL, VMX, SMX, EST */ | 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ | 0 /* Reserved, DCA */ | F(XMM4_1) | F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | F(F16C); /* cpuid 0x80000001.ecx */ const u32 kvm_supported_word6_x86_features = F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) | 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM); /* all calls to cpuid_count() should be made on the same cpu */ get_cpu(); do_cpuid_1_ent(entry, function, index); ++*nent; switch (function) { case 0: entry->eax = min(entry->eax, (u32)0xd); break; case 1: entry->edx &= kvm_supported_word0_x86_features; cpuid_mask(&entry->edx, 0); entry->ecx &= kvm_supported_word4_x86_features; cpuid_mask(&entry->ecx, 4); /* we support x2apic emulation even if host does not support * it since we emulate x2apic in software */ entry->ecx |= F(X2APIC); break; /* function 2 entries are STATEFUL. That is, repeated cpuid commands * may return different values. This forces us to get_cpu() before * issuing the first command, and also to emulate this annoying behavior * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ case 2: { int t, times = entry->eax & 0xff; entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; for (t = 1; t < times && *nent < maxnent; ++t) { do_cpuid_1_ent(&entry[t], function, 0); entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; ++*nent; } break; } /* function 4 and 0xb have additional index. */ case 4: { int i, cache_type; entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; /* read more entries until cache_type is zero */ for (i = 1; *nent < maxnent; ++i) { cache_type = entry[i - 1].eax & 0x1f; if (!cache_type) break; do_cpuid_1_ent(&entry[i], function, i); entry[i].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; ++*nent; } break; } case 0xb: { int i, level_type; entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; /* read more entries until level_type is zero */ for (i = 1; *nent < maxnent; ++i) { level_type = entry[i - 1].ecx & 0xff00; if (!level_type) break; do_cpuid_1_ent(&entry[i], function, i); entry[i].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; ++*nent; } break; } case 0xd: { int i; entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; for (i = 1; *nent < maxnent; ++i) { if (entry[i - 1].eax == 0 && i != 2) break; do_cpuid_1_ent(&entry[i], function, i); entry[i].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; ++*nent; } break; } case KVM_CPUID_SIGNATURE: { char signature[12] = "KVMKVMKVM\0\0"; u32 *sigptr = (u32 *)signature; entry->eax = 0; entry->ebx = sigptr[0]; entry->ecx = sigptr[1]; entry->edx = sigptr[2]; break; } case KVM_CPUID_FEATURES: entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | (1 << KVM_FEATURE_NOP_IO_DELAY) | (1 << KVM_FEATURE_CLOCKSOURCE2) | (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT); entry->ebx = 0; entry->ecx = 0; entry->edx = 0; break; case 0x80000000: entry->eax = min(entry->eax, 0x8000001a); break; case 0x80000001: entry->edx &= kvm_supported_word1_x86_features; cpuid_mask(&entry->edx, 1); entry->ecx &= kvm_supported_word6_x86_features; cpuid_mask(&entry->ecx, 6); break; } kvm_x86_ops->set_supported_cpuid(function, entry); put_cpu(); } #undef F static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries) { struct kvm_cpuid_entry2 *cpuid_entries; int limit, nent = 0, r = -E2BIG; u32 func; if (cpuid->nent < 1) goto out; if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) cpuid->nent = KVM_MAX_CPUID_ENTRIES; r = -ENOMEM; cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent); if (!cpuid_entries) goto out; do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent); limit = cpuid_entries[0].eax; for (func = 1; func <= limit && nent < cpuid->nent; ++func) do_cpuid_ent(&cpuid_entries[nent], func, 0, &nent, cpuid->nent); r = -E2BIG; if (nent >= cpuid->nent) goto out_free; do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent); limit = cpuid_entries[nent - 1].eax; for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func) do_cpuid_ent(&cpuid_entries[nent], func, 0, &nent, cpuid->nent); r = -E2BIG; if (nent >= cpuid->nent) goto out_free; do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent, cpuid->nent); r = -E2BIG; if (nent >= cpuid->nent) goto out_free; do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent, cpuid->nent); r = -E2BIG; if (nent >= cpuid->nent) goto out_free; r = -EFAULT; if (copy_to_user(entries, cpuid_entries, nent * sizeof(struct kvm_cpuid_entry2))) goto out_free; cpuid->nent = nent; r = 0; out_free: vfree(cpuid_entries); out: return r; } static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) { memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); return 0; } static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) { memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); kvm_apic_post_state_restore(vcpu); update_cr8_intercept(vcpu); return 0; } static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { if (irq->irq < 0 || irq->irq >= 256) return -EINVAL; if (irqchip_in_kernel(vcpu->kvm)) return -ENXIO; kvm_queue_interrupt(vcpu, irq->irq, false); kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) { kvm_inject_nmi(vcpu); return 0; } static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, struct kvm_tpr_access_ctl *tac) { if (tac->flags) return -EINVAL; vcpu->arch.tpr_access_reporting = !!tac->enabled; return 0; } static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, u64 mcg_cap) { int r; unsigned bank_num = mcg_cap & 0xff, bank; r = -EINVAL; if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) goto out; if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) goto out; r = 0; vcpu->arch.mcg_cap = mcg_cap; /* Init IA32_MCG_CTL to all 1s */ if (mcg_cap & MCG_CTL_P) vcpu->arch.mcg_ctl = ~(u64)0; /* Init IA32_MCi_CTL to all 1s */ for (bank = 0; bank < bank_num; bank++) vcpu->arch.mce_banks[bank*4] = ~(u64)0; out: return r; } static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce) { u64 mcg_cap = vcpu->arch.mcg_cap; unsigned bank_num = mcg_cap & 0xff; u64 *banks = vcpu->arch.mce_banks; if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) return -EINVAL; /* * if IA32_MCG_CTL is not all 1s, the uncorrected error * reporting is disabled */ if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && vcpu->arch.mcg_ctl != ~(u64)0) return 0; banks += 4 * mce->bank; /* * if IA32_MCi_CTL is not all 1s, the uncorrected error * reporting is disabled for the bank */ if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) return 0; if (mce->status & MCI_STATUS_UC) { if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return 0; } if (banks[1] & MCI_STATUS_VAL) mce->status |= MCI_STATUS_OVER; banks[2] = mce->addr; banks[3] = mce->misc; vcpu->arch.mcg_status = mce->mcg_status; banks[1] = mce->status; kvm_queue_exception(vcpu, MC_VECTOR); } else if (!(banks[1] & MCI_STATUS_VAL) || !(banks[1] & MCI_STATUS_UC)) { if (banks[1] & MCI_STATUS_VAL) mce->status |= MCI_STATUS_OVER; banks[2] = mce->addr; banks[3] = mce->misc; banks[1] = mce->status; } else banks[1] |= MCI_STATUS_OVER; return 0; } static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events) { events->exception.injected = vcpu->arch.exception.pending && !kvm_exception_is_soft(vcpu->arch.exception.nr); events->exception.nr = vcpu->arch.exception.nr; events->exception.has_error_code = vcpu->arch.exception.has_error_code; events->exception.pad = 0; events->exception.error_code = vcpu->arch.exception.error_code; events->interrupt.injected = vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; events->interrupt.nr = vcpu->arch.interrupt.nr; events->interrupt.soft = 0; events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); events->nmi.injected = vcpu->arch.nmi_injected; events->nmi.pending = vcpu->arch.nmi_pending; events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); events->nmi.pad = 0; events->sipi_vector = vcpu->arch.sipi_vector; events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR | KVM_VCPUEVENT_VALID_SHADOW); memset(&events->reserved, 0, sizeof(events->reserved)); } static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events) { if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR | KVM_VCPUEVENT_VALID_SHADOW)) return -EINVAL; vcpu->arch.exception.pending = events->exception.injected; vcpu->arch.exception.nr = events->exception.nr; vcpu->arch.exception.has_error_code = events->exception.has_error_code; vcpu->arch.exception.error_code = events->exception.error_code; vcpu->arch.interrupt.pending = events->interrupt.injected; vcpu->arch.interrupt.nr = events->interrupt.nr; vcpu->arch.interrupt.soft = events->interrupt.soft; if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) kvm_x86_ops->set_interrupt_shadow(vcpu, events->interrupt.shadow); vcpu->arch.nmi_injected = events->nmi.injected; if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) vcpu->arch.nmi_pending = events->nmi.pending; kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) vcpu->arch.sipi_vector = events->sipi_vector; kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, struct kvm_debugregs *dbgregs) { memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); dbgregs->dr6 = vcpu->arch.dr6; dbgregs->dr7 = vcpu->arch.dr7; dbgregs->flags = 0; memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); } static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, struct kvm_debugregs *dbgregs) { if (dbgregs->flags) return -EINVAL; memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); vcpu->arch.dr6 = dbgregs->dr6; vcpu->arch.dr7 = dbgregs->dr7; return 0; } static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, struct kvm_xsave *guest_xsave) { if (cpu_has_xsave) memcpy(guest_xsave->region, &vcpu->arch.guest_fpu.state->xsave, xstate_size); else { memcpy(guest_xsave->region, &vcpu->arch.guest_fpu.state->fxsave, sizeof(struct i387_fxsave_struct)); *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = XSTATE_FPSSE; } } static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, struct kvm_xsave *guest_xsave) { u64 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; if (cpu_has_xsave) memcpy(&vcpu->arch.guest_fpu.state->xsave, guest_xsave->region, xstate_size); else { if (xstate_bv & ~XSTATE_FPSSE) return -EINVAL; memcpy(&vcpu->arch.guest_fpu.state->fxsave, guest_xsave->region, sizeof(struct i387_fxsave_struct)); } return 0; } static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, struct kvm_xcrs *guest_xcrs) { if (!cpu_has_xsave) { guest_xcrs->nr_xcrs = 0; return; } guest_xcrs->nr_xcrs = 1; guest_xcrs->flags = 0; guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; } static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, struct kvm_xcrs *guest_xcrs) { int i, r = 0; if (!cpu_has_xsave) return -EINVAL; if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) return -EINVAL; for (i = 0; i < guest_xcrs->nr_xcrs; i++) /* Only support XCR0 currently */ if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, guest_xcrs->xcrs[0].value); break; } if (r) r = -EINVAL; return r; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; int r; union { struct kvm_lapic_state *lapic; struct kvm_xsave *xsave; struct kvm_xcrs *xcrs; void *buffer; } u; u.buffer = NULL; switch (ioctl) { case KVM_GET_LAPIC: { r = -EINVAL; if (!vcpu->arch.apic) goto out; u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); r = -ENOMEM; if (!u.lapic) goto out; r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) goto out; r = 0; break; } case KVM_SET_LAPIC: { r = -EINVAL; if (!vcpu->arch.apic) goto out; u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); r = -ENOMEM; if (!u.lapic) goto out; r = -EFAULT; if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state))) goto out; r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); if (r) goto out; r = 0; break; } case KVM_INTERRUPT: { struct kvm_interrupt irq; r = -EFAULT; if (copy_from_user(&irq, argp, sizeof irq)) goto out; r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); if (r) goto out; r = 0; break; } case KVM_NMI: { r = kvm_vcpu_ioctl_nmi(vcpu); if (r) goto out; r = 0; break; } case KVM_SET_CPUID: { struct kvm_cpuid __user *cpuid_arg = argp; struct kvm_cpuid cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); if (r) goto out; break; } case KVM_SET_CPUID2: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, cpuid_arg->entries); if (r) goto out; break; } case KVM_GET_CPUID2: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, cpuid_arg->entries); if (r) goto out; r = -EFAULT; if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) goto out; r = 0; break; } case KVM_GET_MSRS: r = msr_io(vcpu, argp, kvm_get_msr, 1); break; case KVM_SET_MSRS: r = msr_io(vcpu, argp, do_set_msr, 0); break; case KVM_TPR_ACCESS_REPORTING: { struct kvm_tpr_access_ctl tac; r = -EFAULT; if (copy_from_user(&tac, argp, sizeof tac)) goto out; r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &tac, sizeof tac)) goto out; r = 0; break; }; case KVM_SET_VAPIC_ADDR: { struct kvm_vapic_addr va; r = -EINVAL; if (!irqchip_in_kernel(vcpu->kvm)) goto out; r = -EFAULT; if (copy_from_user(&va, argp, sizeof va)) goto out; r = 0; kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); break; } case KVM_X86_SETUP_MCE: { u64 mcg_cap; r = -EFAULT; if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) goto out; r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); break; } case KVM_X86_SET_MCE: { struct kvm_x86_mce mce; r = -EFAULT; if (copy_from_user(&mce, argp, sizeof mce)) goto out; r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); break; } case KVM_GET_VCPU_EVENTS: { struct kvm_vcpu_events events; kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); r = -EFAULT; if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) break; r = 0; break; } case KVM_SET_VCPU_EVENTS: { struct kvm_vcpu_events events; r = -EFAULT; if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) break; r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); break; } case KVM_GET_DEBUGREGS: { struct kvm_debugregs dbgregs; kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); r = -EFAULT; if (copy_to_user(argp, &dbgregs, sizeof(struct kvm_debugregs))) break; r = 0; break; } case KVM_SET_DEBUGREGS: { struct kvm_debugregs dbgregs; r = -EFAULT; if (copy_from_user(&dbgregs, argp, sizeof(struct kvm_debugregs))) break; r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); break; } case KVM_GET_XSAVE: { u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); r = -ENOMEM; if (!u.xsave) break; kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); r = -EFAULT; if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) break; r = 0; break; } case KVM_SET_XSAVE: { u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); r = -ENOMEM; if (!u.xsave) break; r = -EFAULT; if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave))) break; r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); break; } case KVM_GET_XCRS: { u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); r = -ENOMEM; if (!u.xcrs) break; kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); r = -EFAULT; if (copy_to_user(argp, u.xcrs, sizeof(struct kvm_xcrs))) break; r = 0; break; } case KVM_SET_XCRS: { u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); r = -ENOMEM; if (!u.xcrs) break; r = -EFAULT; if (copy_from_user(u.xcrs, argp, sizeof(struct kvm_xcrs))) break; r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); break; } default: r = -EINVAL; } out: kfree(u.buffer); return r; } static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) { int ret; if (addr > (unsigned int)(-3 * PAGE_SIZE)) return -1; ret = kvm_x86_ops->set_tss_addr(kvm, addr); return ret; } static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) { kvm->arch.ept_identity_map_addr = ident_addr; return 0; } static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, u32 kvm_nr_mmu_pages) { if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) return -EINVAL; mutex_lock(&kvm->slots_lock); spin_lock(&kvm->mmu_lock); kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; spin_unlock(&kvm->mmu_lock); mutex_unlock(&kvm->slots_lock); return 0; } static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) { return kvm->arch.n_max_mmu_pages; } static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) { int r; r = 0; switch (chip->chip_id) { case KVM_IRQCHIP_PIC_MASTER: memcpy(&chip->chip.pic, &pic_irqchip(kvm)->pics[0], sizeof(struct kvm_pic_state)); break; case KVM_IRQCHIP_PIC_SLAVE: memcpy(&chip->chip.pic, &pic_irqchip(kvm)->pics[1], sizeof(struct kvm_pic_state)); break; case KVM_IRQCHIP_IOAPIC: r = kvm_get_ioapic(kvm, &chip->chip.ioapic); break; default: r = -EINVAL; break; } return r; } static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) { int r; r = 0; switch (chip->chip_id) { case KVM_IRQCHIP_PIC_MASTER: spin_lock(&pic_irqchip(kvm)->lock); memcpy(&pic_irqchip(kvm)->pics[0], &chip->chip.pic, sizeof(struct kvm_pic_state)); spin_unlock(&pic_irqchip(kvm)->lock); break; case KVM_IRQCHIP_PIC_SLAVE: spin_lock(&pic_irqchip(kvm)->lock); memcpy(&pic_irqchip(kvm)->pics[1], &chip->chip.pic, sizeof(struct kvm_pic_state)); spin_unlock(&pic_irqchip(kvm)->lock); break; case KVM_IRQCHIP_IOAPIC: r = kvm_set_ioapic(kvm, &chip->chip.ioapic); break; default: r = -EINVAL; break; } kvm_pic_update_irq(pic_irqchip(kvm)); return r; } static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) { int r = 0; mutex_lock(&kvm->arch.vpit->pit_state.lock); memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); mutex_unlock(&kvm->arch.vpit->pit_state.lock); return r; } static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) { int r = 0; mutex_lock(&kvm->arch.vpit->pit_state.lock); memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); mutex_unlock(&kvm->arch.vpit->pit_state.lock); return r; } static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) { int r = 0; mutex_lock(&kvm->arch.vpit->pit_state.lock); memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, sizeof(ps->channels)); ps->flags = kvm->arch.vpit->pit_state.flags; mutex_unlock(&kvm->arch.vpit->pit_state.lock); memset(&ps->reserved, 0, sizeof(ps->reserved)); return r; } static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) { int r = 0, start = 0; u32 prev_legacy, cur_legacy; mutex_lock(&kvm->arch.vpit->pit_state.lock); prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; if (!prev_legacy && cur_legacy) start = 1; memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, sizeof(kvm->arch.vpit->pit_state.channels)); kvm->arch.vpit->pit_state.flags = ps->flags; kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); mutex_unlock(&kvm->arch.vpit->pit_state.lock); return r; } static int kvm_vm_ioctl_reinject(struct kvm *kvm, struct kvm_reinject_control *control) { if (!kvm->arch.vpit) return -ENXIO; mutex_lock(&kvm->arch.vpit->pit_state.lock); kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject; mutex_unlock(&kvm->arch.vpit->pit_state.lock); return 0; } /* * Get (and clear) the dirty memory log for a memory slot. */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { int r, i; struct kvm_memory_slot *memslot; unsigned long n; unsigned long is_dirty = 0; mutex_lock(&kvm->slots_lock); r = -EINVAL; if (log->slot >= KVM_MEMORY_SLOTS) goto out; memslot = &kvm->memslots->memslots[log->slot]; r = -ENOENT; if (!memslot->dirty_bitmap) goto out; n = kvm_dirty_bitmap_bytes(memslot); for (i = 0; !is_dirty && i < n/sizeof(long); i++) is_dirty = memslot->dirty_bitmap[i]; /* If nothing is dirty, don't bother messing with page tables. */ if (is_dirty) { struct kvm_memslots *slots, *old_slots; unsigned long *dirty_bitmap; dirty_bitmap = memslot->dirty_bitmap_head; if (memslot->dirty_bitmap == dirty_bitmap) dirty_bitmap += n / sizeof(long); memset(dirty_bitmap, 0, n); r = -ENOMEM; slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); if (!slots) goto out; memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots)); slots->memslots[log->slot].dirty_bitmap = dirty_bitmap; slots->generation++; old_slots = kvm->memslots; rcu_assign_pointer(kvm->memslots, slots); synchronize_srcu_expedited(&kvm->srcu); dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap; kfree(old_slots); spin_lock(&kvm->mmu_lock); kvm_mmu_slot_remove_write_access(kvm, log->slot); spin_unlock(&kvm->mmu_lock); r = -EFAULT; if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) goto out; } else { r = -EFAULT; if (clear_user(log->dirty_bitmap, n)) goto out; } r = 0; out: mutex_unlock(&kvm->slots_lock); return r; } long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm = filp->private_data; void __user *argp = (void __user *)arg; int r = -ENOTTY; /* * This union makes it completely explicit to gcc-3.x * that these two variables' stack usage should be * combined, not added together. */ union { struct kvm_pit_state ps; struct kvm_pit_state2 ps2; struct kvm_pit_config pit_config; } u; switch (ioctl) { case KVM_SET_TSS_ADDR: r = kvm_vm_ioctl_set_tss_addr(kvm, arg); if (r < 0) goto out; break; case KVM_SET_IDENTITY_MAP_ADDR: { u64 ident_addr; r = -EFAULT; if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) goto out; r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); if (r < 0) goto out; break; } case KVM_SET_NR_MMU_PAGES: r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); if (r) goto out; break; case KVM_GET_NR_MMU_PAGES: r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); break; case KVM_CREATE_IRQCHIP: { struct kvm_pic *vpic; mutex_lock(&kvm->lock); r = -EEXIST; if (kvm->arch.vpic) goto create_irqchip_unlock; r = -ENOMEM; vpic = kvm_create_pic(kvm); if (vpic) { r = kvm_ioapic_init(kvm); if (r) { mutex_lock(&kvm->slots_lock); kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev); mutex_unlock(&kvm->slots_lock); kfree(vpic); goto create_irqchip_unlock; } } else goto create_irqchip_unlock; smp_wmb(); kvm->arch.vpic = vpic; smp_wmb(); r = kvm_setup_default_irq_routing(kvm); if (r) { mutex_lock(&kvm->slots_lock); mutex_lock(&kvm->irq_lock); kvm_ioapic_destroy(kvm); kvm_destroy_pic(kvm); mutex_unlock(&kvm->irq_lock); mutex_unlock(&kvm->slots_lock); } create_irqchip_unlock: mutex_unlock(&kvm->lock); break; } case KVM_CREATE_PIT: u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; goto create_pit; case KVM_CREATE_PIT2: r = -EFAULT; if (copy_from_user(&u.pit_config, argp, sizeof(struct kvm_pit_config))) goto out; create_pit: mutex_lock(&kvm->slots_lock); r = -EEXIST; if (kvm->arch.vpit) goto create_pit_unlock; r = -ENOMEM; kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); if (kvm->arch.vpit) r = 0; create_pit_unlock: mutex_unlock(&kvm->slots_lock); break; case KVM_IRQ_LINE_STATUS: case KVM_IRQ_LINE: { struct kvm_irq_level irq_event; r = -EFAULT; if (copy_from_user(&irq_event, argp, sizeof irq_event)) goto out; r = -ENXIO; if (irqchip_in_kernel(kvm)) { __s32 status; status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irq_event.irq, irq_event.level); if (ioctl == KVM_IRQ_LINE_STATUS) { r = -EFAULT; irq_event.status = status; if (copy_to_user(argp, &irq_event, sizeof irq_event)) goto out; } r = 0; } break; } case KVM_GET_IRQCHIP: { /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL); r = -ENOMEM; if (!chip) goto out; r = -EFAULT; if (copy_from_user(chip, argp, sizeof *chip)) goto get_irqchip_out; r = -ENXIO; if (!irqchip_in_kernel(kvm)) goto get_irqchip_out; r = kvm_vm_ioctl_get_irqchip(kvm, chip); if (r) goto get_irqchip_out; r = -EFAULT; if (copy_to_user(argp, chip, sizeof *chip)) goto get_irqchip_out; r = 0; get_irqchip_out: kfree(chip); if (r) goto out; break; } case KVM_SET_IRQCHIP: { /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL); r = -ENOMEM; if (!chip) goto out; r = -EFAULT; if (copy_from_user(chip, argp, sizeof *chip)) goto set_irqchip_out; r = -ENXIO; if (!irqchip_in_kernel(kvm)) goto set_irqchip_out; r = kvm_vm_ioctl_set_irqchip(kvm, chip); if (r) goto set_irqchip_out; r = 0; set_irqchip_out: kfree(chip); if (r) goto out; break; } case KVM_GET_PIT: { r = -EFAULT; if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) goto out; r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_get_pit(kvm, &u.ps); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) goto out; r = 0; break; } case KVM_SET_PIT: { r = -EFAULT; if (copy_from_user(&u.ps, argp, sizeof u.ps)) goto out; r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_set_pit(kvm, &u.ps); if (r) goto out; r = 0; break; } case KVM_GET_PIT2: { r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) goto out; r = 0; break; } case KVM_SET_PIT2: { r = -EFAULT; if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) goto out; r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); if (r) goto out; r = 0; break; } case KVM_REINJECT_CONTROL: { struct kvm_reinject_control control; r = -EFAULT; if (copy_from_user(&control, argp, sizeof(control))) goto out; r = kvm_vm_ioctl_reinject(kvm, &control); if (r) goto out; r = 0; break; } case KVM_XEN_HVM_CONFIG: { r = -EFAULT; if (copy_from_user(&kvm->arch.xen_hvm_config, argp, sizeof(struct kvm_xen_hvm_config))) goto out; r = -EINVAL; if (kvm->arch.xen_hvm_config.flags) goto out; r = 0; break; } case KVM_SET_CLOCK: { struct kvm_clock_data user_ns; u64 now_ns; s64 delta; r = -EFAULT; if (copy_from_user(&user_ns, argp, sizeof(user_ns))) goto out; r = -EINVAL; if (user_ns.flags) goto out; r = 0; local_irq_disable(); now_ns = get_kernel_ns(); delta = user_ns.clock - now_ns; local_irq_enable(); kvm->arch.kvmclock_offset = delta; break; } case KVM_GET_CLOCK: { struct kvm_clock_data user_ns; u64 now_ns; local_irq_disable(); now_ns = get_kernel_ns(); user_ns.clock = kvm->arch.kvmclock_offset + now_ns; local_irq_enable(); user_ns.flags = 0; memset(&user_ns.pad, 0, sizeof(user_ns.pad)); r = -EFAULT; if (copy_to_user(argp, &user_ns, sizeof(user_ns))) goto out; r = 0; break; } default: ; } out: return r; } static void kvm_init_msr_list(void) { u32 dummy[2]; unsigned i, j; /* skip the first msrs in the list. KVM-specific */ for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) continue; if (j < i) msrs_to_save[j] = msrs_to_save[i]; j++; } num_msrs_to_save = j; } static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, const void *v) { if (vcpu->arch.apic && !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v)) return 0; return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v); } static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) { if (vcpu->arch.apic && !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v)) return 0; return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v); } static void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { kvm_x86_ops->set_segment(vcpu, var, seg); } void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { kvm_x86_ops->get_segment(vcpu, var, seg); } static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) { return gpa; } static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) { gpa_t t_gpa; struct x86_exception exception; BUG_ON(!mmu_is_nested(vcpu)); /* NPT walks are always user-walks */ access |= PFERR_USER_MASK; t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); return t_gpa; } gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); } gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; access |= PFERR_FETCH_MASK; return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); } gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; access |= PFERR_WRITE_MASK; return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); } /* uses this to access any guest's mapped memory without checking CPL */ gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception) { return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); } static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, u32 access, struct x86_exception *exception) { void *data = val; int r = X86EMUL_CONTINUE; while (bytes) { gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, exception); unsigned offset = addr & (PAGE_SIZE-1); unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); int ret; if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); if (ret < 0) { r = X86EMUL_IO_NEEDED; goto out; } bytes -= toread; data += toread; addr += toread; } out: return r; } /* used for instruction fetching */ static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, struct x86_exception *exception) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access | PFERR_FETCH_MASK, exception); } static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, struct x86_exception *exception) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); } static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, struct x86_exception *exception) { return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); } static int kvm_write_guest_virt_system(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, struct x86_exception *exception) { void *data = val; int r = X86EMUL_CONTINUE; while (bytes) { gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, PFERR_WRITE_MASK, exception); unsigned offset = addr & (PAGE_SIZE-1); unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); int ret; if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); if (ret < 0) { r = X86EMUL_IO_NEEDED; goto out; } bytes -= towrite; data += towrite; addr += towrite; } out: return r; } static int emulator_read_emulated(unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception, struct kvm_vcpu *vcpu) { gpa_t gpa; if (vcpu->mmio_read_completed) { memcpy(val, vcpu->mmio_data, bytes); trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, vcpu->mmio_phys_addr, *(u64 *)val); vcpu->mmio_read_completed = 0; return X86EMUL_CONTINUE; } gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception); if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; /* For APIC access vmexit */ if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) goto mmio; if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception) == X86EMUL_CONTINUE) return X86EMUL_CONTINUE; mmio: /* * Is this MMIO handled locally? */ if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) { trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val); return X86EMUL_CONTINUE; } trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); vcpu->mmio_needed = 1; vcpu->run->exit_reason = KVM_EXIT_MMIO; vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa; vcpu->run->mmio.len = vcpu->mmio_size = bytes; vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0; return X86EMUL_IO_NEEDED; } int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, const void *val, int bytes) { int ret; ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); if (ret < 0) return 0; kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1); return 1; } static int emulator_write_emulated_onepage(unsigned long addr, const void *val, unsigned int bytes, struct x86_exception *exception, struct kvm_vcpu *vcpu) { gpa_t gpa; gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception); if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; /* For APIC access vmexit */ if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) goto mmio; if (emulator_write_phys(vcpu, gpa, val, bytes)) return X86EMUL_CONTINUE; mmio: trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); /* * Is this MMIO handled locally? */ if (!vcpu_mmio_write(vcpu, gpa, bytes, val)) return X86EMUL_CONTINUE; vcpu->mmio_needed = 1; vcpu->run->exit_reason = KVM_EXIT_MMIO; vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa; vcpu->run->mmio.len = vcpu->mmio_size = bytes; vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1; memcpy(vcpu->run->mmio.data, val, bytes); return X86EMUL_CONTINUE; } int emulator_write_emulated(unsigned long addr, const void *val, unsigned int bytes, struct x86_exception *exception, struct kvm_vcpu *vcpu) { /* Crossing a page boundary? */ if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { int rc, now; now = -addr & ~PAGE_MASK; rc = emulator_write_emulated_onepage(addr, val, now, exception, vcpu); if (rc != X86EMUL_CONTINUE) return rc; addr += now; val += now; bytes -= now; } return emulator_write_emulated_onepage(addr, val, bytes, exception, vcpu); } #define CMPXCHG_TYPE(t, ptr, old, new) \ (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) #ifdef CONFIG_X86_64 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) #else # define CMPXCHG64(ptr, old, new) \ (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) #endif static int emulator_cmpxchg_emulated(unsigned long addr, const void *old, const void *new, unsigned int bytes, struct x86_exception *exception, struct kvm_vcpu *vcpu) { gpa_t gpa; struct page *page; char *kaddr; bool exchanged; /* guests cmpxchg8b have to be emulated atomically */ if (bytes > 8 || (bytes & (bytes - 1))) goto emul_write; gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); if (gpa == UNMAPPED_GVA || (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) goto emul_write; if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) goto emul_write; page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); if (is_error_page(page)) { kvm_release_page_clean(page); goto emul_write; } kaddr = kmap_atomic(page, KM_USER0); kaddr += offset_in_page(gpa); switch (bytes) { case 1: exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); break; case 2: exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); break; case 4: exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); break; case 8: exchanged = CMPXCHG64(kaddr, old, new); break; default: BUG(); } kunmap_atomic(kaddr, KM_USER0); kvm_release_page_dirty(page); if (!exchanged) return X86EMUL_CMPXCHG_FAILED; kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1); return X86EMUL_CONTINUE; emul_write: printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); return emulator_write_emulated(addr, new, bytes, exception, vcpu); } static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) { /* TODO: String I/O for in kernel device */ int r; if (vcpu->arch.pio.in) r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, vcpu->arch.pio.size, pd); else r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, vcpu->arch.pio.size, pd); return r; } static int emulator_pio_in_emulated(int size, unsigned short port, void *val, unsigned int count, struct kvm_vcpu *vcpu) { if (vcpu->arch.pio.count) goto data_avail; trace_kvm_pio(0, port, size, count); vcpu->arch.pio.port = port; vcpu->arch.pio.in = 1; vcpu->arch.pio.count = count; vcpu->arch.pio.size = size; if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { data_avail: memcpy(val, vcpu->arch.pio_data, size * count); vcpu->arch.pio.count = 0; return 1; } vcpu->run->exit_reason = KVM_EXIT_IO; vcpu->run->io.direction = KVM_EXIT_IO_IN; vcpu->run->io.size = size; vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; vcpu->run->io.count = count; vcpu->run->io.port = port; return 0; } static int emulator_pio_out_emulated(int size, unsigned short port, const void *val, unsigned int count, struct kvm_vcpu *vcpu) { trace_kvm_pio(1, port, size, count); vcpu->arch.pio.port = port; vcpu->arch.pio.in = 0; vcpu->arch.pio.count = count; vcpu->arch.pio.size = size; memcpy(vcpu->arch.pio_data, val, size * count); if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { vcpu->arch.pio.count = 0; return 1; } vcpu->run->exit_reason = KVM_EXIT_IO; vcpu->run->io.direction = KVM_EXIT_IO_OUT; vcpu->run->io.size = size; vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; vcpu->run->io.count = count; vcpu->run->io.port = port; return 0; } static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) { return kvm_x86_ops->get_segment_base(vcpu, seg); } int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address) { kvm_mmu_invlpg(vcpu, address); return X86EMUL_CONTINUE; } int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) { if (!need_emulate_wbinvd(vcpu)) return X86EMUL_CONTINUE; if (kvm_x86_ops->has_wbinvd_exit()) { int cpu = get_cpu(); cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, wbinvd_ipi, NULL, 1); put_cpu(); cpumask_clear(vcpu->arch.wbinvd_dirty_mask); } else wbinvd(); return X86EMUL_CONTINUE; } EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); int emulate_clts(struct kvm_vcpu *vcpu) { kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); kvm_x86_ops->fpu_activate(vcpu); return X86EMUL_CONTINUE; } int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu) { return _kvm_get_dr(vcpu, dr, dest); } int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu) { return __kvm_set_dr(vcpu, dr, value); } static u64 mk_cr_64(u64 curr_cr, u32 new_val) { return (curr_cr & ~((1ULL << 32) - 1)) | new_val; } static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu) { unsigned long value; switch (cr) { case 0: value = kvm_read_cr0(vcpu); break; case 2: value = vcpu->arch.cr2; break; case 3: value = kvm_read_cr3(vcpu); break; case 4: value = kvm_read_cr4(vcpu); break; case 8: value = kvm_get_cr8(vcpu); break; default: vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); return 0; } return value; } static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu) { int res = 0; switch (cr) { case 0: res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); break; case 2: vcpu->arch.cr2 = val; break; case 3: res = kvm_set_cr3(vcpu, val); break; case 4: res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); break; case 8: res = kvm_set_cr8(vcpu, val); break; default: vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); res = -1; } return res; } static int emulator_get_cpl(struct kvm_vcpu *vcpu) { return kvm_x86_ops->get_cpl(vcpu); } static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu) { kvm_x86_ops->get_gdt(vcpu, dt); } static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu) { kvm_x86_ops->get_idt(vcpu, dt); } static unsigned long emulator_get_cached_segment_base(int seg, struct kvm_vcpu *vcpu) { return get_segment_base(vcpu, seg); } static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg, struct kvm_vcpu *vcpu) { struct kvm_segment var; kvm_get_segment(vcpu, &var, seg); if (var.unusable) return false; if (var.g) var.limit >>= 12; set_desc_limit(desc, var.limit); set_desc_base(desc, (unsigned long)var.base); desc->type = var.type; desc->s = var.s; desc->dpl = var.dpl; desc->p = var.present; desc->avl = var.avl; desc->l = var.l; desc->d = var.db; desc->g = var.g; return true; } static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg, struct kvm_vcpu *vcpu) { struct kvm_segment var; /* needed to preserve selector */ kvm_get_segment(vcpu, &var, seg); var.base = get_desc_base(desc); var.limit = get_desc_limit(desc); if (desc->g) var.limit = (var.limit << 12) | 0xfff; var.type = desc->type; var.present = desc->p; var.dpl = desc->dpl; var.db = desc->d; var.s = desc->s; var.l = desc->l; var.g = desc->g; var.avl = desc->avl; var.present = desc->p; var.unusable = !var.present; var.padding = 0; kvm_set_segment(vcpu, &var, seg); return; } static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu) { struct kvm_segment kvm_seg; kvm_get_segment(vcpu, &kvm_seg, seg); return kvm_seg.selector; } static void emulator_set_segment_selector(u16 sel, int seg, struct kvm_vcpu *vcpu) { struct kvm_segment kvm_seg; kvm_get_segment(vcpu, &kvm_seg, seg); kvm_seg.selector = sel; kvm_set_segment(vcpu, &kvm_seg, seg); } static struct x86_emulate_ops emulate_ops = { .read_std = kvm_read_guest_virt_system, .write_std = kvm_write_guest_virt_system, .fetch = kvm_fetch_guest_virt, .read_emulated = emulator_read_emulated, .write_emulated = emulator_write_emulated, .cmpxchg_emulated = emulator_cmpxchg_emulated, .pio_in_emulated = emulator_pio_in_emulated, .pio_out_emulated = emulator_pio_out_emulated, .get_cached_descriptor = emulator_get_cached_descriptor, .set_cached_descriptor = emulator_set_cached_descriptor, .get_segment_selector = emulator_get_segment_selector, .set_segment_selector = emulator_set_segment_selector, .get_cached_segment_base = emulator_get_cached_segment_base, .get_gdt = emulator_get_gdt, .get_idt = emulator_get_idt, .get_cr = emulator_get_cr, .set_cr = emulator_set_cr, .cpl = emulator_get_cpl, .get_dr = emulator_get_dr, .set_dr = emulator_set_dr, .set_msr = kvm_set_msr, .get_msr = kvm_get_msr, }; static void cache_all_regs(struct kvm_vcpu *vcpu) { kvm_register_read(vcpu, VCPU_REGS_RAX); kvm_register_read(vcpu, VCPU_REGS_RSP); kvm_register_read(vcpu, VCPU_REGS_RIP); vcpu->arch.regs_dirty = ~0; } static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) { u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); /* * an sti; sti; sequence only disable interrupts for the first * instruction. So, if the last instruction, be it emulated or * not, left the system with the INT_STI flag enabled, it * means that the last instruction is an sti. We should not * leave the flag on in this case. The same goes for mov ss */ if (!(int_shadow & mask)) kvm_x86_ops->set_interrupt_shadow(vcpu, mask); } static void inject_emulated_exception(struct kvm_vcpu *vcpu) { struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; if (ctxt->exception.vector == PF_VECTOR) kvm_propagate_fault(vcpu, &ctxt->exception); else if (ctxt->exception.error_code_valid) kvm_queue_exception_e(vcpu, ctxt->exception.vector, ctxt->exception.error_code); else kvm_queue_exception(vcpu, ctxt->exception.vector); } static void init_emulate_ctxt(struct kvm_vcpu *vcpu) { struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; int cs_db, cs_l; cache_all_regs(vcpu); kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); vcpu->arch.emulate_ctxt.vcpu = vcpu; vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu); vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu); vcpu->arch.emulate_ctxt.mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : cs_l ? X86EMUL_MODE_PROT64 : cs_db ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; memset(c, 0, sizeof(struct decode_cache)); memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); } int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq) { struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; int ret; init_emulate_ctxt(vcpu); vcpu->arch.emulate_ctxt.decode.op_bytes = 2; vcpu->arch.emulate_ctxt.decode.ad_bytes = 2; vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip; ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq); if (ret != X86EMUL_CONTINUE) return EMULATE_FAIL; vcpu->arch.emulate_ctxt.eip = c->eip; memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); if (irq == NMI_VECTOR) vcpu->arch.nmi_pending = false; else vcpu->arch.interrupt.pending = false; return EMULATE_DONE; } EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); static int handle_emulation_failure(struct kvm_vcpu *vcpu) { int r = EMULATE_DONE; ++vcpu->stat.insn_emulation_fail; trace_kvm_emulate_insn_failed(vcpu); if (!is_guest_mode(vcpu)) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; r = EMULATE_FAIL; } kvm_queue_exception(vcpu, UD_VECTOR); return r; } static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) { gpa_t gpa; if (tdp_enabled) return false; /* * if emulation was due to access to shadowed page table * and it failed try to unshadow page and re-entetr the * guest to let CPU execute the instruction. */ if (kvm_mmu_unprotect_page_virt(vcpu, gva)) return true; gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); if (gpa == UNMAPPED_GVA) return true; /* let cpu generate fault */ if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT))) return true; return false; } int x86_emulate_instruction(struct kvm_vcpu *vcpu, unsigned long cr2, int emulation_type, void *insn, int insn_len) { int r; struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; kvm_clear_exception_queue(vcpu); vcpu->arch.mmio_fault_cr2 = cr2; /* * TODO: fix emulate.c to use guest_read/write_register * instead of direct ->regs accesses, can save hundred cycles * on Intel for instructions that don't read/change RSP, for * for example. */ cache_all_regs(vcpu); if (!(emulation_type & EMULTYPE_NO_DECODE)) { init_emulate_ctxt(vcpu); vcpu->arch.emulate_ctxt.interruptibility = 0; vcpu->arch.emulate_ctxt.have_exception = false; vcpu->arch.emulate_ctxt.perm_ok = false; vcpu->arch.emulate_ctxt.only_vendor_specific_insn = emulation_type & EMULTYPE_TRAP_UD; r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len); trace_kvm_emulate_insn_start(vcpu); ++vcpu->stat.insn_emulation; if (r) { if (emulation_type & EMULTYPE_TRAP_UD) return EMULATE_FAIL; if (reexecute_instruction(vcpu, cr2)) return EMULATE_DONE; if (emulation_type & EMULTYPE_SKIP) return EMULATE_FAIL; return handle_emulation_failure(vcpu); } } if (emulation_type & EMULTYPE_SKIP) { kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip); return EMULATE_DONE; } /* this is needed for vmware backdor interface to work since it changes registers values during IO operation */ memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); restart: r = x86_emulate_insn(&vcpu->arch.emulate_ctxt); if (r == EMULATION_FAILED) { if (reexecute_instruction(vcpu, cr2)) return EMULATE_DONE; return handle_emulation_failure(vcpu); } if (vcpu->arch.emulate_ctxt.have_exception) { inject_emulated_exception(vcpu); r = EMULATE_DONE; } else if (vcpu->arch.pio.count) { if (!vcpu->arch.pio.in) vcpu->arch.pio.count = 0; r = EMULATE_DO_MMIO; } else if (vcpu->mmio_needed) { if (vcpu->mmio_is_write) vcpu->mmio_needed = 0; r = EMULATE_DO_MMIO; } else if (r == EMULATION_RESTART) goto restart; else r = EMULATE_DONE; toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility); kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); kvm_make_request(KVM_REQ_EVENT, vcpu); memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); return r; } EXPORT_SYMBOL_GPL(x86_emulate_instruction); int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) { unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu); /* do not return to emulator after return from userspace */ vcpu->arch.pio.count = 0; return ret; } EXPORT_SYMBOL_GPL(kvm_fast_pio_out); static void tsc_bad(void *info) { __this_cpu_write(cpu_tsc_khz, 0); } static void tsc_khz_changed(void *data) { struct cpufreq_freqs *freq = data; unsigned long khz = 0; if (data) khz = freq->new; else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) khz = cpufreq_quick_get(raw_smp_processor_id()); if (!khz) khz = tsc_khz; __this_cpu_write(cpu_tsc_khz, khz); } static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; struct kvm *kvm; struct kvm_vcpu *vcpu; int i, send_ipi = 0; /* * We allow guests to temporarily run on slowing clocks, * provided we notify them after, or to run on accelerating * clocks, provided we notify them before. Thus time never * goes backwards. * * However, we have a problem. We can't atomically update * the frequency of a given CPU from this function; it is * merely a notifier, which can be called from any CPU. * Changing the TSC frequency at arbitrary points in time * requires a recomputation of local variables related to * the TSC for each VCPU. We must flag these local variables * to be updated and be sure the update takes place with the * new frequency before any guests proceed. * * Unfortunately, the combination of hotplug CPU and frequency * change creates an intractable locking scenario; the order * of when these callouts happen is undefined with respect to * CPU hotplug, and they can race with each other. As such, * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is * undefined; you can actually have a CPU frequency change take * place in between the computation of X and the setting of the * variable. To protect against this problem, all updates of * the per_cpu tsc_khz variable are done in an interrupt * protected IPI, and all callers wishing to update the value * must wait for a synchronous IPI to complete (which is trivial * if the caller is on the CPU already). This establishes the * necessary total order on variable updates. * * Note that because a guest time update may take place * anytime after the setting of the VCPU's request bit, the * correct TSC value must be set before the request. However, * to ensure the update actually makes it to any guest which * starts running in hardware virtualization between the set * and the acquisition of the spinlock, we must also ping the * CPU after setting the request bit. * */ if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) return 0; if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) return 0; smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); raw_spin_lock(&kvm_lock); list_for_each_entry(kvm, &vm_list, vm_list) { kvm_for_each_vcpu(i, vcpu, kvm) { if (vcpu->cpu != freq->cpu) continue; kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); if (vcpu->cpu != smp_processor_id()) send_ipi = 1; } } raw_spin_unlock(&kvm_lock); if (freq->old < freq->new && send_ipi) { /* * We upscale the frequency. Must make the guest * doesn't see old kvmclock values while running with * the new frequency, otherwise we risk the guest sees * time go backwards. * * In case we update the frequency for another cpu * (which might be in guest context) send an interrupt * to kick the cpu out of guest context. Next time * guest context is entered kvmclock will be updated, * so the guest will not see stale values. */ smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); } return 0; } static struct notifier_block kvmclock_cpufreq_notifier_block = { .notifier_call = kvmclock_cpufreq_notifier }; static int kvmclock_cpu_notifier(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; switch (action) { case CPU_ONLINE: case CPU_DOWN_FAILED: smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); break; case CPU_DOWN_PREPARE: smp_call_function_single(cpu, tsc_bad, NULL, 1); break; } return NOTIFY_OK; } static struct notifier_block kvmclock_cpu_notifier_block = { .notifier_call = kvmclock_cpu_notifier, .priority = -INT_MAX }; static void kvm_timer_init(void) { int cpu; max_tsc_khz = tsc_khz; register_hotcpu_notifier(&kvmclock_cpu_notifier_block); if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { #ifdef CONFIG_CPU_FREQ struct cpufreq_policy policy; memset(&policy, 0, sizeof(policy)); cpu = get_cpu(); cpufreq_get_policy(&policy, cpu); if (policy.cpuinfo.max_freq) max_tsc_khz = policy.cpuinfo.max_freq; put_cpu(); #endif cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); } pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); for_each_online_cpu(cpu) smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); } static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); static int kvm_is_in_guest(void) { return percpu_read(current_vcpu) != NULL; } static int kvm_is_user_mode(void) { int user_mode = 3; if (percpu_read(current_vcpu)) user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu)); return user_mode != 0; } static unsigned long kvm_get_guest_ip(void) { unsigned long ip = 0; if (percpu_read(current_vcpu)) ip = kvm_rip_read(percpu_read(current_vcpu)); return ip; } static struct perf_guest_info_callbacks kvm_guest_cbs = { .is_in_guest = kvm_is_in_guest, .is_user_mode = kvm_is_user_mode, .get_guest_ip = kvm_get_guest_ip, }; void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) { percpu_write(current_vcpu, vcpu); } EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) { percpu_write(current_vcpu, NULL); } EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); int kvm_arch_init(void *opaque) { int r; struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; if (kvm_x86_ops) { printk(KERN_ERR "kvm: already loaded the other module\n"); r = -EEXIST; goto out; } if (!ops->cpu_has_kvm_support()) { printk(KERN_ERR "kvm: no hardware support\n"); r = -EOPNOTSUPP; goto out; } if (ops->disabled_by_bios()) { printk(KERN_ERR "kvm: disabled by bios\n"); r = -EOPNOTSUPP; goto out; } r = kvm_mmu_module_init(); if (r) goto out; kvm_init_msr_list(); kvm_x86_ops = ops; kvm_mmu_set_nonpresent_ptes(0ull, 0ull); kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, PT_DIRTY_MASK, PT64_NX_MASK, 0); kvm_timer_init(); perf_register_guest_info_callbacks(&kvm_guest_cbs); if (cpu_has_xsave) host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); return 0; out: return r; } void kvm_arch_exit(void) { perf_unregister_guest_info_callbacks(&kvm_guest_cbs); if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); kvm_x86_ops = NULL; kvm_mmu_module_exit(); } int kvm_emulate_halt(struct kvm_vcpu *vcpu) { ++vcpu->stat.halt_exits; if (irqchip_in_kernel(vcpu->kvm)) { vcpu->arch.mp_state = KVM_MP_STATE_HALTED; return 1; } else { vcpu->run->exit_reason = KVM_EXIT_HLT; return 0; } } EXPORT_SYMBOL_GPL(kvm_emulate_halt); static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0, unsigned long a1) { if (is_long_mode(vcpu)) return a0; else return a0 | ((gpa_t)a1 << 32); } int kvm_hv_hypercall(struct kvm_vcpu *vcpu) { u64 param, ingpa, outgpa, ret; uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; bool fast, longmode; int cs_db, cs_l; /* * hypercall generates UD from non zero cpl and real mode * per HYPER-V spec */ if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { kvm_queue_exception(vcpu, UD_VECTOR); return 0; } kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); longmode = is_long_mode(vcpu) && cs_l == 1; if (!longmode) { param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); } #ifdef CONFIG_X86_64 else { param = kvm_register_read(vcpu, VCPU_REGS_RCX); ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); } #endif code = param & 0xffff; fast = (param >> 16) & 0x1; rep_cnt = (param >> 32) & 0xfff; rep_idx = (param >> 48) & 0xfff; trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); switch (code) { case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: kvm_vcpu_on_spin(vcpu); break; default: res = HV_STATUS_INVALID_HYPERCALL_CODE; break; } ret = res | (((u64)rep_done & 0xfff) << 32); if (longmode) { kvm_register_write(vcpu, VCPU_REGS_RAX, ret); } else { kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); } return 1; } int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) { unsigned long nr, a0, a1, a2, a3, ret; int r = 1; if (kvm_hv_hypercall_enabled(vcpu->kvm)) return kvm_hv_hypercall(vcpu); nr = kvm_register_read(vcpu, VCPU_REGS_RAX); a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); trace_kvm_hypercall(nr, a0, a1, a2, a3); if (!is_long_mode(vcpu)) { nr &= 0xFFFFFFFF; a0 &= 0xFFFFFFFF; a1 &= 0xFFFFFFFF; a2 &= 0xFFFFFFFF; a3 &= 0xFFFFFFFF; } if (kvm_x86_ops->get_cpl(vcpu) != 0) { ret = -KVM_EPERM; goto out; } switch (nr) { case KVM_HC_VAPIC_POLL_IRQ: ret = 0; break; case KVM_HC_MMU_OP: r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret); break; default: ret = -KVM_ENOSYS; break; } out: kvm_register_write(vcpu, VCPU_REGS_RAX, ret); ++vcpu->stat.hypercalls; return r; } EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); int kvm_fix_hypercall(struct kvm_vcpu *vcpu) { char instruction[3]; unsigned long rip = kvm_rip_read(vcpu); /* * Blow out the MMU to ensure that no other VCPU has an active mapping * to ensure that the updated hypercall appears atomically across all * VCPUs. */ kvm_mmu_zap_all(vcpu->kvm); kvm_x86_ops->patch_hypercall(vcpu, instruction); return emulator_write_emulated(rip, instruction, 3, NULL, vcpu); } void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) { struct desc_ptr dt = { limit, base }; kvm_x86_ops->set_gdt(vcpu, &dt); } void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) { struct desc_ptr dt = { limit, base }; kvm_x86_ops->set_idt(vcpu, &dt); } static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) { struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; int j, nent = vcpu->arch.cpuid_nent; e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; /* when no next entry is found, the current entry[i] is reselected */ for (j = i + 1; ; j = (j + 1) % nent) { struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j]; if (ej->function == e->function) { ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; return j; } } return 0; /* silence gcc, even though control never reaches here */ } /* find an entry with matching function, matching index (if needed), and that * should be read next (if it's stateful) */ static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, u32 function, u32 index) { if (e->function != function) return 0; if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) return 0; if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) return 0; return 1; } struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, u32 function, u32 index) { int i; struct kvm_cpuid_entry2 *best = NULL; for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { struct kvm_cpuid_entry2 *e; e = &vcpu->arch.cpuid_entries[i]; if (is_matching_cpuid_entry(e, function, index)) { if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) move_to_next_stateful_cpuid_entry(vcpu, i); best = e; break; } /* * Both basic or both extended? */ if (((e->function ^ function) & 0x80000000) == 0) if (!best || e->function > best->function) best = e; } return best; } EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); int cpuid_maxphyaddr(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0); if (!best || best->eax < 0x80000008) goto not_found; best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); if (best) return best->eax & 0xff; not_found: return 36; } void kvm_emulate_cpuid(struct kvm_vcpu *vcpu) { u32 function, index; struct kvm_cpuid_entry2 *best; function = kvm_register_read(vcpu, VCPU_REGS_RAX); index = kvm_register_read(vcpu, VCPU_REGS_RCX); kvm_register_write(vcpu, VCPU_REGS_RAX, 0); kvm_register_write(vcpu, VCPU_REGS_RBX, 0); kvm_register_write(vcpu, VCPU_REGS_RCX, 0); kvm_register_write(vcpu, VCPU_REGS_RDX, 0); best = kvm_find_cpuid_entry(vcpu, function, index); if (best) { kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax); kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx); kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx); kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx); } kvm_x86_ops->skip_emulated_instruction(vcpu); trace_kvm_cpuid(function, kvm_register_read(vcpu, VCPU_REGS_RAX), kvm_register_read(vcpu, VCPU_REGS_RBX), kvm_register_read(vcpu, VCPU_REGS_RCX), kvm_register_read(vcpu, VCPU_REGS_RDX)); } EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); /* * Check if userspace requested an interrupt window, and that the * interrupt window is open. * * No need to exit to userspace if we already have an interrupt queued. */ static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) { return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && vcpu->run->request_interrupt_window && kvm_arch_interrupt_allowed(vcpu)); } static void post_kvm_run_save(struct kvm_vcpu *vcpu) { struct kvm_run *kvm_run = vcpu->run; kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; kvm_run->cr8 = kvm_get_cr8(vcpu); kvm_run->apic_base = kvm_get_apic_base(vcpu); if (irqchip_in_kernel(vcpu->kvm)) kvm_run->ready_for_interrupt_injection = 1; else kvm_run->ready_for_interrupt_injection = kvm_arch_interrupt_allowed(vcpu) && !kvm_cpu_has_interrupt(vcpu) && !kvm_event_needs_reinjection(vcpu); } static void vapic_enter(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; struct page *page; if (!apic || !apic->vapic_addr) return; page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); vcpu->arch.apic->vapic_page = page; } static void vapic_exit(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; int idx; if (!apic || !apic->vapic_addr) return; idx = srcu_read_lock(&vcpu->kvm->srcu); kvm_release_page_dirty(apic->vapic_page); mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); srcu_read_unlock(&vcpu->kvm->srcu, idx); } static void update_cr8_intercept(struct kvm_vcpu *vcpu) { int max_irr, tpr; if (!kvm_x86_ops->update_cr8_intercept) return; if (!vcpu->arch.apic) return; if (!vcpu->arch.apic->vapic_addr) max_irr = kvm_lapic_find_highest_irr(vcpu); else max_irr = -1; if (max_irr != -1) max_irr >>= 4; tpr = kvm_lapic_get_cr8(vcpu); kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); } static void inject_pending_event(struct kvm_vcpu *vcpu) { /* try to reinject previous events if any */ if (vcpu->arch.exception.pending) { trace_kvm_inj_exception(vcpu->arch.exception.nr, vcpu->arch.exception.has_error_code, vcpu->arch.exception.error_code); kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, vcpu->arch.exception.has_error_code, vcpu->arch.exception.error_code, vcpu->arch.exception.reinject); return; } if (vcpu->arch.nmi_injected) { kvm_x86_ops->set_nmi(vcpu); return; } if (vcpu->arch.interrupt.pending) { kvm_x86_ops->set_irq(vcpu); return; } /* try to inject new event if pending */ if (vcpu->arch.nmi_pending) { if (kvm_x86_ops->nmi_allowed(vcpu)) { vcpu->arch.nmi_pending = false; vcpu->arch.nmi_injected = true; kvm_x86_ops->set_nmi(vcpu); } } else if (kvm_cpu_has_interrupt(vcpu)) { if (kvm_x86_ops->interrupt_allowed(vcpu)) { kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); kvm_x86_ops->set_irq(vcpu); } } } static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) { if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && !vcpu->guest_xcr0_loaded) { /* kvm_set_xcr() also depends on this */ xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); vcpu->guest_xcr0_loaded = 1; } } static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) { if (vcpu->guest_xcr0_loaded) { if (vcpu->arch.xcr0 != host_xcr0) xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); vcpu->guest_xcr0_loaded = 0; } } static int vcpu_enter_guest(struct kvm_vcpu *vcpu) { int r; bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && vcpu->run->request_interrupt_window; if (vcpu->requests) { if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) kvm_mmu_unload(vcpu); if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) __kvm_migrate_timers(vcpu); if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { r = kvm_guest_time_update(vcpu); if (unlikely(r)) goto out; } if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) kvm_mmu_sync_roots(vcpu); if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) kvm_x86_ops->tlb_flush(vcpu); if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; r = 0; goto out; } if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; r = 0; goto out; } if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { vcpu->fpu_active = 0; kvm_x86_ops->fpu_deactivate(vcpu); } if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { /* Page is swapped out. Do synthetic halt */ vcpu->arch.apf.halted = true; r = 1; goto out; } if (kvm_check_request(KVM_REQ_NMI, vcpu)) vcpu->arch.nmi_pending = true; } r = kvm_mmu_reload(vcpu); if (unlikely(r)) goto out; if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { inject_pending_event(vcpu); /* enable NMI/IRQ window open exits if needed */ if (vcpu->arch.nmi_pending) kvm_x86_ops->enable_nmi_window(vcpu); else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) kvm_x86_ops->enable_irq_window(vcpu); if (kvm_lapic_enabled(vcpu)) { update_cr8_intercept(vcpu); kvm_lapic_sync_to_vapic(vcpu); } } preempt_disable(); kvm_x86_ops->prepare_guest_switch(vcpu); if (vcpu->fpu_active) kvm_load_guest_fpu(vcpu); kvm_load_guest_xcr0(vcpu); vcpu->mode = IN_GUEST_MODE; /* We should set ->mode before check ->requests, * see the comment in make_all_cpus_request. */ smp_mb(); local_irq_disable(); if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests || need_resched() || signal_pending(current)) { vcpu->mode = OUTSIDE_GUEST_MODE; smp_wmb(); local_irq_enable(); preempt_enable(); kvm_x86_ops->cancel_injection(vcpu); r = 1; goto out; } srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); kvm_guest_enter(); if (unlikely(vcpu->arch.switch_db_regs)) { set_debugreg(0, 7); set_debugreg(vcpu->arch.eff_db[0], 0); set_debugreg(vcpu->arch.eff_db[1], 1); set_debugreg(vcpu->arch.eff_db[2], 2); set_debugreg(vcpu->arch.eff_db[3], 3); } trace_kvm_entry(vcpu->vcpu_id); kvm_x86_ops->run(vcpu); /* * If the guest has used debug registers, at least dr7 * will be disabled while returning to the host. * If we don't have active breakpoints in the host, we don't * care about the messed up debug address registers. But if * we have some of them active, restore the old state. */ if (hw_breakpoint_active()) hw_breakpoint_restore(); kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc); vcpu->mode = OUTSIDE_GUEST_MODE; smp_wmb(); local_irq_enable(); ++vcpu->stat.exits; /* * We must have an instruction between local_irq_enable() and * kvm_guest_exit(), so the timer interrupt isn't delayed by * the interrupt shadow. The stat.exits increment will do nicely. * But we need to prevent reordering, hence this barrier(): */ barrier(); kvm_guest_exit(); preempt_enable(); vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); /* * Profile KVM exit RIPs: */ if (unlikely(prof_on == KVM_PROFILING)) { unsigned long rip = kvm_rip_read(vcpu); profile_hit(KVM_PROFILING, (void *)rip); } kvm_lapic_sync_from_vapic(vcpu); r = kvm_x86_ops->handle_exit(vcpu); out: return r; } static int __vcpu_run(struct kvm_vcpu *vcpu) { int r; struct kvm *kvm = vcpu->kvm; if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { pr_debug("vcpu %d received sipi with vector # %x\n", vcpu->vcpu_id, vcpu->arch.sipi_vector); kvm_lapic_reset(vcpu); r = kvm_arch_vcpu_reset(vcpu); if (r) return r; vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; } vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); vapic_enter(vcpu); r = 1; while (r > 0) { if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && !vcpu->arch.apf.halted) r = vcpu_enter_guest(vcpu); else { srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); kvm_vcpu_block(vcpu); vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { switch(vcpu->arch.mp_state) { case KVM_MP_STATE_HALTED: vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; case KVM_MP_STATE_RUNNABLE: vcpu->arch.apf.halted = false; break; case KVM_MP_STATE_SIPI_RECEIVED: default: r = -EINTR; break; } } } if (r <= 0) break; clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); if (kvm_cpu_has_pending_timer(vcpu)) kvm_inject_pending_timer_irqs(vcpu); if (dm_request_for_irq_injection(vcpu)) { r = -EINTR; vcpu->run->exit_reason = KVM_EXIT_INTR; ++vcpu->stat.request_irq_exits; } kvm_check_async_pf_completion(vcpu); if (signal_pending(current)) { r = -EINTR; vcpu->run->exit_reason = KVM_EXIT_INTR; ++vcpu->stat.signal_exits; } if (need_resched()) { srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); kvm_resched(vcpu); vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); } } srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); vapic_exit(vcpu); return r; } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { int r; sigset_t sigsaved; if (!tsk_used_math(current) && init_fpu(current)) return -ENOMEM; if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { kvm_vcpu_block(vcpu); clear_bit(KVM_REQ_UNHALT, &vcpu->requests); r = -EAGAIN; goto out; } /* re-sync apic's tpr */ if (!irqchip_in_kernel(vcpu->kvm)) { if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { r = -EINVAL; goto out; } } if (vcpu->arch.pio.count || vcpu->mmio_needed) { if (vcpu->mmio_needed) { memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); vcpu->mmio_read_completed = 1; vcpu->mmio_needed = 0; } vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); if (r != EMULATE_DONE) { r = 0; goto out; } } if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) kvm_register_write(vcpu, VCPU_REGS_RAX, kvm_run->hypercall.ret); r = __vcpu_run(vcpu); out: post_kvm_run_save(vcpu); if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &sigsaved, NULL); return r; } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); #ifdef CONFIG_X86_64 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); #endif regs->rip = kvm_rip_read(vcpu); regs->rflags = kvm_get_rflags(vcpu); return 0; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); #ifdef CONFIG_X86_64 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); #endif kvm_rip_write(vcpu, regs->rip); kvm_set_rflags(vcpu, regs->rflags); vcpu->arch.exception.pending = false; kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { struct kvm_segment cs; kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); *db = cs.db; *l = cs.l; } EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct desc_ptr dt; kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); kvm_x86_ops->get_idt(vcpu, &dt); sregs->idt.limit = dt.size; sregs->idt.base = dt.address; kvm_x86_ops->get_gdt(vcpu, &dt); sregs->gdt.limit = dt.size; sregs->gdt.base = dt.address; sregs->cr0 = kvm_read_cr0(vcpu); sregs->cr2 = vcpu->arch.cr2; sregs->cr3 = kvm_read_cr3(vcpu); sregs->cr4 = kvm_read_cr4(vcpu); sregs->cr8 = kvm_get_cr8(vcpu); sregs->efer = vcpu->arch.efer; sregs->apic_base = kvm_get_apic_base(vcpu); memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) set_bit(vcpu->arch.interrupt.nr, (unsigned long *)sregs->interrupt_bitmap); return 0; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { mp_state->mp_state = vcpu->arch.mp_state; return 0; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { vcpu->arch.mp_state = mp_state->mp_state; kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason, bool has_error_code, u32 error_code) { struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; int ret; init_emulate_ctxt(vcpu); ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, tss_selector, reason, has_error_code, error_code); if (ret) return EMULATE_FAIL; memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); kvm_make_request(KVM_REQ_EVENT, vcpu); return EMULATE_DONE; } EXPORT_SYMBOL_GPL(kvm_task_switch); int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int mmu_reset_needed = 0; int pending_vec, max_bits, idx; struct desc_ptr dt; dt.size = sregs->idt.limit; dt.address = sregs->idt.base; kvm_x86_ops->set_idt(vcpu, &dt); dt.size = sregs->gdt.limit; dt.address = sregs->gdt.base; kvm_x86_ops->set_gdt(vcpu, &dt); vcpu->arch.cr2 = sregs->cr2; mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; vcpu->arch.cr3 = sregs->cr3; __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); kvm_set_cr8(vcpu, sregs->cr8); mmu_reset_needed |= vcpu->arch.efer != sregs->efer; kvm_x86_ops->set_efer(vcpu, sregs->efer); kvm_set_apic_base(vcpu, sregs->apic_base); mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; kvm_x86_ops->set_cr0(vcpu, sregs->cr0); vcpu->arch.cr0 = sregs->cr0; mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; kvm_x86_ops->set_cr4(vcpu, sregs->cr4); if (sregs->cr4 & X86_CR4_OSXSAVE) update_cpuid(vcpu); idx = srcu_read_lock(&vcpu->kvm->srcu); if (!is_long_mode(vcpu) && is_pae(vcpu)) { load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); mmu_reset_needed = 1; } srcu_read_unlock(&vcpu->kvm->srcu, idx); if (mmu_reset_needed) kvm_mmu_reset_context(vcpu); max_bits = (sizeof sregs->interrupt_bitmap) << 3; pending_vec = find_first_bit( (const unsigned long *)sregs->interrupt_bitmap, max_bits); if (pending_vec < max_bits) { kvm_queue_interrupt(vcpu, pending_vec, false); pr_debug("Set back pending irq %d\n", pending_vec); } kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); update_cr8_intercept(vcpu); /* Older userspace won't unhalt the vcpu on reset. */ if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && !is_protmode(vcpu)) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { unsigned long rflags; int i, r; if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { r = -EBUSY; if (vcpu->arch.exception.pending) goto out; if (dbg->control & KVM_GUESTDBG_INJECT_DB) kvm_queue_exception(vcpu, DB_VECTOR); else kvm_queue_exception(vcpu, BP_VECTOR); } /* * Read rflags as long as potentially injected trace flags are still * filtered out. */ rflags = kvm_get_rflags(vcpu); vcpu->guest_debug = dbg->control; if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) vcpu->guest_debug = 0; if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { for (i = 0; i < KVM_NR_DB_REGS; ++i) vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; vcpu->arch.switch_db_regs = (dbg->arch.debugreg[7] & DR7_BP_EN_MASK); } else { for (i = 0; i < KVM_NR_DB_REGS; i++) vcpu->arch.eff_db[i] = vcpu->arch.db[i]; vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK); } if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + get_segment_base(vcpu, VCPU_SREG_CS); /* * Trigger an rflags update that will inject or remove the trace * flags. */ kvm_set_rflags(vcpu, rflags); kvm_x86_ops->set_guest_debug(vcpu, dbg); r = 0; out: return r; } /* * Translate a guest virtual address to a guest physical address. */ int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { unsigned long vaddr = tr->linear_address; gpa_t gpa; int idx; idx = srcu_read_lock(&vcpu->kvm->srcu); gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); srcu_read_unlock(&vcpu->kvm->srcu, idx); tr->physical_address = gpa; tr->valid = gpa != UNMAPPED_GVA; tr->writeable = 1; tr->usermode = 0; return 0; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { struct i387_fxsave_struct *fxsave = &vcpu->arch.guest_fpu.state->fxsave; memcpy(fpu->fpr, fxsave->st_space, 128); fpu->fcw = fxsave->cwd; fpu->fsw = fxsave->swd; fpu->ftwx = fxsave->twd; fpu->last_opcode = fxsave->fop; fpu->last_ip = fxsave->rip; fpu->last_dp = fxsave->rdp; memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); return 0; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { struct i387_fxsave_struct *fxsave = &vcpu->arch.guest_fpu.state->fxsave; memcpy(fxsave->st_space, fpu->fpr, 128); fxsave->cwd = fpu->fcw; fxsave->swd = fpu->fsw; fxsave->twd = fpu->ftwx; fxsave->fop = fpu->last_opcode; fxsave->rip = fpu->last_ip; fxsave->rdp = fpu->last_dp; memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); return 0; } int fx_init(struct kvm_vcpu *vcpu) { int err; err = fpu_alloc(&vcpu->arch.guest_fpu); if (err) return err; fpu_finit(&vcpu->arch.guest_fpu); /* * Ensure guest xcr0 is valid for loading */ vcpu->arch.xcr0 = XSTATE_FP; vcpu->arch.cr0 |= X86_CR0_ET; return 0; } EXPORT_SYMBOL_GPL(fx_init); static void fx_free(struct kvm_vcpu *vcpu) { fpu_free(&vcpu->arch.guest_fpu); } void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) { if (vcpu->guest_fpu_loaded) return; /* * Restore all possible states in the guest, * and assume host would use all available bits. * Guest xcr0 would be loaded later. */ kvm_put_guest_xcr0(vcpu); vcpu->guest_fpu_loaded = 1; unlazy_fpu(current); fpu_restore_checking(&vcpu->arch.guest_fpu); trace_kvm_fpu(1); } void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) { kvm_put_guest_xcr0(vcpu); if (!vcpu->guest_fpu_loaded) return; vcpu->guest_fpu_loaded = 0; fpu_save_init(&vcpu->arch.guest_fpu); ++vcpu->stat.fpu_reload; kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); trace_kvm_fpu(0); } void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) { kvmclock_reset(vcpu); free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); fx_free(vcpu); kvm_x86_ops->vcpu_free(vcpu); } struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) printk_once(KERN_WARNING "kvm: SMP vm created on host with unstable TSC; " "guest TSC will not be reliable\n"); return kvm_x86_ops->vcpu_create(kvm, id); } int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { int r; vcpu->arch.mtrr_state.have_fixed = 1; vcpu_load(vcpu); r = kvm_arch_vcpu_reset(vcpu); if (r == 0) r = kvm_mmu_setup(vcpu); vcpu_put(vcpu); if (r < 0) goto free_vcpu; return 0; free_vcpu: kvm_x86_ops->vcpu_free(vcpu); return r; } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { vcpu->arch.apf.msr_val = 0; vcpu_load(vcpu); kvm_mmu_unload(vcpu); vcpu_put(vcpu); fx_free(vcpu); kvm_x86_ops->vcpu_free(vcpu); } int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) { vcpu->arch.nmi_pending = false; vcpu->arch.nmi_injected = false; vcpu->arch.switch_db_regs = 0; memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); vcpu->arch.dr6 = DR6_FIXED_1; vcpu->arch.dr7 = DR7_FIXED_1; kvm_make_request(KVM_REQ_EVENT, vcpu); vcpu->arch.apf.msr_val = 0; kvmclock_reset(vcpu); kvm_clear_async_pf_completion_queue(vcpu); kvm_async_pf_hash_reset(vcpu); vcpu->arch.apf.halted = false; return kvm_x86_ops->vcpu_reset(vcpu); } int kvm_arch_hardware_enable(void *garbage) { struct kvm *kvm; struct kvm_vcpu *vcpu; int i; kvm_shared_msr_cpu_online(); list_for_each_entry(kvm, &vm_list, vm_list) kvm_for_each_vcpu(i, vcpu, kvm) if (vcpu->cpu == smp_processor_id()) kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); return kvm_x86_ops->hardware_enable(garbage); } void kvm_arch_hardware_disable(void *garbage) { kvm_x86_ops->hardware_disable(garbage); drop_user_return_notifiers(garbage); } int kvm_arch_hardware_setup(void) { return kvm_x86_ops->hardware_setup(); } void kvm_arch_hardware_unsetup(void) { kvm_x86_ops->hardware_unsetup(); } void kvm_arch_check_processor_compat(void *rtn) { kvm_x86_ops->check_processor_compatibility(rtn); } int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { struct page *page; struct kvm *kvm; int r; BUG_ON(vcpu->kvm == NULL); kvm = vcpu->kvm; vcpu->arch.emulate_ctxt.ops = &emulate_ops; vcpu->arch.walk_mmu = &vcpu->arch.mmu; vcpu->arch.mmu.root_hpa = INVALID_PAGE; vcpu->arch.mmu.translate_gpa = translate_gpa; vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; else vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!page) { r = -ENOMEM; goto fail; } vcpu->arch.pio_data = page_address(page); if (!kvm->arch.virtual_tsc_khz) kvm_arch_set_tsc_khz(kvm, max_tsc_khz); r = kvm_mmu_create(vcpu); if (r < 0) goto fail_free_pio_data; if (irqchip_in_kernel(kvm)) { r = kvm_create_lapic(vcpu); if (r < 0) goto fail_mmu_destroy; } vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, GFP_KERNEL); if (!vcpu->arch.mce_banks) { r = -ENOMEM; goto fail_free_lapic; } vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) goto fail_free_mce_banks; kvm_async_pf_hash_reset(vcpu); return 0; fail_free_mce_banks: kfree(vcpu->arch.mce_banks); fail_free_lapic: kvm_free_lapic(vcpu); fail_mmu_destroy: kvm_mmu_destroy(vcpu); fail_free_pio_data: free_page((unsigned long)vcpu->arch.pio_data); fail: return r; } void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) { int idx; kfree(vcpu->arch.mce_banks); kvm_free_lapic(vcpu); idx = srcu_read_lock(&vcpu->kvm->srcu); kvm_mmu_destroy(vcpu); srcu_read_unlock(&vcpu->kvm->srcu, idx); free_page((unsigned long)vcpu->arch.pio_data); } int kvm_arch_init_vm(struct kvm *kvm) { INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); raw_spin_lock_init(&kvm->arch.tsc_write_lock); return 0; } static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) { vcpu_load(vcpu); kvm_mmu_unload(vcpu); vcpu_put(vcpu); } static void kvm_free_vcpus(struct kvm *kvm) { unsigned int i; struct kvm_vcpu *vcpu; /* * Unpin any mmu pages first. */ kvm_for_each_vcpu(i, vcpu, kvm) { kvm_clear_async_pf_completion_queue(vcpu); kvm_unload_vcpu_mmu(vcpu); } kvm_for_each_vcpu(i, vcpu, kvm) kvm_arch_vcpu_free(vcpu); mutex_lock(&kvm->lock); for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) kvm->vcpus[i] = NULL; atomic_set(&kvm->online_vcpus, 0); mutex_unlock(&kvm->lock); } void kvm_arch_sync_events(struct kvm *kvm) { kvm_free_all_assigned_devices(kvm); kvm_free_pit(kvm); } void kvm_arch_destroy_vm(struct kvm *kvm) { kvm_iommu_unmap_guest(kvm); kfree(kvm->arch.vpic); kfree(kvm->arch.vioapic); kvm_free_vcpus(kvm); if (kvm->arch.apic_access_page) put_page(kvm->arch.apic_access_page); if (kvm->arch.ept_identity_pagetable) put_page(kvm->arch.ept_identity_pagetable); } int kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, struct kvm_memory_slot old, struct kvm_userspace_memory_region *mem, int user_alloc) { int npages = memslot->npages; int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; /* Prevent internal slot pages from being moved by fork()/COW. */ if (memslot->id >= KVM_MEMORY_SLOTS) map_flags = MAP_SHARED | MAP_ANONYMOUS; /*To keep backward compatibility with older userspace, *x86 needs to hanlde !user_alloc case. */ if (!user_alloc) { if (npages && !old.rmap) { unsigned long userspace_addr; down_write(¤t->mm->mmap_sem); userspace_addr = do_mmap(NULL, 0, npages * PAGE_SIZE, PROT_READ | PROT_WRITE, map_flags, 0); up_write(¤t->mm->mmap_sem); if (IS_ERR((void *)userspace_addr)) return PTR_ERR((void *)userspace_addr); memslot->userspace_addr = userspace_addr; } } return 0; } void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, struct kvm_memory_slot old, int user_alloc) { int npages = mem->memory_size >> PAGE_SHIFT; if (!user_alloc && !old.user_alloc && old.rmap && !npages) { int ret; down_write(¤t->mm->mmap_sem); ret = do_munmap(current->mm, old.userspace_addr, old.npages * PAGE_SIZE); up_write(¤t->mm->mmap_sem); if (ret < 0) printk(KERN_WARNING "kvm_vm_ioctl_set_memory_region: " "failed to munmap memory\n"); } spin_lock(&kvm->mmu_lock); if (!kvm->arch.n_requested_mmu_pages) { unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); } kvm_mmu_slot_remove_write_access(kvm, mem->slot); spin_unlock(&kvm->mmu_lock); } void kvm_arch_flush_shadow(struct kvm *kvm) { kvm_mmu_zap_all(kvm); kvm_reload_remote_mmus(kvm); } int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) { return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && !vcpu->arch.apf.halted) || !list_empty_careful(&vcpu->async_pf.done) || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED || vcpu->arch.nmi_pending || (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)); } void kvm_vcpu_kick(struct kvm_vcpu *vcpu) { int me; int cpu = vcpu->cpu; if (waitqueue_active(&vcpu->wq)) { wake_up_interruptible(&vcpu->wq); ++vcpu->stat.halt_wakeup; } me = get_cpu(); if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE) smp_send_reschedule(cpu); put_cpu(); } int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) { return kvm_x86_ops->interrupt_allowed(vcpu); } bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) { unsigned long current_rip = kvm_rip_read(vcpu) + get_segment_base(vcpu, VCPU_SREG_CS); return current_rip == linear_rip; } EXPORT_SYMBOL_GPL(kvm_is_linear_rip); unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) { unsigned long rflags; rflags = kvm_x86_ops->get_rflags(vcpu); if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) rflags &= ~X86_EFLAGS_TF; return rflags; } EXPORT_SYMBOL_GPL(kvm_get_rflags); void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) rflags |= X86_EFLAGS_TF; kvm_x86_ops->set_rflags(vcpu, rflags); kvm_make_request(KVM_REQ_EVENT, vcpu); } EXPORT_SYMBOL_GPL(kvm_set_rflags); void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { int r; if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || is_error_page(work->page)) return; r = kvm_mmu_reload(vcpu); if (unlikely(r)) return; if (!vcpu->arch.mmu.direct_map && work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) return; vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); } static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) { return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); } static inline u32 kvm_async_pf_next_probe(u32 key) { return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); } static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) { u32 key = kvm_async_pf_hash_fn(gfn); while (vcpu->arch.apf.gfns[key] != ~0) key = kvm_async_pf_next_probe(key); vcpu->arch.apf.gfns[key] = gfn; } static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) { int i; u32 key = kvm_async_pf_hash_fn(gfn); for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && (vcpu->arch.apf.gfns[key] != gfn && vcpu->arch.apf.gfns[key] != ~0); i++) key = kvm_async_pf_next_probe(key); return key; } bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) { return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; } static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) { u32 i, j, k; i = j = kvm_async_pf_gfn_slot(vcpu, gfn); while (true) { vcpu->arch.apf.gfns[i] = ~0; do { j = kvm_async_pf_next_probe(j); if (vcpu->arch.apf.gfns[j] == ~0) return; k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); /* * k lies cyclically in ]i,j] * | i.k.j | * |....j i.k.| or |.k..j i...| */ } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; i = j; } } static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) { return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, sizeof(val)); } void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { struct x86_exception fault; trace_kvm_async_pf_not_present(work->arch.token, work->gva); kvm_add_async_pf_gfn(vcpu, work->arch.gfn); if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || (vcpu->arch.apf.send_user_only && kvm_x86_ops->get_cpl(vcpu) == 0)) kvm_make_request(KVM_REQ_APF_HALT, vcpu); else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { fault.vector = PF_VECTOR; fault.error_code_valid = true; fault.error_code = 0; fault.nested_page_fault = false; fault.address = work->arch.token; kvm_inject_page_fault(vcpu, &fault); } } void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { struct x86_exception fault; trace_kvm_async_pf_ready(work->arch.token, work->gva); if (is_error_page(work->page)) work->arch.token = ~0; /* broadcast wakeup */ else kvm_del_async_pf_gfn(vcpu, work->arch.gfn); if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { fault.vector = PF_VECTOR; fault.error_code_valid = true; fault.error_code = 0; fault.nested_page_fault = false; fault.address = work->arch.token; kvm_inject_page_fault(vcpu, &fault); } vcpu->arch.apf.halted = false; } bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) return true; else return !kvm_event_needs_reinjection(vcpu) && kvm_x86_ops->interrupt_allowed(vcpu); } EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);