mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-30 21:46:31 +00:00
00f7ec36c9
This patch adds support for the IB "base memory management extension" (BMME) and the equivalent iWARP operations (which the iWARP verbs mandates all devices must implement). The new operations are: - Allocate an ib_mr for use in fast register work requests. - Allocate/free a physical buffer lists for use in fast register work requests. This allows device drivers to allocate this memory as needed for use in posting send requests (eg via dma_alloc_coherent). - New send queue work requests: * send with remote invalidate * fast register memory region * local invalidate memory region * RDMA read with invalidate local memory region (iWARP only) Consumer interface details: - A new device capability flag IB_DEVICE_MEM_MGT_EXTENSIONS is added to indicate device support for these features. - New send work request opcodes IB_WR_FAST_REG_MR, IB_WR_LOCAL_INV, IB_WR_RDMA_READ_WITH_INV are added. - A new consumer API function, ib_alloc_mr() is added to allocate fast register memory regions. - New consumer API functions, ib_alloc_fast_reg_page_list() and ib_free_fast_reg_page_list() are added to allocate and free device-specific memory for fast registration page lists. - A new consumer API function, ib_update_fast_reg_key(), is added to allow the key portion of the R_Key and L_Key of a fast registration MR to be updated. Consumers call this if desired before posting a IB_WR_FAST_REG_MR work request. Consumers can use this as follows: - MR is allocated with ib_alloc_mr(). - Page list memory is allocated with ib_alloc_fast_reg_page_list(). - MR R_Key/L_Key "key" field is updated with ib_update_fast_reg_key(). - MR made VALID and bound to a specific page list via ib_post_send(IB_WR_FAST_REG_MR) - MR made INVALID via ib_post_send(IB_WR_LOCAL_INV), ib_post_send(IB_WR_RDMA_READ_WITH_INV) or an incoming send with invalidate operation. - MR is deallocated with ib_dereg_mr() - page lists dealloced via ib_free_fast_reg_page_list(). Applications can allocate a fast register MR once, and then can repeatedly bind the MR to different physical block lists (PBLs) via posting work requests to a send queue (SQ). For each outstanding MR-to-PBL binding in the SQ pipe, a fast_reg_page_list needs to be allocated (the fast_reg_page_list is owned by the low-level driver from the consumer posting a work request until the request completes). Thus pipelining can be achieved while still allowing device-specific page_list processing. The 32-bit fast register memory key/STag is composed of a 24-bit index and an 8-bit key. The application can change the key each time it fast registers thus allowing more control over the peer's use of the key/STag (ie it can effectively be changed each time the rkey is rebound to a page list). Signed-off-by: Steve Wise <swise@opengridcomputing.com> Signed-off-by: Roland Dreier <rolandd@cisco.com> |
||
---|---|---|
.. | ||
ipath_7220.h | ||
ipath_common.h | ||
ipath_cq.c | ||
ipath_debug.h | ||
ipath_diag.c | ||
ipath_dma.c | ||
ipath_driver.c | ||
ipath_eeprom.c | ||
ipath_file_ops.c | ||
ipath_fs.c | ||
ipath_iba6110.c | ||
ipath_iba6120.c | ||
ipath_iba7220.c | ||
ipath_init_chip.c | ||
ipath_intr.c | ||
ipath_kernel.h | ||
ipath_keys.c | ||
ipath_mad.c | ||
ipath_mmap.c | ||
ipath_mr.c | ||
ipath_qp.c | ||
ipath_rc.c | ||
ipath_registers.h | ||
ipath_ruc.c | ||
ipath_sd7220_img.c | ||
ipath_sd7220.c | ||
ipath_sdma.c | ||
ipath_srq.c | ||
ipath_stats.c | ||
ipath_sysfs.c | ||
ipath_uc.c | ||
ipath_ud.c | ||
ipath_user_pages.c | ||
ipath_user_sdma.c | ||
ipath_user_sdma.h | ||
ipath_verbs_mcast.c | ||
ipath_verbs.c | ||
ipath_verbs.h | ||
ipath_wc_ppc64.c | ||
ipath_wc_x86_64.c | ||
Kconfig | ||
Makefile |