linux/drivers/irqchip/irq-gic-v3-its.c
Ashok Kumar 004fa08d7a irqchip/gic-v3-its: Fix double ICC_EOIR write for LPI in EOImode==1
When the GIC is using EOImode==1, the EOI is done immediately,
leaving the deactivation to be performed when the EOI was
previously done.

Unfortunately, the ITS is not aware of the EOImode at all, and
blindly EOIs the interrupt again. On most systems, this is ignored
(despite being a programming error), but some others do raise a
SError exception as there is no priority drop to perform for this
interrupt.

The fix is to stop trying to be clever, and always call into the
underlying GIC to perform the right access, irrespective of the
more we're in.

[Marc: Reworked commit message]

Fixes: 0b996fd359 ("irqchip/GICv3: Convert to EOImode == 1")
Cc: stable@vger.kernel.org
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ashok Kumar <ashoks@broadcom.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-02-11 16:01:28 +00:00

1616 lines
38 KiB
C

/*
* Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/bitmap.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/log2.h>
#include <linux/mm.h>
#include <linux/msi.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_pci.h>
#include <linux/of_platform.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/irqchip.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/exception.h>
#include "irq-gic-common.h"
#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
#define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
/*
* Collection structure - just an ID, and a redistributor address to
* ping. We use one per CPU as a bag of interrupts assigned to this
* CPU.
*/
struct its_collection {
u64 target_address;
u16 col_id;
};
/*
* The ITS structure - contains most of the infrastructure, with the
* top-level MSI domain, the command queue, the collections, and the
* list of devices writing to it.
*/
struct its_node {
raw_spinlock_t lock;
struct list_head entry;
void __iomem *base;
unsigned long phys_base;
struct its_cmd_block *cmd_base;
struct its_cmd_block *cmd_write;
struct {
void *base;
u32 order;
} tables[GITS_BASER_NR_REGS];
struct its_collection *collections;
struct list_head its_device_list;
u64 flags;
u32 ite_size;
};
#define ITS_ITT_ALIGN SZ_256
struct event_lpi_map {
unsigned long *lpi_map;
u16 *col_map;
irq_hw_number_t lpi_base;
int nr_lpis;
};
/*
* The ITS view of a device - belongs to an ITS, a collection, owns an
* interrupt translation table, and a list of interrupts.
*/
struct its_device {
struct list_head entry;
struct its_node *its;
struct event_lpi_map event_map;
void *itt;
u32 nr_ites;
u32 device_id;
};
static LIST_HEAD(its_nodes);
static DEFINE_SPINLOCK(its_lock);
static struct device_node *gic_root_node;
static struct rdists *gic_rdists;
#define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
static struct its_collection *dev_event_to_col(struct its_device *its_dev,
u32 event)
{
struct its_node *its = its_dev->its;
return its->collections + its_dev->event_map.col_map[event];
}
/*
* ITS command descriptors - parameters to be encoded in a command
* block.
*/
struct its_cmd_desc {
union {
struct {
struct its_device *dev;
u32 event_id;
} its_inv_cmd;
struct {
struct its_device *dev;
u32 event_id;
} its_int_cmd;
struct {
struct its_device *dev;
int valid;
} its_mapd_cmd;
struct {
struct its_collection *col;
int valid;
} its_mapc_cmd;
struct {
struct its_device *dev;
u32 phys_id;
u32 event_id;
} its_mapvi_cmd;
struct {
struct its_device *dev;
struct its_collection *col;
u32 event_id;
} its_movi_cmd;
struct {
struct its_device *dev;
u32 event_id;
} its_discard_cmd;
struct {
struct its_collection *col;
} its_invall_cmd;
};
};
/*
* The ITS command block, which is what the ITS actually parses.
*/
struct its_cmd_block {
u64 raw_cmd[4];
};
#define ITS_CMD_QUEUE_SZ SZ_64K
#define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
struct its_cmd_desc *);
static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
{
cmd->raw_cmd[0] &= ~0xffUL;
cmd->raw_cmd[0] |= cmd_nr;
}
static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
{
cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
cmd->raw_cmd[0] |= ((u64)devid) << 32;
}
static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
{
cmd->raw_cmd[1] &= ~0xffffffffUL;
cmd->raw_cmd[1] |= id;
}
static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
{
cmd->raw_cmd[1] &= 0xffffffffUL;
cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
}
static void its_encode_size(struct its_cmd_block *cmd, u8 size)
{
cmd->raw_cmd[1] &= ~0x1fUL;
cmd->raw_cmd[1] |= size & 0x1f;
}
static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
{
cmd->raw_cmd[2] &= ~0xffffffffffffUL;
cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
}
static void its_encode_valid(struct its_cmd_block *cmd, int valid)
{
cmd->raw_cmd[2] &= ~(1UL << 63);
cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
}
static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
{
cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
}
static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
{
cmd->raw_cmd[2] &= ~0xffffUL;
cmd->raw_cmd[2] |= col;
}
static inline void its_fixup_cmd(struct its_cmd_block *cmd)
{
/* Let's fixup BE commands */
cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
}
static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
unsigned long itt_addr;
u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
its_encode_cmd(cmd, GITS_CMD_MAPD);
its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
its_encode_size(cmd, size - 1);
its_encode_itt(cmd, itt_addr);
its_encode_valid(cmd, desc->its_mapd_cmd.valid);
its_fixup_cmd(cmd);
return NULL;
}
static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
its_encode_cmd(cmd, GITS_CMD_MAPC);
its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
its_encode_valid(cmd, desc->its_mapc_cmd.valid);
its_fixup_cmd(cmd);
return desc->its_mapc_cmd.col;
}
static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_collection *col;
col = dev_event_to_col(desc->its_mapvi_cmd.dev,
desc->its_mapvi_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_MAPVI);
its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
its_encode_collection(cmd, col->col_id);
its_fixup_cmd(cmd);
return col;
}
static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_collection *col;
col = dev_event_to_col(desc->its_movi_cmd.dev,
desc->its_movi_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_MOVI);
its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
its_fixup_cmd(cmd);
return col;
}
static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_collection *col;
col = dev_event_to_col(desc->its_discard_cmd.dev,
desc->its_discard_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_DISCARD);
its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
its_fixup_cmd(cmd);
return col;
}
static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
struct its_collection *col;
col = dev_event_to_col(desc->its_inv_cmd.dev,
desc->its_inv_cmd.event_id);
its_encode_cmd(cmd, GITS_CMD_INV);
its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
its_fixup_cmd(cmd);
return col;
}
static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
struct its_cmd_desc *desc)
{
its_encode_cmd(cmd, GITS_CMD_INVALL);
its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
its_fixup_cmd(cmd);
return NULL;
}
static u64 its_cmd_ptr_to_offset(struct its_node *its,
struct its_cmd_block *ptr)
{
return (ptr - its->cmd_base) * sizeof(*ptr);
}
static int its_queue_full(struct its_node *its)
{
int widx;
int ridx;
widx = its->cmd_write - its->cmd_base;
ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
/* This is incredibly unlikely to happen, unless the ITS locks up. */
if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
return 1;
return 0;
}
static struct its_cmd_block *its_allocate_entry(struct its_node *its)
{
struct its_cmd_block *cmd;
u32 count = 1000000; /* 1s! */
while (its_queue_full(its)) {
count--;
if (!count) {
pr_err_ratelimited("ITS queue not draining\n");
return NULL;
}
cpu_relax();
udelay(1);
}
cmd = its->cmd_write++;
/* Handle queue wrapping */
if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
its->cmd_write = its->cmd_base;
return cmd;
}
static struct its_cmd_block *its_post_commands(struct its_node *its)
{
u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
writel_relaxed(wr, its->base + GITS_CWRITER);
return its->cmd_write;
}
static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
{
/*
* Make sure the commands written to memory are observable by
* the ITS.
*/
if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
__flush_dcache_area(cmd, sizeof(*cmd));
else
dsb(ishst);
}
static void its_wait_for_range_completion(struct its_node *its,
struct its_cmd_block *from,
struct its_cmd_block *to)
{
u64 rd_idx, from_idx, to_idx;
u32 count = 1000000; /* 1s! */
from_idx = its_cmd_ptr_to_offset(its, from);
to_idx = its_cmd_ptr_to_offset(its, to);
while (1) {
rd_idx = readl_relaxed(its->base + GITS_CREADR);
if (rd_idx >= to_idx || rd_idx < from_idx)
break;
count--;
if (!count) {
pr_err_ratelimited("ITS queue timeout\n");
return;
}
cpu_relax();
udelay(1);
}
}
static void its_send_single_command(struct its_node *its,
its_cmd_builder_t builder,
struct its_cmd_desc *desc)
{
struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
struct its_collection *sync_col;
unsigned long flags;
raw_spin_lock_irqsave(&its->lock, flags);
cmd = its_allocate_entry(its);
if (!cmd) { /* We're soooooo screewed... */
pr_err_ratelimited("ITS can't allocate, dropping command\n");
raw_spin_unlock_irqrestore(&its->lock, flags);
return;
}
sync_col = builder(cmd, desc);
its_flush_cmd(its, cmd);
if (sync_col) {
sync_cmd = its_allocate_entry(its);
if (!sync_cmd) {
pr_err_ratelimited("ITS can't SYNC, skipping\n");
goto post;
}
its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
its_encode_target(sync_cmd, sync_col->target_address);
its_fixup_cmd(sync_cmd);
its_flush_cmd(its, sync_cmd);
}
post:
next_cmd = its_post_commands(its);
raw_spin_unlock_irqrestore(&its->lock, flags);
its_wait_for_range_completion(its, cmd, next_cmd);
}
static void its_send_inv(struct its_device *dev, u32 event_id)
{
struct its_cmd_desc desc;
desc.its_inv_cmd.dev = dev;
desc.its_inv_cmd.event_id = event_id;
its_send_single_command(dev->its, its_build_inv_cmd, &desc);
}
static void its_send_mapd(struct its_device *dev, int valid)
{
struct its_cmd_desc desc;
desc.its_mapd_cmd.dev = dev;
desc.its_mapd_cmd.valid = !!valid;
its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
}
static void its_send_mapc(struct its_node *its, struct its_collection *col,
int valid)
{
struct its_cmd_desc desc;
desc.its_mapc_cmd.col = col;
desc.its_mapc_cmd.valid = !!valid;
its_send_single_command(its, its_build_mapc_cmd, &desc);
}
static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
{
struct its_cmd_desc desc;
desc.its_mapvi_cmd.dev = dev;
desc.its_mapvi_cmd.phys_id = irq_id;
desc.its_mapvi_cmd.event_id = id;
its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
}
static void its_send_movi(struct its_device *dev,
struct its_collection *col, u32 id)
{
struct its_cmd_desc desc;
desc.its_movi_cmd.dev = dev;
desc.its_movi_cmd.col = col;
desc.its_movi_cmd.event_id = id;
its_send_single_command(dev->its, its_build_movi_cmd, &desc);
}
static void its_send_discard(struct its_device *dev, u32 id)
{
struct its_cmd_desc desc;
desc.its_discard_cmd.dev = dev;
desc.its_discard_cmd.event_id = id;
its_send_single_command(dev->its, its_build_discard_cmd, &desc);
}
static void its_send_invall(struct its_node *its, struct its_collection *col)
{
struct its_cmd_desc desc;
desc.its_invall_cmd.col = col;
its_send_single_command(its, its_build_invall_cmd, &desc);
}
/*
* irqchip functions - assumes MSI, mostly.
*/
static inline u32 its_get_event_id(struct irq_data *d)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
return d->hwirq - its_dev->event_map.lpi_base;
}
static void lpi_set_config(struct irq_data *d, bool enable)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
irq_hw_number_t hwirq = d->hwirq;
u32 id = its_get_event_id(d);
u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
if (enable)
*cfg |= LPI_PROP_ENABLED;
else
*cfg &= ~LPI_PROP_ENABLED;
/*
* Make the above write visible to the redistributors.
* And yes, we're flushing exactly: One. Single. Byte.
* Humpf...
*/
if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
__flush_dcache_area(cfg, sizeof(*cfg));
else
dsb(ishst);
its_send_inv(its_dev, id);
}
static void its_mask_irq(struct irq_data *d)
{
lpi_set_config(d, false);
}
static void its_unmask_irq(struct irq_data *d)
{
lpi_set_config(d, true);
}
static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
bool force)
{
unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
struct its_collection *target_col;
u32 id = its_get_event_id(d);
if (cpu >= nr_cpu_ids)
return -EINVAL;
target_col = &its_dev->its->collections[cpu];
its_send_movi(its_dev, target_col, id);
its_dev->event_map.col_map[id] = cpu;
return IRQ_SET_MASK_OK_DONE;
}
static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
struct its_node *its;
u64 addr;
its = its_dev->its;
addr = its->phys_base + GITS_TRANSLATER;
msg->address_lo = addr & ((1UL << 32) - 1);
msg->address_hi = addr >> 32;
msg->data = its_get_event_id(d);
}
static struct irq_chip its_irq_chip = {
.name = "ITS",
.irq_mask = its_mask_irq,
.irq_unmask = its_unmask_irq,
.irq_eoi = irq_chip_eoi_parent,
.irq_set_affinity = its_set_affinity,
.irq_compose_msi_msg = its_irq_compose_msi_msg,
};
/*
* How we allocate LPIs:
*
* The GIC has id_bits bits for interrupt identifiers. From there, we
* must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
* we allocate LPIs by chunks of 32, we can shift the whole thing by 5
* bits to the right.
*
* This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
*/
#define IRQS_PER_CHUNK_SHIFT 5
#define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
static unsigned long *lpi_bitmap;
static u32 lpi_chunks;
static DEFINE_SPINLOCK(lpi_lock);
static int its_lpi_to_chunk(int lpi)
{
return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
}
static int its_chunk_to_lpi(int chunk)
{
return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
}
static int its_lpi_init(u32 id_bits)
{
lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
GFP_KERNEL);
if (!lpi_bitmap) {
lpi_chunks = 0;
return -ENOMEM;
}
pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
return 0;
}
static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
{
unsigned long *bitmap = NULL;
int chunk_id;
int nr_chunks;
int i;
nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
spin_lock(&lpi_lock);
do {
chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
0, nr_chunks, 0);
if (chunk_id < lpi_chunks)
break;
nr_chunks--;
} while (nr_chunks > 0);
if (!nr_chunks)
goto out;
bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
GFP_ATOMIC);
if (!bitmap)
goto out;
for (i = 0; i < nr_chunks; i++)
set_bit(chunk_id + i, lpi_bitmap);
*base = its_chunk_to_lpi(chunk_id);
*nr_ids = nr_chunks * IRQS_PER_CHUNK;
out:
spin_unlock(&lpi_lock);
if (!bitmap)
*base = *nr_ids = 0;
return bitmap;
}
static void its_lpi_free(struct event_lpi_map *map)
{
int base = map->lpi_base;
int nr_ids = map->nr_lpis;
int lpi;
spin_lock(&lpi_lock);
for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
int chunk = its_lpi_to_chunk(lpi);
BUG_ON(chunk > lpi_chunks);
if (test_bit(chunk, lpi_bitmap)) {
clear_bit(chunk, lpi_bitmap);
} else {
pr_err("Bad LPI chunk %d\n", chunk);
}
}
spin_unlock(&lpi_lock);
kfree(map->lpi_map);
kfree(map->col_map);
}
/*
* We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
* deal with (one configuration byte per interrupt). PENDBASE has to
* be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
*/
#define LPI_PROPBASE_SZ SZ_64K
#define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K)
/*
* This is how many bits of ID we need, including the useless ones.
*/
#define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K)
#define LPI_PROP_DEFAULT_PRIO 0xa0
static int __init its_alloc_lpi_tables(void)
{
phys_addr_t paddr;
gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
get_order(LPI_PROPBASE_SZ));
if (!gic_rdists->prop_page) {
pr_err("Failed to allocate PROPBASE\n");
return -ENOMEM;
}
paddr = page_to_phys(gic_rdists->prop_page);
pr_info("GIC: using LPI property table @%pa\n", &paddr);
/* Priority 0xa0, Group-1, disabled */
memset(page_address(gic_rdists->prop_page),
LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
LPI_PROPBASE_SZ);
/* Make sure the GIC will observe the written configuration */
__flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
return 0;
}
static const char *its_base_type_string[] = {
[GITS_BASER_TYPE_DEVICE] = "Devices",
[GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
[GITS_BASER_TYPE_CPU] = "Physical CPUs",
[GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
[GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
[GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
[GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
};
static void its_free_tables(struct its_node *its)
{
int i;
for (i = 0; i < GITS_BASER_NR_REGS; i++) {
if (its->tables[i].base) {
free_pages((unsigned long)its->tables[i].base,
its->tables[i].order);
its->tables[i].base = NULL;
}
}
}
static int its_alloc_tables(const char *node_name, struct its_node *its)
{
int err;
int i;
int psz = SZ_64K;
u64 shr = GITS_BASER_InnerShareable;
u64 cache;
u64 typer;
u32 ids;
if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
/*
* erratum 22375: only alloc 8MB table size
* erratum 24313: ignore memory access type
*/
cache = 0;
ids = 0x14; /* 20 bits, 8MB */
} else {
cache = GITS_BASER_WaWb;
typer = readq_relaxed(its->base + GITS_TYPER);
ids = GITS_TYPER_DEVBITS(typer);
}
for (i = 0; i < GITS_BASER_NR_REGS; i++) {
u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
u64 type = GITS_BASER_TYPE(val);
u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
int order = get_order(psz);
int alloc_size;
int alloc_pages;
u64 tmp;
void *base;
if (type == GITS_BASER_TYPE_NONE)
continue;
/*
* Allocate as many entries as required to fit the
* range of device IDs that the ITS can grok... The ID
* space being incredibly sparse, this results in a
* massive waste of memory.
*
* For other tables, only allocate a single page.
*/
if (type == GITS_BASER_TYPE_DEVICE) {
/*
* 'order' was initialized earlier to the default page
* granule of the the ITS. We can't have an allocation
* smaller than that. If the requested allocation
* is smaller, round up to the default page granule.
*/
order = max(get_order((1UL << ids) * entry_size),
order);
if (order >= MAX_ORDER) {
order = MAX_ORDER - 1;
pr_warn("%s: Device Table too large, reduce its page order to %u\n",
node_name, order);
}
}
alloc_size = (1 << order) * PAGE_SIZE;
retry_alloc_baser:
alloc_pages = (alloc_size / psz);
if (alloc_pages > GITS_BASER_PAGES_MAX) {
alloc_pages = GITS_BASER_PAGES_MAX;
order = get_order(GITS_BASER_PAGES_MAX * psz);
pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
node_name, order, alloc_pages);
}
base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
if (!base) {
err = -ENOMEM;
goto out_free;
}
its->tables[i].base = base;
its->tables[i].order = order;
retry_baser:
val = (virt_to_phys(base) |
(type << GITS_BASER_TYPE_SHIFT) |
((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
cache |
shr |
GITS_BASER_VALID);
switch (psz) {
case SZ_4K:
val |= GITS_BASER_PAGE_SIZE_4K;
break;
case SZ_16K:
val |= GITS_BASER_PAGE_SIZE_16K;
break;
case SZ_64K:
val |= GITS_BASER_PAGE_SIZE_64K;
break;
}
val |= alloc_pages - 1;
writeq_relaxed(val, its->base + GITS_BASER + i * 8);
tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
/*
* Shareability didn't stick. Just use
* whatever the read reported, which is likely
* to be the only thing this redistributor
* supports. If that's zero, make it
* non-cacheable as well.
*/
shr = tmp & GITS_BASER_SHAREABILITY_MASK;
if (!shr) {
cache = GITS_BASER_nC;
__flush_dcache_area(base, alloc_size);
}
goto retry_baser;
}
if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
/*
* Page size didn't stick. Let's try a smaller
* size and retry. If we reach 4K, then
* something is horribly wrong...
*/
free_pages((unsigned long)base, order);
its->tables[i].base = NULL;
switch (psz) {
case SZ_16K:
psz = SZ_4K;
goto retry_alloc_baser;
case SZ_64K:
psz = SZ_16K;
goto retry_alloc_baser;
}
}
if (val != tmp) {
pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
node_name, i,
(unsigned long) val, (unsigned long) tmp);
err = -ENXIO;
goto out_free;
}
pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
(int)(alloc_size / entry_size),
its_base_type_string[type],
(unsigned long)virt_to_phys(base),
psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
}
return 0;
out_free:
its_free_tables(its);
return err;
}
static int its_alloc_collections(struct its_node *its)
{
its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
GFP_KERNEL);
if (!its->collections)
return -ENOMEM;
return 0;
}
static void its_cpu_init_lpis(void)
{
void __iomem *rbase = gic_data_rdist_rd_base();
struct page *pend_page;
u64 val, tmp;
/* If we didn't allocate the pending table yet, do it now */
pend_page = gic_data_rdist()->pend_page;
if (!pend_page) {
phys_addr_t paddr;
/*
* The pending pages have to be at least 64kB aligned,
* hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
*/
pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
if (!pend_page) {
pr_err("Failed to allocate PENDBASE for CPU%d\n",
smp_processor_id());
return;
}
/* Make sure the GIC will observe the zero-ed page */
__flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
paddr = page_to_phys(pend_page);
pr_info("CPU%d: using LPI pending table @%pa\n",
smp_processor_id(), &paddr);
gic_data_rdist()->pend_page = pend_page;
}
/* Disable LPIs */
val = readl_relaxed(rbase + GICR_CTLR);
val &= ~GICR_CTLR_ENABLE_LPIS;
writel_relaxed(val, rbase + GICR_CTLR);
/*
* Make sure any change to the table is observable by the GIC.
*/
dsb(sy);
/* set PROPBASE */
val = (page_to_phys(gic_rdists->prop_page) |
GICR_PROPBASER_InnerShareable |
GICR_PROPBASER_WaWb |
((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
writeq_relaxed(val, rbase + GICR_PROPBASER);
tmp = readq_relaxed(rbase + GICR_PROPBASER);
if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
/*
* The HW reports non-shareable, we must
* remove the cacheability attributes as
* well.
*/
val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
GICR_PROPBASER_CACHEABILITY_MASK);
val |= GICR_PROPBASER_nC;
writeq_relaxed(val, rbase + GICR_PROPBASER);
}
pr_info_once("GIC: using cache flushing for LPI property table\n");
gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
}
/* set PENDBASE */
val = (page_to_phys(pend_page) |
GICR_PENDBASER_InnerShareable |
GICR_PENDBASER_WaWb);
writeq_relaxed(val, rbase + GICR_PENDBASER);
tmp = readq_relaxed(rbase + GICR_PENDBASER);
if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
/*
* The HW reports non-shareable, we must remove the
* cacheability attributes as well.
*/
val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
GICR_PENDBASER_CACHEABILITY_MASK);
val |= GICR_PENDBASER_nC;
writeq_relaxed(val, rbase + GICR_PENDBASER);
}
/* Enable LPIs */
val = readl_relaxed(rbase + GICR_CTLR);
val |= GICR_CTLR_ENABLE_LPIS;
writel_relaxed(val, rbase + GICR_CTLR);
/* Make sure the GIC has seen the above */
dsb(sy);
}
static void its_cpu_init_collection(void)
{
struct its_node *its;
int cpu;
spin_lock(&its_lock);
cpu = smp_processor_id();
list_for_each_entry(its, &its_nodes, entry) {
u64 target;
/*
* We now have to bind each collection to its target
* redistributor.
*/
if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
/*
* This ITS wants the physical address of the
* redistributor.
*/
target = gic_data_rdist()->phys_base;
} else {
/*
* This ITS wants a linear CPU number.
*/
target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
target = GICR_TYPER_CPU_NUMBER(target) << 16;
}
/* Perform collection mapping */
its->collections[cpu].target_address = target;
its->collections[cpu].col_id = cpu;
its_send_mapc(its, &its->collections[cpu], 1);
its_send_invall(its, &its->collections[cpu]);
}
spin_unlock(&its_lock);
}
static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
{
struct its_device *its_dev = NULL, *tmp;
unsigned long flags;
raw_spin_lock_irqsave(&its->lock, flags);
list_for_each_entry(tmp, &its->its_device_list, entry) {
if (tmp->device_id == dev_id) {
its_dev = tmp;
break;
}
}
raw_spin_unlock_irqrestore(&its->lock, flags);
return its_dev;
}
static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
int nvecs)
{
struct its_device *dev;
unsigned long *lpi_map;
unsigned long flags;
u16 *col_map = NULL;
void *itt;
int lpi_base;
int nr_lpis;
int nr_ites;
int sz;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
/*
* At least one bit of EventID is being used, hence a minimum
* of two entries. No, the architecture doesn't let you
* express an ITT with a single entry.
*/
nr_ites = max(2UL, roundup_pow_of_two(nvecs));
sz = nr_ites * its->ite_size;
sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
itt = kzalloc(sz, GFP_KERNEL);
lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
if (lpi_map)
col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
if (!dev || !itt || !lpi_map || !col_map) {
kfree(dev);
kfree(itt);
kfree(lpi_map);
kfree(col_map);
return NULL;
}
__flush_dcache_area(itt, sz);
dev->its = its;
dev->itt = itt;
dev->nr_ites = nr_ites;
dev->event_map.lpi_map = lpi_map;
dev->event_map.col_map = col_map;
dev->event_map.lpi_base = lpi_base;
dev->event_map.nr_lpis = nr_lpis;
dev->device_id = dev_id;
INIT_LIST_HEAD(&dev->entry);
raw_spin_lock_irqsave(&its->lock, flags);
list_add(&dev->entry, &its->its_device_list);
raw_spin_unlock_irqrestore(&its->lock, flags);
/* Map device to its ITT */
its_send_mapd(dev, 1);
return dev;
}
static void its_free_device(struct its_device *its_dev)
{
unsigned long flags;
raw_spin_lock_irqsave(&its_dev->its->lock, flags);
list_del(&its_dev->entry);
raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
kfree(its_dev->itt);
kfree(its_dev);
}
static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
{
int idx;
idx = find_first_zero_bit(dev->event_map.lpi_map,
dev->event_map.nr_lpis);
if (idx == dev->event_map.nr_lpis)
return -ENOSPC;
*hwirq = dev->event_map.lpi_base + idx;
set_bit(idx, dev->event_map.lpi_map);
return 0;
}
static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
int nvec, msi_alloc_info_t *info)
{
struct its_node *its;
struct its_device *its_dev;
struct msi_domain_info *msi_info;
u32 dev_id;
/*
* We ignore "dev" entierely, and rely on the dev_id that has
* been passed via the scratchpad. This limits this domain's
* usefulness to upper layers that definitely know that they
* are built on top of the ITS.
*/
dev_id = info->scratchpad[0].ul;
msi_info = msi_get_domain_info(domain);
its = msi_info->data;
its_dev = its_find_device(its, dev_id);
if (its_dev) {
/*
* We already have seen this ID, probably through
* another alias (PCI bridge of some sort). No need to
* create the device.
*/
pr_debug("Reusing ITT for devID %x\n", dev_id);
goto out;
}
its_dev = its_create_device(its, dev_id, nvec);
if (!its_dev)
return -ENOMEM;
pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
out:
info->scratchpad[0].ptr = its_dev;
return 0;
}
static struct msi_domain_ops its_msi_domain_ops = {
.msi_prepare = its_msi_prepare,
};
static int its_irq_gic_domain_alloc(struct irq_domain *domain,
unsigned int virq,
irq_hw_number_t hwirq)
{
struct irq_fwspec fwspec;
if (irq_domain_get_of_node(domain->parent)) {
fwspec.fwnode = domain->parent->fwnode;
fwspec.param_count = 3;
fwspec.param[0] = GIC_IRQ_TYPE_LPI;
fwspec.param[1] = hwirq;
fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
} else {
return -EINVAL;
}
return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
}
static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *args)
{
msi_alloc_info_t *info = args;
struct its_device *its_dev = info->scratchpad[0].ptr;
irq_hw_number_t hwirq;
int err;
int i;
for (i = 0; i < nr_irqs; i++) {
err = its_alloc_device_irq(its_dev, &hwirq);
if (err)
return err;
err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
if (err)
return err;
irq_domain_set_hwirq_and_chip(domain, virq + i,
hwirq, &its_irq_chip, its_dev);
pr_debug("ID:%d pID:%d vID:%d\n",
(int)(hwirq - its_dev->event_map.lpi_base),
(int) hwirq, virq + i);
}
return 0;
}
static void its_irq_domain_activate(struct irq_domain *domain,
struct irq_data *d)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
u32 event = its_get_event_id(d);
/* Bind the LPI to the first possible CPU */
its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
/* Map the GIC IRQ and event to the device */
its_send_mapvi(its_dev, d->hwirq, event);
}
static void its_irq_domain_deactivate(struct irq_domain *domain,
struct irq_data *d)
{
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
u32 event = its_get_event_id(d);
/* Stop the delivery of interrupts */
its_send_discard(its_dev, event);
}
static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
struct its_device *its_dev = irq_data_get_irq_chip_data(d);
int i;
for (i = 0; i < nr_irqs; i++) {
struct irq_data *data = irq_domain_get_irq_data(domain,
virq + i);
u32 event = its_get_event_id(data);
/* Mark interrupt index as unused */
clear_bit(event, its_dev->event_map.lpi_map);
/* Nuke the entry in the domain */
irq_domain_reset_irq_data(data);
}
/* If all interrupts have been freed, start mopping the floor */
if (bitmap_empty(its_dev->event_map.lpi_map,
its_dev->event_map.nr_lpis)) {
its_lpi_free(&its_dev->event_map);
/* Unmap device/itt */
its_send_mapd(its_dev, 0);
its_free_device(its_dev);
}
irq_domain_free_irqs_parent(domain, virq, nr_irqs);
}
static const struct irq_domain_ops its_domain_ops = {
.alloc = its_irq_domain_alloc,
.free = its_irq_domain_free,
.activate = its_irq_domain_activate,
.deactivate = its_irq_domain_deactivate,
};
static int its_force_quiescent(void __iomem *base)
{
u32 count = 1000000; /* 1s */
u32 val;
val = readl_relaxed(base + GITS_CTLR);
if (val & GITS_CTLR_QUIESCENT)
return 0;
/* Disable the generation of all interrupts to this ITS */
val &= ~GITS_CTLR_ENABLE;
writel_relaxed(val, base + GITS_CTLR);
/* Poll GITS_CTLR and wait until ITS becomes quiescent */
while (1) {
val = readl_relaxed(base + GITS_CTLR);
if (val & GITS_CTLR_QUIESCENT)
return 0;
count--;
if (!count)
return -EBUSY;
cpu_relax();
udelay(1);
}
}
static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
{
struct its_node *its = data;
its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
}
static const struct gic_quirk its_quirks[] = {
#ifdef CONFIG_CAVIUM_ERRATUM_22375
{
.desc = "ITS: Cavium errata 22375, 24313",
.iidr = 0xa100034c, /* ThunderX pass 1.x */
.mask = 0xffff0fff,
.init = its_enable_quirk_cavium_22375,
},
#endif
{
}
};
static void its_enable_quirks(struct its_node *its)
{
u32 iidr = readl_relaxed(its->base + GITS_IIDR);
gic_enable_quirks(iidr, its_quirks, its);
}
static int its_probe(struct device_node *node, struct irq_domain *parent)
{
struct resource res;
struct its_node *its;
void __iomem *its_base;
struct irq_domain *inner_domain;
u32 val;
u64 baser, tmp;
int err;
err = of_address_to_resource(node, 0, &res);
if (err) {
pr_warn("%s: no regs?\n", node->full_name);
return -ENXIO;
}
its_base = ioremap(res.start, resource_size(&res));
if (!its_base) {
pr_warn("%s: unable to map registers\n", node->full_name);
return -ENOMEM;
}
val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
if (val != 0x30 && val != 0x40) {
pr_warn("%s: no ITS detected, giving up\n", node->full_name);
err = -ENODEV;
goto out_unmap;
}
err = its_force_quiescent(its_base);
if (err) {
pr_warn("%s: failed to quiesce, giving up\n",
node->full_name);
goto out_unmap;
}
pr_info("ITS: %s\n", node->full_name);
its = kzalloc(sizeof(*its), GFP_KERNEL);
if (!its) {
err = -ENOMEM;
goto out_unmap;
}
raw_spin_lock_init(&its->lock);
INIT_LIST_HEAD(&its->entry);
INIT_LIST_HEAD(&its->its_device_list);
its->base = its_base;
its->phys_base = res.start;
its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
if (!its->cmd_base) {
err = -ENOMEM;
goto out_free_its;
}
its->cmd_write = its->cmd_base;
its_enable_quirks(its);
err = its_alloc_tables(node->full_name, its);
if (err)
goto out_free_cmd;
err = its_alloc_collections(its);
if (err)
goto out_free_tables;
baser = (virt_to_phys(its->cmd_base) |
GITS_CBASER_WaWb |
GITS_CBASER_InnerShareable |
(ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
GITS_CBASER_VALID);
writeq_relaxed(baser, its->base + GITS_CBASER);
tmp = readq_relaxed(its->base + GITS_CBASER);
if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
/*
* The HW reports non-shareable, we must
* remove the cacheability attributes as
* well.
*/
baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
GITS_CBASER_CACHEABILITY_MASK);
baser |= GITS_CBASER_nC;
writeq_relaxed(baser, its->base + GITS_CBASER);
}
pr_info("ITS: using cache flushing for cmd queue\n");
its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
}
writeq_relaxed(0, its->base + GITS_CWRITER);
writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
if (of_property_read_bool(node, "msi-controller")) {
struct msi_domain_info *info;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
err = -ENOMEM;
goto out_free_tables;
}
inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
if (!inner_domain) {
err = -ENOMEM;
kfree(info);
goto out_free_tables;
}
inner_domain->parent = parent;
inner_domain->bus_token = DOMAIN_BUS_NEXUS;
info->ops = &its_msi_domain_ops;
info->data = its;
inner_domain->host_data = info;
}
spin_lock(&its_lock);
list_add(&its->entry, &its_nodes);
spin_unlock(&its_lock);
return 0;
out_free_tables:
its_free_tables(its);
out_free_cmd:
kfree(its->cmd_base);
out_free_its:
kfree(its);
out_unmap:
iounmap(its_base);
pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
return err;
}
static bool gic_rdists_supports_plpis(void)
{
return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
}
int its_cpu_init(void)
{
if (!list_empty(&its_nodes)) {
if (!gic_rdists_supports_plpis()) {
pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
return -ENXIO;
}
its_cpu_init_lpis();
its_cpu_init_collection();
}
return 0;
}
static struct of_device_id its_device_id[] = {
{ .compatible = "arm,gic-v3-its", },
{},
};
int its_init(struct device_node *node, struct rdists *rdists,
struct irq_domain *parent_domain)
{
struct device_node *np;
for (np = of_find_matching_node(node, its_device_id); np;
np = of_find_matching_node(np, its_device_id)) {
its_probe(np, parent_domain);
}
if (list_empty(&its_nodes)) {
pr_warn("ITS: No ITS available, not enabling LPIs\n");
return -ENXIO;
}
gic_rdists = rdists;
gic_root_node = node;
its_alloc_lpi_tables();
its_lpi_init(rdists->id_bits);
return 0;
}