mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-29 13:00:35 +00:00
4a08a9f681
Replace kmalloc+memset with kzalloc Signed-off-by: Yan Burman <burman.yan@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
3450 lines
95 KiB
C
3450 lines
95 KiB
C
/*
|
|
* JFFS -- Journaling Flash File System, Linux implementation.
|
|
*
|
|
* Copyright (C) 1999, 2000 Axis Communications, Inc.
|
|
*
|
|
* Created by Finn Hakansson <finn@axis.com>.
|
|
*
|
|
* This is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* $Id: intrep.c,v 1.102 2001/09/23 23:28:36 dwmw2 Exp $
|
|
*
|
|
* Ported to Linux 2.3.x and MTD:
|
|
* Copyright (C) 2000 Alexander Larsson (alex@cendio.se), Cendio Systems AB
|
|
*
|
|
*/
|
|
|
|
/* This file contains the code for the internal structure of the
|
|
Journaling Flash File System, JFFS. */
|
|
|
|
/*
|
|
* Todo list:
|
|
*
|
|
* memcpy_to_flash() and memcpy_from_flash() functions.
|
|
*
|
|
* Implementation of hard links.
|
|
*
|
|
* Organize the source code in a better way. Against the VFS we could
|
|
* have jffs_ext.c, and against the block device jffs_int.c.
|
|
* A better file-internal organization too.
|
|
*
|
|
* A better checksum algorithm.
|
|
*
|
|
* Consider endianness stuff. ntohl() etc.
|
|
*
|
|
* Are we handling the atime, mtime, ctime members of the inode right?
|
|
*
|
|
* Remove some duplicated code. Take a look at jffs_write_node() and
|
|
* jffs_rewrite_data() for instance.
|
|
*
|
|
* Implement more meaning of the nlink member in various data structures.
|
|
* nlink could be used in conjunction with hard links for instance.
|
|
*
|
|
* Better memory management. Allocate data structures in larger chunks
|
|
* if possible.
|
|
*
|
|
* If too much meta data is stored, a garbage collect should be issued.
|
|
* We have experienced problems with too much meta data with for instance
|
|
* log files.
|
|
*
|
|
* Improve the calls to jffs_ioctl(). We would like to retrieve more
|
|
* information to be able to debug (or to supervise) JFFS during run-time.
|
|
*
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/jffs.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mutex.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/time.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/freezer.h>
|
|
|
|
#include "intrep.h"
|
|
#include "jffs_fm.h"
|
|
|
|
long no_jffs_node = 0;
|
|
static long no_jffs_file = 0;
|
|
#if defined(JFFS_MEMORY_DEBUG) && JFFS_MEMORY_DEBUG
|
|
long no_jffs_control = 0;
|
|
long no_jffs_raw_inode = 0;
|
|
long no_jffs_node_ref = 0;
|
|
long no_jffs_fm = 0;
|
|
long no_jffs_fmcontrol = 0;
|
|
long no_hash = 0;
|
|
long no_name = 0;
|
|
#endif
|
|
|
|
static int jffs_scan_flash(struct jffs_control *c);
|
|
static int jffs_update_file(struct jffs_file *f, struct jffs_node *node);
|
|
static int jffs_build_file(struct jffs_file *f);
|
|
static int jffs_free_file(struct jffs_file *f);
|
|
static int jffs_free_node_list(struct jffs_file *f);
|
|
static int jffs_garbage_collect_now(struct jffs_control *c);
|
|
static int jffs_insert_file_into_hash(struct jffs_file *f);
|
|
static int jffs_remove_redundant_nodes(struct jffs_file *f);
|
|
|
|
/* Is there enough space on the flash? */
|
|
static inline int JFFS_ENOUGH_SPACE(struct jffs_control *c, __u32 space)
|
|
{
|
|
struct jffs_fmcontrol *fmc = c->fmc;
|
|
|
|
while (1) {
|
|
if ((fmc->flash_size - (fmc->used_size + fmc->dirty_size))
|
|
>= fmc->min_free_size + space) {
|
|
return 1;
|
|
}
|
|
if (fmc->dirty_size < fmc->sector_size)
|
|
return 0;
|
|
|
|
if (jffs_garbage_collect_now(c)) {
|
|
D1(printk("JFFS_ENOUGH_SPACE: jffs_garbage_collect_now() failed.\n"));
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_JFFS_FS_VERBOSE > 0
|
|
static __u8
|
|
flash_read_u8(struct mtd_info *mtd, loff_t from)
|
|
{
|
|
size_t retlen;
|
|
__u8 ret;
|
|
int res;
|
|
|
|
res = MTD_READ(mtd, from, 1, &retlen, &ret);
|
|
if (retlen != 1) {
|
|
printk("Didn't read a byte in flash_read_u8(). Returned %d\n", res);
|
|
return 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
jffs_hexdump(struct mtd_info *mtd, loff_t pos, int size)
|
|
{
|
|
char line[16];
|
|
int j = 0;
|
|
|
|
while (size > 0) {
|
|
int i;
|
|
|
|
printk("%ld:", (long) pos);
|
|
for (j = 0; j < 16; j++) {
|
|
line[j] = flash_read_u8(mtd, pos++);
|
|
}
|
|
for (i = 0; i < j; i++) {
|
|
if (!(i & 1)) {
|
|
printk(" %.2x", line[i] & 0xff);
|
|
}
|
|
else {
|
|
printk("%.2x", line[i] & 0xff);
|
|
}
|
|
}
|
|
|
|
/* Print empty space */
|
|
for (; i < 16; i++) {
|
|
if (!(i & 1)) {
|
|
printk(" ");
|
|
}
|
|
else {
|
|
printk(" ");
|
|
}
|
|
}
|
|
printk(" ");
|
|
|
|
for (i = 0; i < j; i++) {
|
|
if (isgraph(line[i])) {
|
|
printk("%c", line[i]);
|
|
}
|
|
else {
|
|
printk(".");
|
|
}
|
|
}
|
|
printk("\n");
|
|
size -= 16;
|
|
}
|
|
}
|
|
|
|
/* Print the contents of a node. */
|
|
static void
|
|
jffs_print_node(struct jffs_node *n)
|
|
{
|
|
D(printk("jffs_node: 0x%p\n", n));
|
|
D(printk("{\n"));
|
|
D(printk(" 0x%08x, /* version */\n", n->version));
|
|
D(printk(" 0x%08x, /* data_offset */\n", n->data_offset));
|
|
D(printk(" 0x%08x, /* data_size */\n", n->data_size));
|
|
D(printk(" 0x%08x, /* removed_size */\n", n->removed_size));
|
|
D(printk(" 0x%08x, /* fm_offset */\n", n->fm_offset));
|
|
D(printk(" 0x%02x, /* name_size */\n", n->name_size));
|
|
D(printk(" 0x%p, /* fm, fm->offset: %u */\n",
|
|
n->fm, (n->fm ? n->fm->offset : 0)));
|
|
D(printk(" 0x%p, /* version_prev */\n", n->version_prev));
|
|
D(printk(" 0x%p, /* version_next */\n", n->version_next));
|
|
D(printk(" 0x%p, /* range_prev */\n", n->range_prev));
|
|
D(printk(" 0x%p, /* range_next */\n", n->range_next));
|
|
D(printk("}\n"));
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Print the contents of a raw inode. */
|
|
static void
|
|
jffs_print_raw_inode(struct jffs_raw_inode *raw_inode)
|
|
{
|
|
D(printk("jffs_raw_inode: inode number: %u\n", raw_inode->ino));
|
|
D(printk("{\n"));
|
|
D(printk(" 0x%08x, /* magic */\n", raw_inode->magic));
|
|
D(printk(" 0x%08x, /* ino */\n", raw_inode->ino));
|
|
D(printk(" 0x%08x, /* pino */\n", raw_inode->pino));
|
|
D(printk(" 0x%08x, /* version */\n", raw_inode->version));
|
|
D(printk(" 0x%08x, /* mode */\n", raw_inode->mode));
|
|
D(printk(" 0x%04x, /* uid */\n", raw_inode->uid));
|
|
D(printk(" 0x%04x, /* gid */\n", raw_inode->gid));
|
|
D(printk(" 0x%08x, /* atime */\n", raw_inode->atime));
|
|
D(printk(" 0x%08x, /* mtime */\n", raw_inode->mtime));
|
|
D(printk(" 0x%08x, /* ctime */\n", raw_inode->ctime));
|
|
D(printk(" 0x%08x, /* offset */\n", raw_inode->offset));
|
|
D(printk(" 0x%08x, /* dsize */\n", raw_inode->dsize));
|
|
D(printk(" 0x%08x, /* rsize */\n", raw_inode->rsize));
|
|
D(printk(" 0x%02x, /* nsize */\n", raw_inode->nsize));
|
|
D(printk(" 0x%02x, /* nlink */\n", raw_inode->nlink));
|
|
D(printk(" 0x%02x, /* spare */\n",
|
|
raw_inode->spare));
|
|
D(printk(" %u, /* rename */\n",
|
|
raw_inode->rename));
|
|
D(printk(" %u, /* deleted */\n",
|
|
raw_inode->deleted));
|
|
D(printk(" 0x%02x, /* accurate */\n",
|
|
raw_inode->accurate));
|
|
D(printk(" 0x%08x, /* dchksum */\n", raw_inode->dchksum));
|
|
D(printk(" 0x%04x, /* nchksum */\n", raw_inode->nchksum));
|
|
D(printk(" 0x%04x, /* chksum */\n", raw_inode->chksum));
|
|
D(printk("}\n"));
|
|
}
|
|
|
|
#define flash_safe_acquire(arg)
|
|
#define flash_safe_release(arg)
|
|
|
|
|
|
static int
|
|
flash_safe_read(struct mtd_info *mtd, loff_t from,
|
|
u_char *buf, size_t count)
|
|
{
|
|
size_t retlen;
|
|
int res;
|
|
|
|
D3(printk(KERN_NOTICE "flash_safe_read(%p, %08x, %p, %08x)\n",
|
|
mtd, (unsigned int) from, buf, count));
|
|
|
|
res = mtd->read(mtd, from, count, &retlen, buf);
|
|
if (retlen != count) {
|
|
panic("Didn't read all bytes in flash_safe_read(). Returned %d\n", res);
|
|
}
|
|
return res?res:retlen;
|
|
}
|
|
|
|
|
|
static __u32
|
|
flash_read_u32(struct mtd_info *mtd, loff_t from)
|
|
{
|
|
size_t retlen;
|
|
__u32 ret;
|
|
int res;
|
|
|
|
res = mtd->read(mtd, from, 4, &retlen, (unsigned char *)&ret);
|
|
if (retlen != 4) {
|
|
printk("Didn't read all bytes in flash_read_u32(). Returned %d\n", res);
|
|
return 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int
|
|
flash_safe_write(struct mtd_info *mtd, loff_t to,
|
|
const u_char *buf, size_t count)
|
|
{
|
|
size_t retlen;
|
|
int res;
|
|
|
|
D3(printk(KERN_NOTICE "flash_safe_write(%p, %08x, %p, %08x)\n",
|
|
mtd, (unsigned int) to, buf, count));
|
|
|
|
res = mtd->write(mtd, to, count, &retlen, buf);
|
|
if (retlen != count) {
|
|
printk("Didn't write all bytes in flash_safe_write(). Returned %d\n", res);
|
|
}
|
|
return res?res:retlen;
|
|
}
|
|
|
|
|
|
static int
|
|
flash_safe_writev(struct mtd_info *mtd, const struct kvec *vecs,
|
|
unsigned long iovec_cnt, loff_t to)
|
|
{
|
|
size_t retlen, retlen_a;
|
|
int i;
|
|
int res;
|
|
|
|
D3(printk(KERN_NOTICE "flash_safe_writev(%p, %08x, %p)\n",
|
|
mtd, (unsigned int) to, vecs));
|
|
|
|
if (mtd->writev) {
|
|
res = mtd->writev(mtd, vecs, iovec_cnt, to, &retlen);
|
|
return res ? res : retlen;
|
|
}
|
|
/* Not implemented writev. Repeatedly use write - on the not so
|
|
unreasonable assumption that the mtd driver doesn't care how
|
|
many write cycles we use. */
|
|
res=0;
|
|
retlen=0;
|
|
|
|
for (i=0; !res && i<iovec_cnt; i++) {
|
|
res = mtd->write(mtd, to, vecs[i].iov_len, &retlen_a,
|
|
vecs[i].iov_base);
|
|
if (retlen_a != vecs[i].iov_len) {
|
|
printk("Didn't write all bytes in flash_safe_writev(). Returned %d\n", res);
|
|
if (i != iovec_cnt-1)
|
|
return -EIO;
|
|
}
|
|
/* If res is non-zero, retlen_a is undefined, but we don't
|
|
care because in that case it's not going to be
|
|
returned anyway.
|
|
*/
|
|
to += retlen_a;
|
|
retlen += retlen_a;
|
|
}
|
|
return res?res:retlen;
|
|
}
|
|
|
|
|
|
static int
|
|
flash_memset(struct mtd_info *mtd, loff_t to,
|
|
const u_char c, size_t size)
|
|
{
|
|
static unsigned char pattern[64];
|
|
int i;
|
|
|
|
/* fill up pattern */
|
|
|
|
for(i = 0; i < 64; i++)
|
|
pattern[i] = c;
|
|
|
|
/* write as many 64-byte chunks as we can */
|
|
|
|
while (size >= 64) {
|
|
flash_safe_write(mtd, to, pattern, 64);
|
|
size -= 64;
|
|
to += 64;
|
|
}
|
|
|
|
/* and the rest */
|
|
|
|
if(size)
|
|
flash_safe_write(mtd, to, pattern, size);
|
|
|
|
return size;
|
|
}
|
|
|
|
|
|
static void
|
|
intrep_erase_callback(struct erase_info *done)
|
|
{
|
|
wait_queue_head_t *wait_q;
|
|
|
|
wait_q = (wait_queue_head_t *)done->priv;
|
|
|
|
wake_up(wait_q);
|
|
}
|
|
|
|
|
|
static int
|
|
flash_erase_region(struct mtd_info *mtd, loff_t start,
|
|
size_t size)
|
|
{
|
|
struct erase_info *erase;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
wait_queue_head_t wait_q;
|
|
|
|
erase = kmalloc(sizeof(struct erase_info), GFP_KERNEL);
|
|
if (!erase)
|
|
return -ENOMEM;
|
|
|
|
init_waitqueue_head(&wait_q);
|
|
|
|
erase->mtd = mtd;
|
|
erase->callback = intrep_erase_callback;
|
|
erase->addr = start;
|
|
erase->len = size;
|
|
erase->priv = (u_long)&wait_q;
|
|
|
|
/* FIXME: Use TASK_INTERRUPTIBLE and deal with being interrupted */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&wait_q, &wait);
|
|
|
|
if (mtd->erase(mtd, erase) < 0) {
|
|
set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(&wait_q, &wait);
|
|
kfree(erase);
|
|
|
|
printk(KERN_WARNING "flash: erase of region [0x%lx, 0x%lx] "
|
|
"totally failed\n", (long)start, (long)start + size);
|
|
|
|
return -1;
|
|
}
|
|
|
|
schedule(); /* Wait for flash to finish. */
|
|
remove_wait_queue(&wait_q, &wait);
|
|
|
|
kfree(erase);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This routine calculates checksums in JFFS. */
|
|
static __u32
|
|
jffs_checksum(const void *data, int size)
|
|
{
|
|
__u32 sum = 0;
|
|
__u8 *ptr = (__u8 *)data;
|
|
while (size-- > 0) {
|
|
sum += *ptr++;
|
|
}
|
|
D3(printk(", result: 0x%08x\n", sum));
|
|
return sum;
|
|
}
|
|
|
|
|
|
static int
|
|
jffs_checksum_flash(struct mtd_info *mtd, loff_t start, int size, __u32 *result)
|
|
{
|
|
__u32 sum = 0;
|
|
loff_t ptr = start;
|
|
__u8 *read_buf;
|
|
int i, length;
|
|
|
|
/* Allocate read buffer */
|
|
read_buf = (__u8 *) kmalloc (sizeof(__u8) * 4096, GFP_KERNEL);
|
|
if (!read_buf) {
|
|
printk(KERN_NOTICE "kmalloc failed in jffs_checksum_flash()\n");
|
|
return -ENOMEM;
|
|
}
|
|
/* Loop until checksum done */
|
|
while (size) {
|
|
/* Get amount of data to read */
|
|
if (size < 4096)
|
|
length = size;
|
|
else
|
|
length = 4096;
|
|
|
|
/* Perform flash read */
|
|
D3(printk(KERN_NOTICE "jffs_checksum_flash\n"));
|
|
flash_safe_read(mtd, ptr, &read_buf[0], length);
|
|
|
|
/* Compute checksum */
|
|
for (i=0; i < length ; i++)
|
|
sum += read_buf[i];
|
|
|
|
/* Update pointer and size */
|
|
size -= length;
|
|
ptr += length;
|
|
}
|
|
|
|
/* Free read buffer */
|
|
kfree(read_buf);
|
|
|
|
/* Return result */
|
|
D3(printk("checksum result: 0x%08x\n", sum));
|
|
*result = sum;
|
|
return 0;
|
|
}
|
|
|
|
static __inline__ void jffs_fm_write_lock(struct jffs_fmcontrol *fmc)
|
|
{
|
|
// down(&fmc->wlock);
|
|
}
|
|
|
|
static __inline__ void jffs_fm_write_unlock(struct jffs_fmcontrol *fmc)
|
|
{
|
|
// up(&fmc->wlock);
|
|
}
|
|
|
|
|
|
/* Create and initialize a new struct jffs_file. */
|
|
static struct jffs_file *
|
|
jffs_create_file(struct jffs_control *c,
|
|
const struct jffs_raw_inode *raw_inode)
|
|
{
|
|
struct jffs_file *f;
|
|
|
|
if (!(f = kzalloc(sizeof(*f), GFP_KERNEL))) {
|
|
D(printk("jffs_create_file(): Failed!\n"));
|
|
return NULL;
|
|
}
|
|
no_jffs_file++;
|
|
f->ino = raw_inode->ino;
|
|
f->pino = raw_inode->pino;
|
|
f->nlink = raw_inode->nlink;
|
|
f->deleted = raw_inode->deleted;
|
|
f->c = c;
|
|
|
|
return f;
|
|
}
|
|
|
|
|
|
/* Build a control block for the file system. */
|
|
static struct jffs_control *
|
|
jffs_create_control(struct super_block *sb)
|
|
{
|
|
struct jffs_control *c;
|
|
register int s = sizeof(struct jffs_control);
|
|
int i;
|
|
D(char *t = 0);
|
|
|
|
D2(printk("jffs_create_control()\n"));
|
|
|
|
if (!(c = kmalloc(s, GFP_KERNEL))) {
|
|
goto fail_control;
|
|
}
|
|
DJM(no_jffs_control++);
|
|
c->root = NULL;
|
|
c->gc_task = NULL;
|
|
c->hash_len = JFFS_HASH_SIZE;
|
|
s = sizeof(struct list_head) * c->hash_len;
|
|
if (!(c->hash = kmalloc(s, GFP_KERNEL))) {
|
|
goto fail_hash;
|
|
}
|
|
DJM(no_hash++);
|
|
for (i = 0; i < c->hash_len; i++)
|
|
INIT_LIST_HEAD(&c->hash[i]);
|
|
if (!(c->fmc = jffs_build_begin(c, MINOR(sb->s_dev)))) {
|
|
goto fail_fminit;
|
|
}
|
|
c->next_ino = JFFS_MIN_INO + 1;
|
|
c->delete_list = (struct jffs_delete_list *) 0;
|
|
return c;
|
|
|
|
fail_fminit:
|
|
D(t = "c->fmc");
|
|
fail_hash:
|
|
kfree(c);
|
|
DJM(no_jffs_control--);
|
|
D(t = t ? t : "c->hash");
|
|
fail_control:
|
|
D(t = t ? t : "control");
|
|
D(printk("jffs_create_control(): Allocation failed: (%s)\n", t));
|
|
return (struct jffs_control *)0;
|
|
}
|
|
|
|
|
|
/* Clean up all data structures associated with the file system. */
|
|
void
|
|
jffs_cleanup_control(struct jffs_control *c)
|
|
{
|
|
D2(printk("jffs_cleanup_control()\n"));
|
|
|
|
if (!c) {
|
|
D(printk("jffs_cleanup_control(): c == NULL !!!\n"));
|
|
return;
|
|
}
|
|
|
|
while (c->delete_list) {
|
|
struct jffs_delete_list *delete_list_element;
|
|
delete_list_element = c->delete_list;
|
|
c->delete_list = c->delete_list->next;
|
|
kfree(delete_list_element);
|
|
}
|
|
|
|
/* Free all files and nodes. */
|
|
if (c->hash) {
|
|
jffs_foreach_file(c, jffs_free_node_list);
|
|
jffs_foreach_file(c, jffs_free_file);
|
|
kfree(c->hash);
|
|
DJM(no_hash--);
|
|
}
|
|
jffs_cleanup_fmcontrol(c->fmc);
|
|
kfree(c);
|
|
DJM(no_jffs_control--);
|
|
D3(printk("jffs_cleanup_control(): Leaving...\n"));
|
|
}
|
|
|
|
|
|
/* This function adds a virtual root node to the in-RAM representation.
|
|
Called by jffs_build_fs(). */
|
|
static int
|
|
jffs_add_virtual_root(struct jffs_control *c)
|
|
{
|
|
struct jffs_file *root;
|
|
struct jffs_node *node;
|
|
|
|
D2(printk("jffs_add_virtual_root(): "
|
|
"Creating a virtual root directory.\n"));
|
|
|
|
if (!(root = kzalloc(sizeof(struct jffs_file), GFP_KERNEL))) {
|
|
return -ENOMEM;
|
|
}
|
|
no_jffs_file++;
|
|
if (!(node = jffs_alloc_node())) {
|
|
kfree(root);
|
|
no_jffs_file--;
|
|
return -ENOMEM;
|
|
}
|
|
DJM(no_jffs_node++);
|
|
memset(node, 0, sizeof(struct jffs_node));
|
|
node->ino = JFFS_MIN_INO;
|
|
root->ino = JFFS_MIN_INO;
|
|
root->mode = S_IFDIR | S_IRWXU | S_IRGRP
|
|
| S_IXGRP | S_IROTH | S_IXOTH;
|
|
root->atime = root->mtime = root->ctime = get_seconds();
|
|
root->nlink = 1;
|
|
root->c = c;
|
|
root->version_head = root->version_tail = node;
|
|
jffs_insert_file_into_hash(root);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* This is where the file system is built and initialized. */
|
|
int
|
|
jffs_build_fs(struct super_block *sb)
|
|
{
|
|
struct jffs_control *c;
|
|
int err = 0;
|
|
|
|
D2(printk("jffs_build_fs()\n"));
|
|
|
|
if (!(c = jffs_create_control(sb))) {
|
|
return -ENOMEM;
|
|
}
|
|
c->building_fs = 1;
|
|
c->sb = sb;
|
|
if ((err = jffs_scan_flash(c)) < 0) {
|
|
if(err == -EAGAIN){
|
|
/* scan_flash() wants us to try once more. A flipping
|
|
bits sector was detect in the middle of the scan flash.
|
|
Clean up old allocated memory before going in.
|
|
*/
|
|
D1(printk("jffs_build_fs: Cleaning up all control structures,"
|
|
" reallocating them and trying mount again.\n"));
|
|
jffs_cleanup_control(c);
|
|
if (!(c = jffs_create_control(sb))) {
|
|
return -ENOMEM;
|
|
}
|
|
c->building_fs = 1;
|
|
c->sb = sb;
|
|
|
|
if ((err = jffs_scan_flash(c)) < 0) {
|
|
goto jffs_build_fs_fail;
|
|
}
|
|
}else{
|
|
goto jffs_build_fs_fail;
|
|
}
|
|
}
|
|
|
|
/* Add a virtual root node if no one exists. */
|
|
if (!jffs_find_file(c, JFFS_MIN_INO)) {
|
|
if ((err = jffs_add_virtual_root(c)) < 0) {
|
|
goto jffs_build_fs_fail;
|
|
}
|
|
}
|
|
|
|
while (c->delete_list) {
|
|
struct jffs_file *f;
|
|
struct jffs_delete_list *delete_list_element;
|
|
|
|
if ((f = jffs_find_file(c, c->delete_list->ino))) {
|
|
f->deleted = 1;
|
|
}
|
|
delete_list_element = c->delete_list;
|
|
c->delete_list = c->delete_list->next;
|
|
kfree(delete_list_element);
|
|
}
|
|
|
|
/* Remove deleted nodes. */
|
|
if ((err = jffs_foreach_file(c, jffs_possibly_delete_file)) < 0) {
|
|
printk(KERN_ERR "JFFS: Failed to remove deleted nodes.\n");
|
|
goto jffs_build_fs_fail;
|
|
}
|
|
/* Remove redundant nodes. (We are not interested in the
|
|
return value in this case.) */
|
|
jffs_foreach_file(c, jffs_remove_redundant_nodes);
|
|
/* Try to build a tree from all the nodes. */
|
|
if ((err = jffs_foreach_file(c, jffs_insert_file_into_tree)) < 0) {
|
|
printk("JFFS: Failed to build tree.\n");
|
|
goto jffs_build_fs_fail;
|
|
}
|
|
/* Compute the sizes of all files in the filesystem. Adjust if
|
|
necessary. */
|
|
if ((err = jffs_foreach_file(c, jffs_build_file)) < 0) {
|
|
printk("JFFS: Failed to build file system.\n");
|
|
goto jffs_build_fs_fail;
|
|
}
|
|
sb->s_fs_info = (void *)c;
|
|
c->building_fs = 0;
|
|
|
|
D1(jffs_print_hash_table(c));
|
|
D1(jffs_print_tree(c->root, 0));
|
|
|
|
return 0;
|
|
|
|
jffs_build_fs_fail:
|
|
jffs_cleanup_control(c);
|
|
return err;
|
|
} /* jffs_build_fs() */
|
|
|
|
|
|
/*
|
|
This checks for sectors that were being erased in their previous
|
|
lifetimes and for some reason or the other (power fail etc.),
|
|
the erase cycles never completed.
|
|
As the flash array would have reverted back to read status,
|
|
these sectors are detected by the symptom of the "flipping bits",
|
|
i.e. bits being read back differently from the same location in
|
|
flash if read multiple times.
|
|
The only solution to this is to re-erase the entire
|
|
sector.
|
|
Unfortunately detecting "flipping bits" is not a simple exercise
|
|
as a bit may be read back at 1 or 0 depending on the alignment
|
|
of the stars in the universe.
|
|
The level of confidence is in direct proportion to the number of
|
|
scans done. By power fail testing I (Vipin) have been able to
|
|
proove that reading twice is not enough.
|
|
Maybe 4 times? Change NUM_REREADS to a higher number if you want
|
|
a (even) higher degree of confidence in your mount process.
|
|
A higher number would of course slow down your mount.
|
|
*/
|
|
static int check_partly_erased_sectors(struct jffs_fmcontrol *fmc){
|
|
|
|
#define NUM_REREADS 4 /* see note above */
|
|
#define READ_AHEAD_BYTES 4096 /* must be a multiple of 4,
|
|
usually set to kernel page size */
|
|
|
|
__u8 *read_buf1;
|
|
__u8 *read_buf2;
|
|
|
|
int err = 0;
|
|
int retlen;
|
|
int i;
|
|
int cnt;
|
|
__u32 offset;
|
|
loff_t pos = 0;
|
|
loff_t end = fmc->flash_size;
|
|
|
|
|
|
/* Allocate read buffers */
|
|
read_buf1 = (__u8 *) kmalloc (sizeof(__u8) * READ_AHEAD_BYTES, GFP_KERNEL);
|
|
if (!read_buf1)
|
|
return -ENOMEM;
|
|
|
|
read_buf2 = (__u8 *) kmalloc (sizeof(__u8) * READ_AHEAD_BYTES, GFP_KERNEL);
|
|
if (!read_buf2) {
|
|
kfree(read_buf1);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
CHECK_NEXT:
|
|
while(pos < end){
|
|
|
|
D1(printk("check_partly_erased_sector():checking sector which contains"
|
|
" offset 0x%x for flipping bits..\n", (__u32)pos));
|
|
|
|
retlen = flash_safe_read(fmc->mtd, pos,
|
|
&read_buf1[0], READ_AHEAD_BYTES);
|
|
retlen &= ~3;
|
|
|
|
for(cnt = 0; cnt < NUM_REREADS; cnt++){
|
|
(void)flash_safe_read(fmc->mtd, pos,
|
|
&read_buf2[0], READ_AHEAD_BYTES);
|
|
|
|
for (i=0 ; i < retlen ; i+=4) {
|
|
/* buffers MUST match, double word for word! */
|
|
if(*((__u32 *) &read_buf1[i]) !=
|
|
*((__u32 *) &read_buf2[i])
|
|
){
|
|
/* flipping bits detected, time to erase sector */
|
|
/* This will help us log some statistics etc. */
|
|
D1(printk("Flipping bits detected in re-read round:%i of %i\n",
|
|
cnt, NUM_REREADS));
|
|
D1(printk("check_partly_erased_sectors:flipping bits detected"
|
|
" @offset:0x%x(0x%x!=0x%x)\n",
|
|
(__u32)pos+i, *((__u32 *) &read_buf1[i]),
|
|
*((__u32 *) &read_buf2[i])));
|
|
|
|
/* calculate start of present sector */
|
|
offset = (((__u32)pos+i)/(__u32)fmc->sector_size) * (__u32)fmc->sector_size;
|
|
|
|
D1(printk("check_partly_erased_sector():erasing sector starting 0x%x.\n",
|
|
offset));
|
|
|
|
if (flash_erase_region(fmc->mtd,
|
|
offset, fmc->sector_size) < 0) {
|
|
printk(KERN_ERR "JFFS: Erase of flash failed. "
|
|
"offset = %u, erase_size = %d\n",
|
|
offset , fmc->sector_size);
|
|
|
|
err = -EIO;
|
|
goto returnBack;
|
|
|
|
}else{
|
|
D1(printk("JFFS: Erase of flash sector @0x%x successful.\n",
|
|
offset));
|
|
/* skip ahead to the next sector */
|
|
pos = (((__u32)pos+i)/(__u32)fmc->sector_size) * (__u32)fmc->sector_size;
|
|
pos += fmc->sector_size;
|
|
goto CHECK_NEXT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
pos += READ_AHEAD_BYTES;
|
|
}
|
|
|
|
returnBack:
|
|
kfree(read_buf1);
|
|
kfree(read_buf2);
|
|
|
|
D2(printk("check_partly_erased_sector():Done checking all sectors till offset 0x%x for flipping bits.\n",
|
|
(__u32)pos));
|
|
|
|
return err;
|
|
|
|
}/* end check_partly_erased_sectors() */
|
|
|
|
|
|
|
|
/* Scan the whole flash memory in order to find all nodes in the
|
|
file systems. */
|
|
static int
|
|
jffs_scan_flash(struct jffs_control *c)
|
|
{
|
|
char name[JFFS_MAX_NAME_LEN + 2];
|
|
struct jffs_raw_inode raw_inode;
|
|
struct jffs_node *node = NULL;
|
|
struct jffs_fmcontrol *fmc = c->fmc;
|
|
__u32 checksum;
|
|
__u8 tmp_accurate;
|
|
__u16 tmp_chksum;
|
|
__u32 deleted_file;
|
|
loff_t pos = 0;
|
|
loff_t start;
|
|
loff_t test_start;
|
|
loff_t end = fmc->flash_size;
|
|
__u8 *read_buf;
|
|
int i, len, retlen;
|
|
__u32 offset;
|
|
|
|
__u32 free_chunk_size1;
|
|
__u32 free_chunk_size2;
|
|
|
|
|
|
#define NUMFREEALLOWED 2 /* 2 chunks of at least erase size space allowed */
|
|
int num_free_space = 0; /* Flag err if more than TWO
|
|
free blocks found. This is NOT allowed
|
|
by the current jffs design.
|
|
*/
|
|
int num_free_spc_not_accp = 0; /* For debugging purposed keep count
|
|
of how much free space was rejected and
|
|
marked dirty
|
|
*/
|
|
|
|
D1(printk("jffs_scan_flash(): start pos = 0x%lx, end = 0x%lx\n",
|
|
(long)pos, (long)end));
|
|
|
|
flash_safe_acquire(fmc->mtd);
|
|
|
|
/*
|
|
check and make sure that any sector does not suffer
|
|
from the "partly erased, bit flipping syndrome" (TM Vipin :)
|
|
If so, offending sectors will be erased.
|
|
*/
|
|
if(check_partly_erased_sectors(fmc) < 0){
|
|
|
|
flash_safe_release(fmc->mtd);
|
|
return -EIO; /* bad, bad, bad error. Cannot continue.*/
|
|
}
|
|
|
|
/* Allocate read buffer */
|
|
read_buf = (__u8 *) kmalloc (sizeof(__u8) * 4096, GFP_KERNEL);
|
|
if (!read_buf) {
|
|
flash_safe_release(fmc->mtd);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Start the scan. */
|
|
while (pos < end) {
|
|
deleted_file = 0;
|
|
|
|
/* Remember the position from where we started this scan. */
|
|
start = pos;
|
|
|
|
switch (flash_read_u32(fmc->mtd, pos)) {
|
|
case JFFS_EMPTY_BITMASK:
|
|
/* We have found 0xffffffff at this position. We have to
|
|
scan the rest of the flash till the end or till
|
|
something else than 0xffffffff is found.
|
|
Keep going till we do not find JFFS_EMPTY_BITMASK
|
|
anymore */
|
|
|
|
D1(printk("jffs_scan_flash(): 0xffffffff at pos 0x%lx.\n",
|
|
(long)pos));
|
|
|
|
while(pos < end){
|
|
|
|
len = end - pos < 4096 ? end - pos : 4096;
|
|
|
|
retlen = flash_safe_read(fmc->mtd, pos,
|
|
&read_buf[0], len);
|
|
|
|
retlen &= ~3;
|
|
|
|
for (i=0 ; i < retlen ; i+=4, pos += 4) {
|
|
if(*((__u32 *) &read_buf[i]) !=
|
|
JFFS_EMPTY_BITMASK)
|
|
break;
|
|
}
|
|
if (i == retlen)
|
|
continue;
|
|
else
|
|
break;
|
|
}
|
|
|
|
D1(printk("jffs_scan_flash():0xffffffff ended at pos 0x%lx.\n",
|
|
(long)pos));
|
|
|
|
/* If some free space ends in the middle of a sector,
|
|
treat it as dirty rather than clean.
|
|
This is to handle the case where one thread
|
|
allocated space for a node, but didn't get to
|
|
actually _write_ it before power was lost, leaving
|
|
a gap in the log. Shifting all node writes into
|
|
a single kernel thread will fix the original problem.
|
|
*/
|
|
if ((__u32) pos % fmc->sector_size) {
|
|
/* If there was free space in previous
|
|
sectors, don't mark that dirty too -
|
|
only from the beginning of this sector
|
|
(or from start)
|
|
*/
|
|
|
|
test_start = pos & ~(fmc->sector_size-1); /* end of last sector */
|
|
|
|
if (start < test_start) {
|
|
|
|
/* free space started in the previous sector! */
|
|
|
|
if((num_free_space < NUMFREEALLOWED) &&
|
|
((unsigned int)(test_start - start) >= fmc->sector_size)){
|
|
|
|
/*
|
|
Count it in if we are still under NUMFREEALLOWED *and* it is
|
|
at least 1 erase sector in length. This will keep us from
|
|
picking any little ole' space as "free".
|
|
*/
|
|
|
|
D1(printk("Reducing end of free space to 0x%x from 0x%x\n",
|
|
(unsigned int)test_start, (unsigned int)pos));
|
|
|
|
D1(printk("Free space accepted: Starting 0x%x for 0x%x bytes\n",
|
|
(unsigned int) start,
|
|
(unsigned int)(test_start - start)));
|
|
|
|
/* below, space from "start" to "pos" will be marked dirty. */
|
|
start = test_start;
|
|
|
|
/* Being in here means that we have found at least an entire
|
|
erase sector size of free space ending on a sector boundary.
|
|
Keep track of free spaces accepted.
|
|
*/
|
|
num_free_space++;
|
|
}else{
|
|
num_free_spc_not_accp++;
|
|
D1(printk("Free space (#%i) found but *Not* accepted: Starting"
|
|
" 0x%x for 0x%x bytes\n",
|
|
num_free_spc_not_accp, (unsigned int)start,
|
|
(unsigned int)((unsigned int)(pos & ~(fmc->sector_size-1)) - (unsigned int)start)));
|
|
|
|
}
|
|
|
|
}
|
|
if((((__u32)(pos - start)) != 0)){
|
|
|
|
D1(printk("Dirty space: Starting 0x%x for 0x%x bytes\n",
|
|
(unsigned int) start, (unsigned int) (pos - start)));
|
|
jffs_fmalloced(fmc, (__u32) start,
|
|
(__u32) (pos - start), NULL);
|
|
}else{
|
|
/* "Flipping bits" detected. This means that our scan for them
|
|
did not catch this offset. See check_partly_erased_sectors() for
|
|
more info.
|
|
*/
|
|
|
|
D1(printk("jffs_scan_flash():wants to allocate dirty flash "
|
|
"space for 0 bytes.\n"));
|
|
D1(printk("jffs_scan_flash(): Flipping bits! We will free "
|
|
"all allocated memory, erase this sector and remount\n"));
|
|
|
|
/* calculate start of present sector */
|
|
offset = (((__u32)pos)/(__u32)fmc->sector_size) * (__u32)fmc->sector_size;
|
|
|
|
D1(printk("jffs_scan_flash():erasing sector starting 0x%x.\n",
|
|
offset));
|
|
|
|
if (flash_erase_region(fmc->mtd,
|
|
offset, fmc->sector_size) < 0) {
|
|
printk(KERN_ERR "JFFS: Erase of flash failed. "
|
|
"offset = %u, erase_size = %d\n",
|
|
offset , fmc->sector_size);
|
|
|
|
flash_safe_release(fmc->mtd);
|
|
kfree(read_buf);
|
|
return -1; /* bad, bad, bad! */
|
|
|
|
}
|
|
flash_safe_release(fmc->mtd);
|
|
kfree(read_buf);
|
|
|
|
return -EAGAIN; /* erased offending sector. Try mount one more time please. */
|
|
}
|
|
}else{
|
|
/* Being in here means that we have found free space that ends on an erase sector
|
|
boundary.
|
|
Count it in if we are still under NUMFREEALLOWED *and* it is at least 1 erase
|
|
sector in length. This will keep us from picking any little ole' space as "free".
|
|
*/
|
|
if((num_free_space < NUMFREEALLOWED) &&
|
|
((unsigned int)(pos - start) >= fmc->sector_size)){
|
|
/* We really don't do anything to mark space as free, except *not*
|
|
mark it dirty and just advance the "pos" location pointer.
|
|
It will automatically be picked up as free space.
|
|
*/
|
|
num_free_space++;
|
|
D1(printk("Free space accepted: Starting 0x%x for 0x%x bytes\n",
|
|
(unsigned int) start, (unsigned int) (pos - start)));
|
|
}else{
|
|
num_free_spc_not_accp++;
|
|
D1(printk("Free space (#%i) found but *Not* accepted: Starting "
|
|
"0x%x for 0x%x bytes\n", num_free_spc_not_accp,
|
|
(unsigned int) start,
|
|
(unsigned int) (pos - start)));
|
|
|
|
/* Mark this space as dirty. We already have our free space. */
|
|
D1(printk("Dirty space: Starting 0x%x for 0x%x bytes\n",
|
|
(unsigned int) start, (unsigned int) (pos - start)));
|
|
jffs_fmalloced(fmc, (__u32) start,
|
|
(__u32) (pos - start), NULL);
|
|
}
|
|
|
|
}
|
|
if(num_free_space > NUMFREEALLOWED){
|
|
printk(KERN_WARNING "jffs_scan_flash(): Found free space "
|
|
"number %i. Only %i free space is allowed.\n",
|
|
num_free_space, NUMFREEALLOWED);
|
|
}
|
|
continue;
|
|
|
|
case JFFS_DIRTY_BITMASK:
|
|
/* We have found 0x00000000 at this position. Scan as far
|
|
as possible to find out how much is dirty. */
|
|
D1(printk("jffs_scan_flash(): 0x00000000 at pos 0x%lx.\n",
|
|
(long)pos));
|
|
for (; pos < end
|
|
&& JFFS_DIRTY_BITMASK == flash_read_u32(fmc->mtd, pos);
|
|
pos += 4);
|
|
D1(printk("jffs_scan_flash(): 0x00 ended at "
|
|
"pos 0x%lx.\n", (long)pos));
|
|
jffs_fmalloced(fmc, (__u32) start,
|
|
(__u32) (pos - start), NULL);
|
|
continue;
|
|
|
|
case JFFS_MAGIC_BITMASK:
|
|
/* We have probably found a new raw inode. */
|
|
break;
|
|
|
|
default:
|
|
bad_inode:
|
|
/* We're f*cked. This is not solved yet. We have
|
|
to scan for the magic pattern. */
|
|
D1(printk("*************** Dirty flash memory or "
|
|
"bad inode: "
|
|
"hexdump(pos = 0x%lx, len = 128):\n",
|
|
(long)pos));
|
|
D1(jffs_hexdump(fmc->mtd, pos, 128));
|
|
|
|
for (pos += 4; pos < end; pos += 4) {
|
|
switch (flash_read_u32(fmc->mtd, pos)) {
|
|
case JFFS_MAGIC_BITMASK:
|
|
case JFFS_EMPTY_BITMASK:
|
|
/* handle these in the main switch() loop */
|
|
goto cont_scan;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
cont_scan:
|
|
/* First, mark as dirty the region
|
|
which really does contain crap. */
|
|
jffs_fmalloced(fmc, (__u32) start,
|
|
(__u32) (pos - start),
|
|
NULL);
|
|
|
|
continue;
|
|
}/* switch */
|
|
|
|
/* We have found the beginning of an inode. Create a
|
|
node for it unless there already is one available. */
|
|
if (!node) {
|
|
if (!(node = jffs_alloc_node())) {
|
|
/* Free read buffer */
|
|
kfree(read_buf);
|
|
|
|
/* Release the flash device */
|
|
flash_safe_release(fmc->mtd);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
DJM(no_jffs_node++);
|
|
}
|
|
|
|
/* Read the next raw inode. */
|
|
|
|
flash_safe_read(fmc->mtd, pos, (u_char *) &raw_inode,
|
|
sizeof(struct jffs_raw_inode));
|
|
|
|
/* When we compute the checksum for the inode, we never
|
|
count the 'accurate' or the 'checksum' fields. */
|
|
tmp_accurate = raw_inode.accurate;
|
|
tmp_chksum = raw_inode.chksum;
|
|
raw_inode.accurate = 0;
|
|
raw_inode.chksum = 0;
|
|
checksum = jffs_checksum(&raw_inode,
|
|
sizeof(struct jffs_raw_inode));
|
|
raw_inode.accurate = tmp_accurate;
|
|
raw_inode.chksum = tmp_chksum;
|
|
|
|
D3(printk("*** We have found this raw inode at pos 0x%lx "
|
|
"on the flash:\n", (long)pos));
|
|
D3(jffs_print_raw_inode(&raw_inode));
|
|
|
|
if (checksum != raw_inode.chksum) {
|
|
D1(printk("jffs_scan_flash(): Bad checksum: "
|
|
"checksum = %u, "
|
|
"raw_inode.chksum = %u\n",
|
|
checksum, raw_inode.chksum));
|
|
pos += sizeof(struct jffs_raw_inode);
|
|
jffs_fmalloced(fmc, (__u32) start,
|
|
(__u32) (pos - start), NULL);
|
|
/* Reuse this unused struct jffs_node. */
|
|
continue;
|
|
}
|
|
|
|
/* Check the raw inode read so far. Start with the
|
|
maximum length of the filename. */
|
|
if (raw_inode.nsize > JFFS_MAX_NAME_LEN) {
|
|
printk(KERN_WARNING "jffs_scan_flash: Found a "
|
|
"JFFS node with name too large\n");
|
|
goto bad_inode;
|
|
}
|
|
|
|
if (raw_inode.rename && raw_inode.dsize != sizeof(__u32)) {
|
|
printk(KERN_WARNING "jffs_scan_flash: Found a "
|
|
"rename node with dsize %u.\n",
|
|
raw_inode.dsize);
|
|
jffs_print_raw_inode(&raw_inode);
|
|
goto bad_inode;
|
|
}
|
|
|
|
/* The node's data segment should not exceed a
|
|
certain length. */
|
|
if (raw_inode.dsize > fmc->max_chunk_size) {
|
|
printk(KERN_WARNING "jffs_scan_flash: Found a "
|
|
"JFFS node with dsize (0x%x) > max_chunk_size (0x%x)\n",
|
|
raw_inode.dsize, fmc->max_chunk_size);
|
|
goto bad_inode;
|
|
}
|
|
|
|
pos += sizeof(struct jffs_raw_inode);
|
|
|
|
/* This shouldn't be necessary because a node that
|
|
violates the flash boundaries shouldn't be written
|
|
in the first place. */
|
|
if (pos >= end) {
|
|
goto check_node;
|
|
}
|
|
|
|
/* Read the name. */
|
|
*name = 0;
|
|
if (raw_inode.nsize) {
|
|
flash_safe_read(fmc->mtd, pos, name, raw_inode.nsize);
|
|
name[raw_inode.nsize] = '\0';
|
|
pos += raw_inode.nsize
|
|
+ JFFS_GET_PAD_BYTES(raw_inode.nsize);
|
|
D3(printk("name == \"%s\"\n", name));
|
|
checksum = jffs_checksum(name, raw_inode.nsize);
|
|
if (checksum != raw_inode.nchksum) {
|
|
D1(printk("jffs_scan_flash(): Bad checksum: "
|
|
"checksum = %u, "
|
|
"raw_inode.nchksum = %u\n",
|
|
checksum, raw_inode.nchksum));
|
|
jffs_fmalloced(fmc, (__u32) start,
|
|
(__u32) (pos - start), NULL);
|
|
/* Reuse this unused struct jffs_node. */
|
|
continue;
|
|
}
|
|
if (pos >= end) {
|
|
goto check_node;
|
|
}
|
|
}
|
|
|
|
/* Read the data, if it exists, in order to be sure it
|
|
matches the checksum. */
|
|
if (raw_inode.dsize) {
|
|
if (raw_inode.rename) {
|
|
deleted_file = flash_read_u32(fmc->mtd, pos);
|
|
}
|
|
if (jffs_checksum_flash(fmc->mtd, pos, raw_inode.dsize, &checksum)) {
|
|
printk("jffs_checksum_flash() failed to calculate a checksum\n");
|
|
jffs_fmalloced(fmc, (__u32) start,
|
|
(__u32) (pos - start), NULL);
|
|
/* Reuse this unused struct jffs_node. */
|
|
continue;
|
|
}
|
|
pos += raw_inode.dsize
|
|
+ JFFS_GET_PAD_BYTES(raw_inode.dsize);
|
|
|
|
if (checksum != raw_inode.dchksum) {
|
|
D1(printk("jffs_scan_flash(): Bad checksum: "
|
|
"checksum = %u, "
|
|
"raw_inode.dchksum = %u\n",
|
|
checksum, raw_inode.dchksum));
|
|
jffs_fmalloced(fmc, (__u32) start,
|
|
(__u32) (pos - start), NULL);
|
|
/* Reuse this unused struct jffs_node. */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
check_node:
|
|
|
|
/* Remember the highest inode number in the whole file
|
|
system. This information will be used when assigning
|
|
new files new inode numbers. */
|
|
if (c->next_ino <= raw_inode.ino) {
|
|
c->next_ino = raw_inode.ino + 1;
|
|
}
|
|
|
|
if (raw_inode.accurate) {
|
|
int err;
|
|
node->data_offset = raw_inode.offset;
|
|
node->data_size = raw_inode.dsize;
|
|
node->removed_size = raw_inode.rsize;
|
|
/* Compute the offset to the actual data in the
|
|
on-flash node. */
|
|
node->fm_offset
|
|
= sizeof(struct jffs_raw_inode)
|
|
+ raw_inode.nsize
|
|
+ JFFS_GET_PAD_BYTES(raw_inode.nsize);
|
|
node->fm = jffs_fmalloced(fmc, (__u32) start,
|
|
(__u32) (pos - start),
|
|
node);
|
|
if (!node->fm) {
|
|
D(printk("jffs_scan_flash(): !node->fm\n"));
|
|
jffs_free_node(node);
|
|
DJM(no_jffs_node--);
|
|
|
|
/* Free read buffer */
|
|
kfree(read_buf);
|
|
|
|
/* Release the flash device */
|
|
flash_safe_release(fmc->mtd);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
if ((err = jffs_insert_node(c, NULL, &raw_inode,
|
|
name, node)) < 0) {
|
|
printk("JFFS: Failed to handle raw inode. "
|
|
"(err = %d)\n", err);
|
|
break;
|
|
}
|
|
if (raw_inode.rename) {
|
|
struct jffs_delete_list *dl
|
|
= (struct jffs_delete_list *)
|
|
kmalloc(sizeof(struct jffs_delete_list),
|
|
GFP_KERNEL);
|
|
if (!dl) {
|
|
D(printk("jffs_scan_flash: !dl\n"));
|
|
jffs_free_node(node);
|
|
DJM(no_jffs_node--);
|
|
|
|
/* Release the flash device */
|
|
flash_safe_release(fmc->flash_part);
|
|
|
|
/* Free read buffer */
|
|
kfree(read_buf);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
dl->ino = deleted_file;
|
|
dl->next = c->delete_list;
|
|
c->delete_list = dl;
|
|
node->data_size = 0;
|
|
}
|
|
D3(jffs_print_node(node));
|
|
node = NULL; /* Don't free the node! */
|
|
}
|
|
else {
|
|
jffs_fmalloced(fmc, (__u32) start,
|
|
(__u32) (pos - start), NULL);
|
|
D3(printk("jffs_scan_flash(): Just found an obsolete "
|
|
"raw_inode. Continuing the scan...\n"));
|
|
/* Reuse this unused struct jffs_node. */
|
|
}
|
|
}
|
|
|
|
if (node) {
|
|
jffs_free_node(node);
|
|
DJM(no_jffs_node--);
|
|
}
|
|
jffs_build_end(fmc);
|
|
|
|
/* Free read buffer */
|
|
kfree(read_buf);
|
|
|
|
if(!num_free_space){
|
|
printk(KERN_WARNING "jffs_scan_flash(): Did not find even a single "
|
|
"chunk of free space. This is BAD!\n");
|
|
}
|
|
|
|
/* Return happy */
|
|
D3(printk("jffs_scan_flash(): Leaving...\n"));
|
|
flash_safe_release(fmc->mtd);
|
|
|
|
/* This is to trap the "free size accounting screwed error. */
|
|
free_chunk_size1 = jffs_free_size1(fmc);
|
|
free_chunk_size2 = jffs_free_size2(fmc);
|
|
|
|
if (free_chunk_size1 + free_chunk_size2 != fmc->free_size) {
|
|
|
|
printk(KERN_WARNING "jffs_scan_falsh():Free size accounting screwed\n");
|
|
printk(KERN_WARNING "jfffs_scan_flash():free_chunk_size1 == 0x%x, "
|
|
"free_chunk_size2 == 0x%x, fmc->free_size == 0x%x\n",
|
|
free_chunk_size1, free_chunk_size2, fmc->free_size);
|
|
|
|
return -1; /* Do NOT mount f/s so that we can inspect what happened.
|
|
Mounting this screwed up f/s will screw us up anyway.
|
|
*/
|
|
}
|
|
|
|
return 0; /* as far as we are concerned, we are happy! */
|
|
} /* jffs_scan_flash() */
|
|
|
|
|
|
/* Insert any kind of node into the file system. Take care of data
|
|
insertions and deletions. Also remove redundant information. The
|
|
memory allocated for the `name' is regarded as "given away" in the
|
|
caller's perspective. */
|
|
int
|
|
jffs_insert_node(struct jffs_control *c, struct jffs_file *f,
|
|
const struct jffs_raw_inode *raw_inode,
|
|
const char *name, struct jffs_node *node)
|
|
{
|
|
int update_name = 0;
|
|
int insert_into_tree = 0;
|
|
|
|
D2(printk("jffs_insert_node(): ino = %u, version = %u, "
|
|
"name = \"%s\", deleted = %d\n",
|
|
raw_inode->ino, raw_inode->version,
|
|
((name && *name) ? name : ""), raw_inode->deleted));
|
|
|
|
/* If there doesn't exist an associated jffs_file, then
|
|
create, initialize and insert one into the file system. */
|
|
if (!f && !(f = jffs_find_file(c, raw_inode->ino))) {
|
|
if (!(f = jffs_create_file(c, raw_inode))) {
|
|
return -ENOMEM;
|
|
}
|
|
jffs_insert_file_into_hash(f);
|
|
insert_into_tree = 1;
|
|
}
|
|
node->ino = raw_inode->ino;
|
|
node->version = raw_inode->version;
|
|
node->data_size = raw_inode->dsize;
|
|
node->fm_offset = sizeof(struct jffs_raw_inode) + raw_inode->nsize
|
|
+ JFFS_GET_PAD_BYTES(raw_inode->nsize);
|
|
node->name_size = raw_inode->nsize;
|
|
|
|
/* Now insert the node at the correct position into the file's
|
|
version list. */
|
|
if (!f->version_head) {
|
|
/* This is the first node. */
|
|
f->version_head = node;
|
|
f->version_tail = node;
|
|
node->version_prev = NULL;
|
|
node->version_next = NULL;
|
|
f->highest_version = node->version;
|
|
update_name = 1;
|
|
f->mode = raw_inode->mode;
|
|
f->uid = raw_inode->uid;
|
|
f->gid = raw_inode->gid;
|
|
f->atime = raw_inode->atime;
|
|
f->mtime = raw_inode->mtime;
|
|
f->ctime = raw_inode->ctime;
|
|
}
|
|
else if ((f->highest_version < node->version)
|
|
|| (node->version == 0)) {
|
|
/* Insert at the end of the list. I.e. this node is the
|
|
newest one so far. */
|
|
node->version_prev = f->version_tail;
|
|
node->version_next = NULL;
|
|
f->version_tail->version_next = node;
|
|
f->version_tail = node;
|
|
f->highest_version = node->version;
|
|
update_name = 1;
|
|
f->pino = raw_inode->pino;
|
|
f->mode = raw_inode->mode;
|
|
f->uid = raw_inode->uid;
|
|
f->gid = raw_inode->gid;
|
|
f->atime = raw_inode->atime;
|
|
f->mtime = raw_inode->mtime;
|
|
f->ctime = raw_inode->ctime;
|
|
}
|
|
else if (f->version_head->version > node->version) {
|
|
/* Insert at the bottom of the list. */
|
|
node->version_prev = NULL;
|
|
node->version_next = f->version_head;
|
|
f->version_head->version_prev = node;
|
|
f->version_head = node;
|
|
if (!f->name) {
|
|
update_name = 1;
|
|
}
|
|
}
|
|
else {
|
|
struct jffs_node *n;
|
|
int newer_name = 0;
|
|
/* Search for the insertion position starting from
|
|
the tail (newest node). */
|
|
for (n = f->version_tail; n; n = n->version_prev) {
|
|
if (n->version < node->version) {
|
|
node->version_prev = n;
|
|
node->version_next = n->version_next;
|
|
node->version_next->version_prev = node;
|
|
n->version_next = node;
|
|
if (!newer_name) {
|
|
update_name = 1;
|
|
}
|
|
break;
|
|
}
|
|
if (n->name_size) {
|
|
newer_name = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Deletion is irreversible. If any 'deleted' node is ever
|
|
written, the file is deleted */
|
|
if (raw_inode->deleted)
|
|
f->deleted = raw_inode->deleted;
|
|
|
|
/* Perhaps update the name. */
|
|
if (raw_inode->nsize && update_name && name && *name && (name != f->name)) {
|
|
if (f->name) {
|
|
kfree(f->name);
|
|
DJM(no_name--);
|
|
}
|
|
if (!(f->name = (char *) kmalloc(raw_inode->nsize + 1,
|
|
GFP_KERNEL))) {
|
|
return -ENOMEM;
|
|
}
|
|
DJM(no_name++);
|
|
memcpy(f->name, name, raw_inode->nsize);
|
|
f->name[raw_inode->nsize] = '\0';
|
|
f->nsize = raw_inode->nsize;
|
|
D3(printk("jffs_insert_node(): Updated the name of "
|
|
"the file to \"%s\".\n", name));
|
|
}
|
|
|
|
if (!c->building_fs) {
|
|
D3(printk("jffs_insert_node(): ---------------------------"
|
|
"------------------------------------------- 1\n"));
|
|
if (insert_into_tree) {
|
|
jffs_insert_file_into_tree(f);
|
|
}
|
|
/* Once upon a time, we would call jffs_possibly_delete_file()
|
|
here. That causes an oops if someone's still got the file
|
|
open, so now we only do it in jffs_delete_inode()
|
|
-- dwmw2
|
|
*/
|
|
if (node->data_size || node->removed_size) {
|
|
jffs_update_file(f, node);
|
|
}
|
|
jffs_remove_redundant_nodes(f);
|
|
|
|
jffs_garbage_collect_trigger(c);
|
|
|
|
D3(printk("jffs_insert_node(): ---------------------------"
|
|
"------------------------------------------- 2\n"));
|
|
}
|
|
|
|
return 0;
|
|
} /* jffs_insert_node() */
|
|
|
|
|
|
/* Unlink a jffs_node from the version list it is in. */
|
|
static inline void
|
|
jffs_unlink_node_from_version_list(struct jffs_file *f,
|
|
struct jffs_node *node)
|
|
{
|
|
if (node->version_prev) {
|
|
node->version_prev->version_next = node->version_next;
|
|
} else {
|
|
f->version_head = node->version_next;
|
|
}
|
|
if (node->version_next) {
|
|
node->version_next->version_prev = node->version_prev;
|
|
} else {
|
|
f->version_tail = node->version_prev;
|
|
}
|
|
}
|
|
|
|
|
|
/* Unlink a jffs_node from the range list it is in. */
|
|
static inline void
|
|
jffs_unlink_node_from_range_list(struct jffs_file *f, struct jffs_node *node)
|
|
{
|
|
if (node->range_prev) {
|
|
node->range_prev->range_next = node->range_next;
|
|
}
|
|
else {
|
|
f->range_head = node->range_next;
|
|
}
|
|
if (node->range_next) {
|
|
node->range_next->range_prev = node->range_prev;
|
|
}
|
|
else {
|
|
f->range_tail = node->range_prev;
|
|
}
|
|
}
|
|
|
|
|
|
/* Function used by jffs_remove_redundant_nodes() below. This function
|
|
classifies what kind of information a node adds to a file. */
|
|
static inline __u8
|
|
jffs_classify_node(struct jffs_node *node)
|
|
{
|
|
__u8 mod_type = JFFS_MODIFY_INODE;
|
|
|
|
if (node->name_size) {
|
|
mod_type |= JFFS_MODIFY_NAME;
|
|
}
|
|
if (node->data_size || node->removed_size) {
|
|
mod_type |= JFFS_MODIFY_DATA;
|
|
}
|
|
return mod_type;
|
|
}
|
|
|
|
|
|
/* Remove redundant nodes from a file. Mark the on-flash memory
|
|
as dirty. */
|
|
static int
|
|
jffs_remove_redundant_nodes(struct jffs_file *f)
|
|
{
|
|
struct jffs_node *newest_node;
|
|
struct jffs_node *cur;
|
|
struct jffs_node *prev;
|
|
__u8 newest_type;
|
|
__u8 mod_type;
|
|
__u8 node_with_name_later = 0;
|
|
|
|
if (!(newest_node = f->version_tail)) {
|
|
return 0;
|
|
}
|
|
|
|
/* What does the `newest_node' modify? */
|
|
newest_type = jffs_classify_node(newest_node);
|
|
node_with_name_later = newest_type & JFFS_MODIFY_NAME;
|
|
|
|
D3(printk("jffs_remove_redundant_nodes(): ino: %u, name: \"%s\", "
|
|
"newest_type: %u\n", f->ino, (f->name ? f->name : ""),
|
|
newest_type));
|
|
|
|
/* Traverse the file's nodes and determine which of them that are
|
|
superfluous. Yeah, this might look very complex at first
|
|
glance but it is actually very simple. */
|
|
for (cur = newest_node->version_prev; cur; cur = prev) {
|
|
prev = cur->version_prev;
|
|
mod_type = jffs_classify_node(cur);
|
|
if ((mod_type <= JFFS_MODIFY_INODE)
|
|
|| ((newest_type & JFFS_MODIFY_NAME)
|
|
&& (mod_type
|
|
<= (JFFS_MODIFY_INODE + JFFS_MODIFY_NAME)))
|
|
|| (cur->data_size == 0 && cur->removed_size
|
|
&& !cur->version_prev && node_with_name_later)) {
|
|
/* Yes, this node is redundant. Remove it. */
|
|
D2(printk("jffs_remove_redundant_nodes(): "
|
|
"Removing node: ino: %u, version: %u, "
|
|
"mod_type: %u\n", cur->ino, cur->version,
|
|
mod_type));
|
|
jffs_unlink_node_from_version_list(f, cur);
|
|
jffs_fmfree(f->c->fmc, cur->fm, cur);
|
|
jffs_free_node(cur);
|
|
DJM(no_jffs_node--);
|
|
}
|
|
else {
|
|
node_with_name_later |= (mod_type & JFFS_MODIFY_NAME);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Insert a file into the hash table. */
|
|
static int
|
|
jffs_insert_file_into_hash(struct jffs_file *f)
|
|
{
|
|
int i = f->ino % f->c->hash_len;
|
|
|
|
D3(printk("jffs_insert_file_into_hash(): f->ino: %u\n", f->ino));
|
|
|
|
list_add(&f->hash, &f->c->hash[i]);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Insert a file into the file system tree. */
|
|
int
|
|
jffs_insert_file_into_tree(struct jffs_file *f)
|
|
{
|
|
struct jffs_file *parent;
|
|
|
|
D3(printk("jffs_insert_file_into_tree(): name: \"%s\"\n",
|
|
(f->name ? f->name : "")));
|
|
|
|
if (!(parent = jffs_find_file(f->c, f->pino))) {
|
|
if (f->pino == 0) {
|
|
f->c->root = f;
|
|
f->parent = NULL;
|
|
f->sibling_prev = NULL;
|
|
f->sibling_next = NULL;
|
|
return 0;
|
|
}
|
|
else {
|
|
D1(printk("jffs_insert_file_into_tree(): Found "
|
|
"inode with no parent and pino == %u\n",
|
|
f->pino));
|
|
return -1;
|
|
}
|
|
}
|
|
f->parent = parent;
|
|
f->sibling_next = parent->children;
|
|
if (f->sibling_next) {
|
|
f->sibling_next->sibling_prev = f;
|
|
}
|
|
f->sibling_prev = NULL;
|
|
parent->children = f;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Remove a file from the hash table. */
|
|
static int
|
|
jffs_unlink_file_from_hash(struct jffs_file *f)
|
|
{
|
|
D3(printk("jffs_unlink_file_from_hash(): f: 0x%p, "
|
|
"ino %u\n", f, f->ino));
|
|
|
|
list_del(&f->hash);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Just remove the file from the parent's children. Don't free
|
|
any memory. */
|
|
int
|
|
jffs_unlink_file_from_tree(struct jffs_file *f)
|
|
{
|
|
D3(printk("jffs_unlink_file_from_tree(): ino: %d, pino: %d, name: "
|
|
"\"%s\"\n", f->ino, f->pino, (f->name ? f->name : "")));
|
|
|
|
if (f->sibling_prev) {
|
|
f->sibling_prev->sibling_next = f->sibling_next;
|
|
}
|
|
else if (f->parent) {
|
|
D3(printk("f->parent=%p\n", f->parent));
|
|
f->parent->children = f->sibling_next;
|
|
}
|
|
if (f->sibling_next) {
|
|
f->sibling_next->sibling_prev = f->sibling_prev;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Find a file with its inode number. */
|
|
struct jffs_file *
|
|
jffs_find_file(struct jffs_control *c, __u32 ino)
|
|
{
|
|
struct jffs_file *f;
|
|
int i = ino % c->hash_len;
|
|
|
|
D3(printk("jffs_find_file(): ino: %u\n", ino));
|
|
|
|
list_for_each_entry(f, &c->hash[i], hash) {
|
|
if (ino != f->ino)
|
|
continue;
|
|
D3(printk("jffs_find_file(): Found file with ino "
|
|
"%u. (name: \"%s\")\n",
|
|
ino, (f->name ? f->name : ""));
|
|
);
|
|
return f;
|
|
}
|
|
D3(printk("jffs_find_file(): Didn't find file "
|
|
"with ino %u.\n", ino);
|
|
);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Find a file in a directory. We are comparing the names. */
|
|
struct jffs_file *
|
|
jffs_find_child(struct jffs_file *dir, const char *name, int len)
|
|
{
|
|
struct jffs_file *f;
|
|
|
|
D3(printk("jffs_find_child()\n"));
|
|
|
|
for (f = dir->children; f; f = f->sibling_next) {
|
|
if (!f->deleted && f->name
|
|
&& !strncmp(f->name, name, len)
|
|
&& f->name[len] == '\0') {
|
|
break;
|
|
}
|
|
}
|
|
|
|
D3(if (f) {
|
|
printk("jffs_find_child(): Found \"%s\".\n", f->name);
|
|
}
|
|
else {
|
|
char *copy = (char *) kmalloc(len + 1, GFP_KERNEL);
|
|
if (copy) {
|
|
memcpy(copy, name, len);
|
|
copy[len] = '\0';
|
|
}
|
|
printk("jffs_find_child(): Didn't find the file \"%s\".\n",
|
|
(copy ? copy : ""));
|
|
kfree(copy);
|
|
});
|
|
|
|
return f;
|
|
}
|
|
|
|
|
|
/* Write a raw inode that takes up a certain amount of space in the flash
|
|
memory. At the end of the flash device, there is often space that is
|
|
impossible to use. At these times we want to mark this space as not
|
|
used. In the cases when the amount of space is greater or equal than
|
|
a struct jffs_raw_inode, we write a "dummy node" that takes up this
|
|
space. The space after the raw inode, if it exists, is left as it is.
|
|
Since this space after the raw inode contains JFFS_EMPTY_BITMASK bytes,
|
|
we can compute the checksum of it; we don't have to manipulate it any
|
|
further.
|
|
|
|
If the space left on the device is less than the size of a struct
|
|
jffs_raw_inode, this space is filled with JFFS_DIRTY_BITMASK bytes.
|
|
No raw inode is written this time. */
|
|
static int
|
|
jffs_write_dummy_node(struct jffs_control *c, struct jffs_fm *dirty_fm)
|
|
{
|
|
struct jffs_fmcontrol *fmc = c->fmc;
|
|
int err;
|
|
|
|
D1(printk("jffs_write_dummy_node(): dirty_fm->offset = 0x%08x, "
|
|
"dirty_fm->size = %u\n",
|
|
dirty_fm->offset, dirty_fm->size));
|
|
|
|
if (dirty_fm->size >= sizeof(struct jffs_raw_inode)) {
|
|
struct jffs_raw_inode raw_inode;
|
|
memset(&raw_inode, 0, sizeof(struct jffs_raw_inode));
|
|
raw_inode.magic = JFFS_MAGIC_BITMASK;
|
|
raw_inode.dsize = dirty_fm->size
|
|
- sizeof(struct jffs_raw_inode);
|
|
raw_inode.dchksum = raw_inode.dsize * 0xff;
|
|
raw_inode.chksum
|
|
= jffs_checksum(&raw_inode, sizeof(struct jffs_raw_inode));
|
|
|
|
if ((err = flash_safe_write(fmc->mtd,
|
|
dirty_fm->offset,
|
|
(u_char *)&raw_inode,
|
|
sizeof(struct jffs_raw_inode)))
|
|
< 0) {
|
|
printk(KERN_ERR "JFFS: jffs_write_dummy_node: "
|
|
"flash_safe_write failed!\n");
|
|
return err;
|
|
}
|
|
}
|
|
else {
|
|
flash_safe_acquire(fmc->mtd);
|
|
flash_memset(fmc->mtd, dirty_fm->offset, 0, dirty_fm->size);
|
|
flash_safe_release(fmc->mtd);
|
|
}
|
|
|
|
D3(printk("jffs_write_dummy_node(): Leaving...\n"));
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Write a raw inode, possibly its name and possibly some data. */
|
|
int
|
|
jffs_write_node(struct jffs_control *c, struct jffs_node *node,
|
|
struct jffs_raw_inode *raw_inode,
|
|
const char *name, const unsigned char *data,
|
|
int recoverable,
|
|
struct jffs_file *f)
|
|
{
|
|
struct jffs_fmcontrol *fmc = c->fmc;
|
|
struct jffs_fm *fm;
|
|
struct kvec node_iovec[4];
|
|
unsigned long iovec_cnt;
|
|
|
|
__u32 pos;
|
|
int err;
|
|
__u32 slack = 0;
|
|
|
|
__u32 total_name_size = raw_inode->nsize
|
|
+ JFFS_GET_PAD_BYTES(raw_inode->nsize);
|
|
__u32 total_data_size = raw_inode->dsize
|
|
+ JFFS_GET_PAD_BYTES(raw_inode->dsize);
|
|
__u32 total_size = sizeof(struct jffs_raw_inode)
|
|
+ total_name_size + total_data_size;
|
|
|
|
/* If this node isn't something that will eventually let
|
|
GC free even more space, then don't allow it unless
|
|
there's at least max_chunk_size space still available
|
|
*/
|
|
if (!recoverable)
|
|
slack = fmc->max_chunk_size;
|
|
|
|
|
|
/* Fire the retrorockets and shoot the fruiton torpedoes, sir! */
|
|
|
|
ASSERT(if (!node) {
|
|
printk("jffs_write_node(): node == NULL\n");
|
|
return -EINVAL;
|
|
});
|
|
ASSERT(if (raw_inode && raw_inode->nsize && !name) {
|
|
printk("*** jffs_write_node(): nsize = %u but name == NULL\n",
|
|
raw_inode->nsize);
|
|
return -EINVAL;
|
|
});
|
|
|
|
D1(printk("jffs_write_node(): filename = \"%s\", ino = %u, "
|
|
"total_size = %u\n",
|
|
(name ? name : ""), raw_inode->ino,
|
|
total_size));
|
|
|
|
jffs_fm_write_lock(fmc);
|
|
|
|
retry:
|
|
fm = NULL;
|
|
err = 0;
|
|
while (!fm) {
|
|
|
|
/* Deadlocks suck. */
|
|
while(fmc->free_size < fmc->min_free_size + total_size + slack) {
|
|
jffs_fm_write_unlock(fmc);
|
|
if (!JFFS_ENOUGH_SPACE(c, total_size + slack))
|
|
return -ENOSPC;
|
|
jffs_fm_write_lock(fmc);
|
|
}
|
|
|
|
/* First try to allocate some flash memory. */
|
|
err = jffs_fmalloc(fmc, total_size, node, &fm);
|
|
|
|
if (err == -ENOSPC) {
|
|
/* Just out of space. GC and try again */
|
|
if (fmc->dirty_size < fmc->sector_size) {
|
|
D(printk("jffs_write_node(): jffs_fmalloc(0x%p, %u) "
|
|
"failed, no dirty space to GC\n", fmc,
|
|
total_size));
|
|
return err;
|
|
}
|
|
|
|
D1(printk(KERN_INFO "jffs_write_node(): Calling jffs_garbage_collect_now()\n"));
|
|
jffs_fm_write_unlock(fmc);
|
|
if ((err = jffs_garbage_collect_now(c))) {
|
|
D(printk("jffs_write_node(): jffs_garbage_collect_now() failed\n"));
|
|
return err;
|
|
}
|
|
jffs_fm_write_lock(fmc);
|
|
continue;
|
|
}
|
|
|
|
if (err < 0) {
|
|
jffs_fm_write_unlock(fmc);
|
|
|
|
D(printk("jffs_write_node(): jffs_fmalloc(0x%p, %u) "
|
|
"failed!\n", fmc, total_size));
|
|
return err;
|
|
}
|
|
|
|
if (!fm->nodes) {
|
|
/* The jffs_fm struct that we got is not good enough.
|
|
Make that space dirty and try again */
|
|
if ((err = jffs_write_dummy_node(c, fm)) < 0) {
|
|
kfree(fm);
|
|
DJM(no_jffs_fm--);
|
|
jffs_fm_write_unlock(fmc);
|
|
D(printk("jffs_write_node(): "
|
|
"jffs_write_dummy_node(): Failed!\n"));
|
|
return err;
|
|
}
|
|
fm = NULL;
|
|
}
|
|
} /* while(!fm) */
|
|
node->fm = fm;
|
|
|
|
ASSERT(if (fm->nodes == 0) {
|
|
printk(KERN_ERR "jffs_write_node(): fm->nodes == 0\n");
|
|
});
|
|
|
|
pos = node->fm->offset;
|
|
|
|
/* Increment the version number here. We can't let the caller
|
|
set it beforehand, because we might have had to do GC on a node
|
|
of this file - and we'd end up reusing version numbers.
|
|
*/
|
|
if (f) {
|
|
raw_inode->version = f->highest_version + 1;
|
|
D1(printk (KERN_NOTICE "jffs_write_node(): setting version of %s to %d\n", f->name, raw_inode->version));
|
|
|
|
/* if the file was deleted, set the deleted bit in the raw inode */
|
|
if (f->deleted)
|
|
raw_inode->deleted = 1;
|
|
}
|
|
|
|
/* Compute the checksum for the data and name chunks. */
|
|
raw_inode->dchksum = jffs_checksum(data, raw_inode->dsize);
|
|
raw_inode->nchksum = jffs_checksum(name, raw_inode->nsize);
|
|
|
|
/* The checksum is calculated without the chksum and accurate
|
|
fields so set them to zero first. */
|
|
raw_inode->accurate = 0;
|
|
raw_inode->chksum = 0;
|
|
raw_inode->chksum = jffs_checksum(raw_inode,
|
|
sizeof(struct jffs_raw_inode));
|
|
raw_inode->accurate = 0xff;
|
|
|
|
D3(printk("jffs_write_node(): About to write this raw inode to the "
|
|
"flash at pos 0x%lx:\n", (long)pos));
|
|
D3(jffs_print_raw_inode(raw_inode));
|
|
|
|
/* The actual raw JFFS node */
|
|
node_iovec[0].iov_base = (void *) raw_inode;
|
|
node_iovec[0].iov_len = (size_t) sizeof(struct jffs_raw_inode);
|
|
iovec_cnt = 1;
|
|
|
|
/* Get name and size if there is one */
|
|
if (raw_inode->nsize) {
|
|
node_iovec[iovec_cnt].iov_base = (void *) name;
|
|
node_iovec[iovec_cnt].iov_len = (size_t) raw_inode->nsize;
|
|
iovec_cnt++;
|
|
|
|
if (JFFS_GET_PAD_BYTES(raw_inode->nsize)) {
|
|
static unsigned char allff[3]={255,255,255};
|
|
/* Add some extra padding if necessary */
|
|
node_iovec[iovec_cnt].iov_base = allff;
|
|
node_iovec[iovec_cnt].iov_len =
|
|
JFFS_GET_PAD_BYTES(raw_inode->nsize);
|
|
iovec_cnt++;
|
|
}
|
|
}
|
|
|
|
/* Get data and size if there is any */
|
|
if (raw_inode->dsize) {
|
|
node_iovec[iovec_cnt].iov_base = (void *) data;
|
|
node_iovec[iovec_cnt].iov_len = (size_t) raw_inode->dsize;
|
|
iovec_cnt++;
|
|
/* No need to pad this because we're not actually putting
|
|
anything after it.
|
|
*/
|
|
}
|
|
|
|
if ((err = flash_safe_writev(fmc->mtd, node_iovec, iovec_cnt,
|
|
pos)) < 0) {
|
|
jffs_fmfree_partly(fmc, fm, 0);
|
|
jffs_fm_write_unlock(fmc);
|
|
printk(KERN_ERR "JFFS: jffs_write_node: Failed to write, "
|
|
"requested %i, wrote %i\n", total_size, err);
|
|
goto retry;
|
|
}
|
|
if (raw_inode->deleted)
|
|
f->deleted = 1;
|
|
|
|
jffs_fm_write_unlock(fmc);
|
|
D3(printk("jffs_write_node(): Leaving...\n"));
|
|
return raw_inode->dsize;
|
|
} /* jffs_write_node() */
|
|
|
|
|
|
/* Read data from the node and write it to the buffer. 'node_offset'
|
|
is how much we have read from this particular node before and which
|
|
shouldn't be read again. 'max_size' is how much space there is in
|
|
the buffer. */
|
|
static int
|
|
jffs_get_node_data(struct jffs_file *f, struct jffs_node *node,
|
|
unsigned char *buf,__u32 node_offset, __u32 max_size)
|
|
{
|
|
struct jffs_fmcontrol *fmc = f->c->fmc;
|
|
__u32 pos = node->fm->offset + node->fm_offset + node_offset;
|
|
__u32 avail = node->data_size - node_offset;
|
|
__u32 r;
|
|
|
|
D2(printk(" jffs_get_node_data(): file: \"%s\", ino: %u, "
|
|
"version: %u, node_offset: %u\n",
|
|
f->name, node->ino, node->version, node_offset));
|
|
|
|
r = min(avail, max_size);
|
|
D3(printk(KERN_NOTICE "jffs_get_node_data\n"));
|
|
flash_safe_read(fmc->mtd, pos, buf, r);
|
|
|
|
D3(printk(" jffs_get_node_data(): Read %u byte%s.\n",
|
|
r, (r == 1 ? "" : "s")));
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
/* Read data from the file's nodes. Write the data to the buffer
|
|
'buf'. 'read_offset' tells how much data we should skip. */
|
|
int
|
|
jffs_read_data(struct jffs_file *f, unsigned char *buf, __u32 read_offset,
|
|
__u32 size)
|
|
{
|
|
struct jffs_node *node;
|
|
__u32 read_data = 0; /* Total amount of read data. */
|
|
__u32 node_offset = 0;
|
|
__u32 pos = 0; /* Number of bytes traversed. */
|
|
|
|
D2(printk("jffs_read_data(): file = \"%s\", read_offset = %d, "
|
|
"size = %u\n",
|
|
(f->name ? f->name : ""), read_offset, size));
|
|
|
|
if (read_offset >= f->size) {
|
|
D(printk(" f->size: %d\n", f->size));
|
|
return 0;
|
|
}
|
|
|
|
/* First find the node to read data from. */
|
|
node = f->range_head;
|
|
while (pos <= read_offset) {
|
|
node_offset = read_offset - pos;
|
|
if (node_offset >= node->data_size) {
|
|
pos += node->data_size;
|
|
node = node->range_next;
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* "Cats are living proof that not everything in nature
|
|
has to be useful."
|
|
- Garrison Keilor ('97) */
|
|
|
|
/* Fill the buffer. */
|
|
while (node && (read_data < size)) {
|
|
int r;
|
|
if (!node->fm) {
|
|
/* This node does not refer to real data. */
|
|
r = min(size - read_data,
|
|
node->data_size - node_offset);
|
|
memset(&buf[read_data], 0, r);
|
|
}
|
|
else if ((r = jffs_get_node_data(f, node, &buf[read_data],
|
|
node_offset,
|
|
size - read_data)) < 0) {
|
|
return r;
|
|
}
|
|
read_data += r;
|
|
node_offset = 0;
|
|
node = node->range_next;
|
|
}
|
|
D3(printk(" jffs_read_data(): Read %u bytes.\n", read_data));
|
|
return read_data;
|
|
}
|
|
|
|
|
|
/* Used for traversing all nodes in the hash table. */
|
|
int
|
|
jffs_foreach_file(struct jffs_control *c, int (*func)(struct jffs_file *))
|
|
{
|
|
int pos;
|
|
int r;
|
|
int result = 0;
|
|
|
|
for (pos = 0; pos < c->hash_len; pos++) {
|
|
struct jffs_file *f, *next;
|
|
|
|
/* We must do _safe, because 'func' might remove the
|
|
current file 'f' from the list. */
|
|
list_for_each_entry_safe(f, next, &c->hash[pos], hash) {
|
|
r = func(f);
|
|
if (r < 0)
|
|
return r;
|
|
result += r;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Free all nodes associated with a file. */
|
|
static int
|
|
jffs_free_node_list(struct jffs_file *f)
|
|
{
|
|
struct jffs_node *node;
|
|
struct jffs_node *p;
|
|
|
|
D3(printk("jffs_free_node_list(): f #%u, \"%s\"\n",
|
|
f->ino, (f->name ? f->name : "")));
|
|
node = f->version_head;
|
|
while (node) {
|
|
p = node;
|
|
node = node->version_next;
|
|
jffs_free_node(p);
|
|
DJM(no_jffs_node--);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Free a file and its name. */
|
|
static int
|
|
jffs_free_file(struct jffs_file *f)
|
|
{
|
|
D3(printk("jffs_free_file: f #%u, \"%s\"\n",
|
|
f->ino, (f->name ? f->name : "")));
|
|
|
|
if (f->name) {
|
|
kfree(f->name);
|
|
DJM(no_name--);
|
|
}
|
|
kfree(f);
|
|
no_jffs_file--;
|
|
return 0;
|
|
}
|
|
|
|
static long
|
|
jffs_get_file_count(void)
|
|
{
|
|
return no_jffs_file;
|
|
}
|
|
|
|
/* See if a file is deleted. If so, mark that file's nodes as obsolete. */
|
|
int
|
|
jffs_possibly_delete_file(struct jffs_file *f)
|
|
{
|
|
struct jffs_node *n;
|
|
|
|
D3(printk("jffs_possibly_delete_file(): ino: %u\n",
|
|
f->ino));
|
|
|
|
ASSERT(if (!f) {
|
|
printk(KERN_ERR "jffs_possibly_delete_file(): f == NULL\n");
|
|
return -1;
|
|
});
|
|
|
|
if (f->deleted) {
|
|
/* First try to remove all older versions. Commence with
|
|
the oldest node. */
|
|
for (n = f->version_head; n; n = n->version_next) {
|
|
if (!n->fm) {
|
|
continue;
|
|
}
|
|
if (jffs_fmfree(f->c->fmc, n->fm, n) < 0) {
|
|
break;
|
|
}
|
|
}
|
|
/* Unlink the file from the filesystem. */
|
|
if (!f->c->building_fs) {
|
|
jffs_unlink_file_from_tree(f);
|
|
}
|
|
jffs_unlink_file_from_hash(f);
|
|
jffs_free_node_list(f);
|
|
jffs_free_file(f);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Used in conjunction with jffs_foreach_file() to count the number
|
|
of files in the file system. */
|
|
int
|
|
jffs_file_count(struct jffs_file *f)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Build up a file's range list from scratch by going through the
|
|
version list. */
|
|
static int
|
|
jffs_build_file(struct jffs_file *f)
|
|
{
|
|
struct jffs_node *n;
|
|
|
|
D3(printk("jffs_build_file(): ino: %u, name: \"%s\"\n",
|
|
f->ino, (f->name ? f->name : "")));
|
|
|
|
for (n = f->version_head; n; n = n->version_next) {
|
|
jffs_update_file(f, n);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Remove an amount of data from a file. If this amount of data is
|
|
zero, that could mean that a node should be split in two parts.
|
|
We remove or change the appropriate nodes in the lists.
|
|
|
|
Starting offset of area to be removed is node->data_offset,
|
|
and the length of the area is in node->removed_size. */
|
|
static int
|
|
jffs_delete_data(struct jffs_file *f, struct jffs_node *node)
|
|
{
|
|
struct jffs_node *n;
|
|
__u32 offset = node->data_offset;
|
|
__u32 remove_size = node->removed_size;
|
|
|
|
D3(printk("jffs_delete_data(): offset = %u, remove_size = %u\n",
|
|
offset, remove_size));
|
|
|
|
if (remove_size == 0
|
|
&& f->range_tail
|
|
&& f->range_tail->data_offset + f->range_tail->data_size
|
|
== offset) {
|
|
/* A simple append; nothing to remove or no node to split. */
|
|
return 0;
|
|
}
|
|
|
|
/* Find the node where we should begin the removal. */
|
|
for (n = f->range_head; n; n = n->range_next) {
|
|
if (n->data_offset + n->data_size > offset) {
|
|
break;
|
|
}
|
|
}
|
|
if (!n) {
|
|
/* If there's no data in the file there's no data to
|
|
remove either. */
|
|
return 0;
|
|
}
|
|
|
|
if (n->data_offset > offset) {
|
|
/* XXX: Not implemented yet. */
|
|
printk(KERN_WARNING "JFFS: An unexpected situation "
|
|
"occurred in jffs_delete_data.\n");
|
|
}
|
|
else if (n->data_offset < offset) {
|
|
/* See if the node has to be split into two parts. */
|
|
if (n->data_offset + n->data_size > offset + remove_size) {
|
|
/* Do the split. */
|
|
struct jffs_node *new_node;
|
|
D3(printk("jffs_delete_data(): Split node with "
|
|
"version number %u.\n", n->version));
|
|
|
|
if (!(new_node = jffs_alloc_node())) {
|
|
D(printk("jffs_delete_data(): -ENOMEM\n"));
|
|
return -ENOMEM;
|
|
}
|
|
DJM(no_jffs_node++);
|
|
|
|
new_node->ino = n->ino;
|
|
new_node->version = n->version;
|
|
new_node->data_offset = offset;
|
|
new_node->data_size = n->data_size - (remove_size + (offset - n->data_offset));
|
|
new_node->fm_offset = n->fm_offset + (remove_size + (offset - n->data_offset));
|
|
new_node->name_size = n->name_size;
|
|
new_node->fm = n->fm;
|
|
new_node->version_prev = n;
|
|
new_node->version_next = n->version_next;
|
|
if (new_node->version_next) {
|
|
new_node->version_next->version_prev
|
|
= new_node;
|
|
}
|
|
else {
|
|
f->version_tail = new_node;
|
|
}
|
|
n->version_next = new_node;
|
|
new_node->range_prev = n;
|
|
new_node->range_next = n->range_next;
|
|
if (new_node->range_next) {
|
|
new_node->range_next->range_prev = new_node;
|
|
}
|
|
else {
|
|
f->range_tail = new_node;
|
|
}
|
|
/* A very interesting can of worms. */
|
|
n->range_next = new_node;
|
|
n->data_size = offset - n->data_offset;
|
|
if (new_node->fm)
|
|
jffs_add_node(new_node);
|
|
else {
|
|
D1(printk(KERN_WARNING "jffs_delete_data(): Splitting an empty node (file hold).\n!"));
|
|
D1(printk(KERN_WARNING "FIXME: Did dwmw2 do the right thing here?\n"));
|
|
}
|
|
n = new_node->range_next;
|
|
remove_size = 0;
|
|
}
|
|
else {
|
|
/* No. No need to split the node. Just remove
|
|
the end of the node. */
|
|
int r = min(n->data_offset + n->data_size
|
|
- offset, remove_size);
|
|
n->data_size -= r;
|
|
remove_size -= r;
|
|
n = n->range_next;
|
|
}
|
|
}
|
|
|
|
/* Remove as many nodes as necessary. */
|
|
while (n && remove_size) {
|
|
if (n->data_size <= remove_size) {
|
|
struct jffs_node *p = n;
|
|
remove_size -= n->data_size;
|
|
n = n->range_next;
|
|
D3(printk("jffs_delete_data(): Removing node: "
|
|
"ino: %u, version: %u%s\n",
|
|
p->ino, p->version,
|
|
(p->fm ? "" : " (virtual)")));
|
|
if (p->fm) {
|
|
jffs_fmfree(f->c->fmc, p->fm, p);
|
|
}
|
|
jffs_unlink_node_from_range_list(f, p);
|
|
jffs_unlink_node_from_version_list(f, p);
|
|
jffs_free_node(p);
|
|
DJM(no_jffs_node--);
|
|
}
|
|
else {
|
|
n->data_size -= remove_size;
|
|
n->fm_offset += remove_size;
|
|
n->data_offset -= (node->removed_size - remove_size);
|
|
n = n->range_next;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Adjust the following nodes' information about offsets etc. */
|
|
while (n && node->removed_size) {
|
|
n->data_offset -= node->removed_size;
|
|
n = n->range_next;
|
|
}
|
|
|
|
if (node->removed_size > (f->size - node->data_offset)) {
|
|
/* It's possible that the removed_size is in fact
|
|
* greater than the amount of data we actually thought
|
|
* were present in the first place - some of the nodes
|
|
* which this node originally obsoleted may already have
|
|
* been deleted from the flash by subsequent garbage
|
|
* collection.
|
|
*
|
|
* If this is the case, don't let f->size go negative.
|
|
* Bad things would happen :)
|
|
*/
|
|
f->size = node->data_offset;
|
|
} else {
|
|
f->size -= node->removed_size;
|
|
}
|
|
D3(printk("jffs_delete_data(): f->size = %d\n", f->size));
|
|
return 0;
|
|
} /* jffs_delete_data() */
|
|
|
|
|
|
/* Insert some data into a file. Prior to the call to this function,
|
|
jffs_delete_data should be called. */
|
|
static int
|
|
jffs_insert_data(struct jffs_file *f, struct jffs_node *node)
|
|
{
|
|
D3(printk("jffs_insert_data(): node->data_offset = %u, "
|
|
"node->data_size = %u, f->size = %u\n",
|
|
node->data_offset, node->data_size, f->size));
|
|
|
|
/* Find the position where we should insert data. */
|
|
retry:
|
|
if (node->data_offset == f->size) {
|
|
/* A simple append. This is the most common operation. */
|
|
node->range_next = NULL;
|
|
node->range_prev = f->range_tail;
|
|
if (node->range_prev) {
|
|
node->range_prev->range_next = node;
|
|
}
|
|
f->range_tail = node;
|
|
f->size += node->data_size;
|
|
if (!f->range_head) {
|
|
f->range_head = node;
|
|
}
|
|
}
|
|
else if (node->data_offset < f->size) {
|
|
/* Trying to insert data into the middle of the file. This
|
|
means no problem because jffs_delete_data() has already
|
|
prepared the range list for us. */
|
|
struct jffs_node *n;
|
|
|
|
/* Find the correct place for the insertion and then insert
|
|
the node. */
|
|
for (n = f->range_head; n; n = n->range_next) {
|
|
D2(printk("Cool stuff's happening!\n"));
|
|
|
|
if (n->data_offset == node->data_offset) {
|
|
node->range_prev = n->range_prev;
|
|
if (node->range_prev) {
|
|
node->range_prev->range_next = node;
|
|
}
|
|
else {
|
|
f->range_head = node;
|
|
}
|
|
node->range_next = n;
|
|
n->range_prev = node;
|
|
break;
|
|
}
|
|
ASSERT(else if (n->data_offset + n->data_size >
|
|
node->data_offset) {
|
|
printk(KERN_ERR "jffs_insert_data(): "
|
|
"Couldn't find a place to insert "
|
|
"the data!\n");
|
|
return -1;
|
|
});
|
|
}
|
|
|
|
/* Adjust later nodes' offsets etc. */
|
|
n = node->range_next;
|
|
while (n) {
|
|
n->data_offset += node->data_size;
|
|
n = n->range_next;
|
|
}
|
|
f->size += node->data_size;
|
|
}
|
|
else if (node->data_offset > f->size) {
|
|
/* Okay. This is tricky. This means that we want to insert
|
|
data at a place that is beyond the limits of the file as
|
|
it is constructed right now. This is actually a common
|
|
event that for instance could occur during the mounting
|
|
of the file system if a large file have been truncated,
|
|
rewritten and then only partially garbage collected. */
|
|
|
|
struct jffs_node *n;
|
|
|
|
/* We need a place holder for the data that is missing in
|
|
front of this insertion. This "virtual node" will not
|
|
be associated with any space on the flash device. */
|
|
struct jffs_node *virtual_node;
|
|
if (!(virtual_node = jffs_alloc_node())) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
D(printk("jffs_insert_data: Inserting a virtual node.\n"));
|
|
D(printk(" node->data_offset = %u\n", node->data_offset));
|
|
D(printk(" f->size = %u\n", f->size));
|
|
|
|
virtual_node->ino = node->ino;
|
|
virtual_node->version = node->version;
|
|
virtual_node->removed_size = 0;
|
|
virtual_node->fm_offset = 0;
|
|
virtual_node->name_size = 0;
|
|
virtual_node->fm = NULL; /* This is a virtual data holder. */
|
|
virtual_node->version_prev = NULL;
|
|
virtual_node->version_next = NULL;
|
|
virtual_node->range_next = NULL;
|
|
|
|
/* Are there any data at all in the file yet? */
|
|
if (f->range_head) {
|
|
virtual_node->data_offset
|
|
= f->range_tail->data_offset
|
|
+ f->range_tail->data_size;
|
|
virtual_node->data_size
|
|
= node->data_offset - virtual_node->data_offset;
|
|
virtual_node->range_prev = f->range_tail;
|
|
f->range_tail->range_next = virtual_node;
|
|
}
|
|
else {
|
|
virtual_node->data_offset = 0;
|
|
virtual_node->data_size = node->data_offset;
|
|
virtual_node->range_prev = NULL;
|
|
f->range_head = virtual_node;
|
|
}
|
|
|
|
f->range_tail = virtual_node;
|
|
f->size += virtual_node->data_size;
|
|
|
|
/* Insert this virtual node in the version list as well. */
|
|
for (n = f->version_head; n ; n = n->version_next) {
|
|
if (n->version == virtual_node->version) {
|
|
virtual_node->version_prev = n->version_prev;
|
|
n->version_prev = virtual_node;
|
|
if (virtual_node->version_prev) {
|
|
virtual_node->version_prev
|
|
->version_next = virtual_node;
|
|
}
|
|
else {
|
|
f->version_head = virtual_node;
|
|
}
|
|
virtual_node->version_next = n;
|
|
break;
|
|
}
|
|
}
|
|
|
|
D(jffs_print_node(virtual_node));
|
|
|
|
/* Make a new try to insert the node. */
|
|
goto retry;
|
|
}
|
|
|
|
D3(printk("jffs_insert_data(): f->size = %d\n", f->size));
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* A new node (with data) has been added to the file and now the range
|
|
list has to be modified. */
|
|
static int
|
|
jffs_update_file(struct jffs_file *f, struct jffs_node *node)
|
|
{
|
|
int err;
|
|
|
|
D3(printk("jffs_update_file(): ino: %u, version: %u\n",
|
|
f->ino, node->version));
|
|
|
|
if (node->data_size == 0) {
|
|
if (node->removed_size == 0) {
|
|
/* data_offset == X */
|
|
/* data_size == 0 */
|
|
/* remove_size == 0 */
|
|
}
|
|
else {
|
|
/* data_offset == X */
|
|
/* data_size == 0 */
|
|
/* remove_size != 0 */
|
|
if ((err = jffs_delete_data(f, node)) < 0) {
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* data_offset == X */
|
|
/* data_size != 0 */
|
|
/* remove_size == Y */
|
|
if ((err = jffs_delete_data(f, node)) < 0) {
|
|
return err;
|
|
}
|
|
if ((err = jffs_insert_data(f, node)) < 0) {
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Print the contents of a file. */
|
|
#if 0
|
|
int
|
|
jffs_print_file(struct jffs_file *f)
|
|
{
|
|
D(int i);
|
|
D(printk("jffs_file: 0x%p\n", f));
|
|
D(printk("{\n"));
|
|
D(printk(" 0x%08x, /* ino */\n", f->ino));
|
|
D(printk(" 0x%08x, /* pino */\n", f->pino));
|
|
D(printk(" 0x%08x, /* mode */\n", f->mode));
|
|
D(printk(" 0x%04x, /* uid */\n", f->uid));
|
|
D(printk(" 0x%04x, /* gid */\n", f->gid));
|
|
D(printk(" 0x%08x, /* atime */\n", f->atime));
|
|
D(printk(" 0x%08x, /* mtime */\n", f->mtime));
|
|
D(printk(" 0x%08x, /* ctime */\n", f->ctime));
|
|
D(printk(" 0x%02x, /* nsize */\n", f->nsize));
|
|
D(printk(" 0x%02x, /* nlink */\n", f->nlink));
|
|
D(printk(" 0x%02x, /* deleted */\n", f->deleted));
|
|
D(printk(" \"%s\", ", (f->name ? f->name : "")));
|
|
D(for (i = strlen(f->name ? f->name : ""); i < 8; ++i) {
|
|
printk(" ");
|
|
});
|
|
D(printk("/* name */\n"));
|
|
D(printk(" 0x%08x, /* size */\n", f->size));
|
|
D(printk(" 0x%08x, /* highest_version */\n",
|
|
f->highest_version));
|
|
D(printk(" 0x%p, /* c */\n", f->c));
|
|
D(printk(" 0x%p, /* parent */\n", f->parent));
|
|
D(printk(" 0x%p, /* children */\n", f->children));
|
|
D(printk(" 0x%p, /* sibling_prev */\n", f->sibling_prev));
|
|
D(printk(" 0x%p, /* sibling_next */\n", f->sibling_next));
|
|
D(printk(" 0x%p, /* hash_prev */\n", f->hash.prev));
|
|
D(printk(" 0x%p, /* hash_next */\n", f->hash.next));
|
|
D(printk(" 0x%p, /* range_head */\n", f->range_head));
|
|
D(printk(" 0x%p, /* range_tail */\n", f->range_tail));
|
|
D(printk(" 0x%p, /* version_head */\n", f->version_head));
|
|
D(printk(" 0x%p, /* version_tail */\n", f->version_tail));
|
|
D(printk("}\n"));
|
|
return 0;
|
|
}
|
|
#endif /* 0 */
|
|
|
|
void
|
|
jffs_print_hash_table(struct jffs_control *c)
|
|
{
|
|
int i;
|
|
|
|
printk("JFFS: Dumping the file system's hash table...\n");
|
|
for (i = 0; i < c->hash_len; i++) {
|
|
struct jffs_file *f;
|
|
list_for_each_entry(f, &c->hash[i], hash) {
|
|
printk("*** c->hash[%u]: \"%s\" "
|
|
"(ino: %u, pino: %u)\n",
|
|
i, (f->name ? f->name : ""),
|
|
f->ino, f->pino);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
jffs_print_tree(struct jffs_file *first_file, int indent)
|
|
{
|
|
struct jffs_file *f;
|
|
char *space;
|
|
int dir;
|
|
|
|
if (!first_file) {
|
|
return;
|
|
}
|
|
|
|
if (!(space = (char *) kmalloc(indent + 1, GFP_KERNEL))) {
|
|
printk("jffs_print_tree(): Out of memory!\n");
|
|
return;
|
|
}
|
|
|
|
memset(space, ' ', indent);
|
|
space[indent] = '\0';
|
|
|
|
for (f = first_file; f; f = f->sibling_next) {
|
|
dir = S_ISDIR(f->mode);
|
|
printk("%s%s%s (ino: %u, highest_version: %u, size: %u)\n",
|
|
space, (f->name ? f->name : ""), (dir ? "/" : ""),
|
|
f->ino, f->highest_version, f->size);
|
|
if (dir) {
|
|
jffs_print_tree(f->children, indent + 2);
|
|
}
|
|
}
|
|
|
|
kfree(space);
|
|
}
|
|
|
|
|
|
#if defined(JFFS_MEMORY_DEBUG) && JFFS_MEMORY_DEBUG
|
|
void
|
|
jffs_print_memory_allocation_statistics(void)
|
|
{
|
|
static long printout;
|
|
printk("________ Memory printout #%ld ________\n", ++printout);
|
|
printk("no_jffs_file = %ld\n", no_jffs_file);
|
|
printk("no_jffs_node = %ld\n", no_jffs_node);
|
|
printk("no_jffs_control = %ld\n", no_jffs_control);
|
|
printk("no_jffs_raw_inode = %ld\n", no_jffs_raw_inode);
|
|
printk("no_jffs_node_ref = %ld\n", no_jffs_node_ref);
|
|
printk("no_jffs_fm = %ld\n", no_jffs_fm);
|
|
printk("no_jffs_fmcontrol = %ld\n", no_jffs_fmcontrol);
|
|
printk("no_hash = %ld\n", no_hash);
|
|
printk("no_name = %ld\n", no_name);
|
|
printk("\n");
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Rewrite `size' bytes, and begin at `node'. */
|
|
static int
|
|
jffs_rewrite_data(struct jffs_file *f, struct jffs_node *node, __u32 size)
|
|
{
|
|
struct jffs_control *c = f->c;
|
|
struct jffs_fmcontrol *fmc = c->fmc;
|
|
struct jffs_raw_inode raw_inode;
|
|
struct jffs_node *new_node;
|
|
struct jffs_fm *fm;
|
|
__u32 pos;
|
|
__u32 pos_dchksum;
|
|
__u32 total_name_size;
|
|
__u32 total_data_size;
|
|
__u32 total_size;
|
|
int err;
|
|
|
|
D1(printk("***jffs_rewrite_data(): node: %u, name: \"%s\", size: %u\n",
|
|
f->ino, (f->name ? f->name : "(null)"), size));
|
|
|
|
/* Create and initialize the new node. */
|
|
if (!(new_node = jffs_alloc_node())) {
|
|
D(printk("jffs_rewrite_data(): "
|
|
"Failed to allocate node.\n"));
|
|
return -ENOMEM;
|
|
}
|
|
DJM(no_jffs_node++);
|
|
new_node->data_offset = node->data_offset;
|
|
new_node->removed_size = size;
|
|
total_name_size = JFFS_PAD(f->nsize);
|
|
total_data_size = JFFS_PAD(size);
|
|
total_size = sizeof(struct jffs_raw_inode)
|
|
+ total_name_size + total_data_size;
|
|
new_node->fm_offset = sizeof(struct jffs_raw_inode)
|
|
+ total_name_size;
|
|
|
|
retry:
|
|
jffs_fm_write_lock(fmc);
|
|
err = 0;
|
|
|
|
if ((err = jffs_fmalloc(fmc, total_size, new_node, &fm)) < 0) {
|
|
DJM(no_jffs_node--);
|
|
jffs_fm_write_unlock(fmc);
|
|
D(printk("jffs_rewrite_data(): Failed to allocate fm.\n"));
|
|
jffs_free_node(new_node);
|
|
return err;
|
|
}
|
|
else if (!fm->nodes) {
|
|
/* The jffs_fm struct that we got is not big enough. */
|
|
/* This should never happen, because we deal with this case
|
|
in jffs_garbage_collect_next().*/
|
|
printk(KERN_WARNING "jffs_rewrite_data(): Allocated node is too small (%d bytes of %d)\n", fm->size, total_size);
|
|
if ((err = jffs_write_dummy_node(c, fm)) < 0) {
|
|
D(printk("jffs_rewrite_data(): "
|
|
"jffs_write_dummy_node() Failed!\n"));
|
|
} else {
|
|
err = -ENOSPC;
|
|
}
|
|
DJM(no_jffs_fm--);
|
|
jffs_fm_write_unlock(fmc);
|
|
kfree(fm);
|
|
|
|
return err;
|
|
}
|
|
new_node->fm = fm;
|
|
|
|
/* Initialize the raw inode. */
|
|
raw_inode.magic = JFFS_MAGIC_BITMASK;
|
|
raw_inode.ino = f->ino;
|
|
raw_inode.pino = f->pino;
|
|
raw_inode.version = f->highest_version + 1;
|
|
raw_inode.mode = f->mode;
|
|
raw_inode.uid = f->uid;
|
|
raw_inode.gid = f->gid;
|
|
raw_inode.atime = f->atime;
|
|
raw_inode.mtime = f->mtime;
|
|
raw_inode.ctime = f->ctime;
|
|
raw_inode.offset = node->data_offset;
|
|
raw_inode.dsize = size;
|
|
raw_inode.rsize = size;
|
|
raw_inode.nsize = f->nsize;
|
|
raw_inode.nlink = f->nlink;
|
|
raw_inode.spare = 0;
|
|
raw_inode.rename = 0;
|
|
raw_inode.deleted = f->deleted;
|
|
raw_inode.accurate = 0xff;
|
|
raw_inode.dchksum = 0;
|
|
raw_inode.nchksum = 0;
|
|
|
|
pos = new_node->fm->offset;
|
|
pos_dchksum = pos +JFFS_RAW_INODE_DCHKSUM_OFFSET;
|
|
|
|
D3(printk("jffs_rewrite_data(): Writing this raw inode "
|
|
"to pos 0x%ul.\n", pos));
|
|
D3(jffs_print_raw_inode(&raw_inode));
|
|
|
|
if ((err = flash_safe_write(fmc->mtd, pos,
|
|
(u_char *) &raw_inode,
|
|
sizeof(struct jffs_raw_inode)
|
|
- sizeof(__u32)
|
|
- sizeof(__u16) - sizeof(__u16))) < 0) {
|
|
jffs_fmfree_partly(fmc, fm,
|
|
total_name_size + total_data_size);
|
|
jffs_fm_write_unlock(fmc);
|
|
printk(KERN_ERR "JFFS: jffs_rewrite_data: Write error during "
|
|
"rewrite. (raw inode)\n");
|
|
printk(KERN_ERR "JFFS: jffs_rewrite_data: Now retrying "
|
|
"rewrite. (raw inode)\n");
|
|
goto retry;
|
|
}
|
|
pos += sizeof(struct jffs_raw_inode);
|
|
|
|
/* Write the name to the flash memory. */
|
|
if (f->nsize) {
|
|
D3(printk("jffs_rewrite_data(): Writing name \"%s\" to "
|
|
"pos 0x%ul.\n", f->name, (unsigned int) pos));
|
|
if ((err = flash_safe_write(fmc->mtd, pos,
|
|
(u_char *)f->name,
|
|
f->nsize)) < 0) {
|
|
jffs_fmfree_partly(fmc, fm, total_data_size);
|
|
jffs_fm_write_unlock(fmc);
|
|
printk(KERN_ERR "JFFS: jffs_rewrite_data: Write "
|
|
"error during rewrite. (name)\n");
|
|
printk(KERN_ERR "JFFS: jffs_rewrite_data: Now retrying "
|
|
"rewrite. (name)\n");
|
|
goto retry;
|
|
}
|
|
pos += total_name_size;
|
|
raw_inode.nchksum = jffs_checksum(f->name, f->nsize);
|
|
}
|
|
|
|
/* Write the data. */
|
|
if (size) {
|
|
int r;
|
|
unsigned char *page;
|
|
__u32 offset = node->data_offset;
|
|
|
|
if (!(page = (unsigned char *)__get_free_page(GFP_KERNEL))) {
|
|
jffs_fmfree_partly(fmc, fm, 0);
|
|
return -1;
|
|
}
|
|
|
|
while (size) {
|
|
__u32 s = min(size, (__u32)PAGE_SIZE);
|
|
if ((r = jffs_read_data(f, (char *)page,
|
|
offset, s)) < s) {
|
|
free_page((unsigned long)page);
|
|
jffs_fmfree_partly(fmc, fm, 0);
|
|
jffs_fm_write_unlock(fmc);
|
|
printk(KERN_ERR "JFFS: jffs_rewrite_data: "
|
|
"jffs_read_data() "
|
|
"failed! (r = %d)\n", r);
|
|
return -1;
|
|
}
|
|
if ((err = flash_safe_write(fmc->mtd,
|
|
pos, page, r)) < 0) {
|
|
free_page((unsigned long)page);
|
|
jffs_fmfree_partly(fmc, fm, 0);
|
|
jffs_fm_write_unlock(fmc);
|
|
printk(KERN_ERR "JFFS: jffs_rewrite_data: "
|
|
"Write error during rewrite. "
|
|
"(data)\n");
|
|
goto retry;
|
|
}
|
|
pos += r;
|
|
size -= r;
|
|
offset += r;
|
|
raw_inode.dchksum += jffs_checksum(page, r);
|
|
}
|
|
|
|
free_page((unsigned long)page);
|
|
}
|
|
|
|
raw_inode.accurate = 0;
|
|
raw_inode.chksum = jffs_checksum(&raw_inode,
|
|
sizeof(struct jffs_raw_inode)
|
|
- sizeof(__u16));
|
|
|
|
/* Add the checksum. */
|
|
if ((err
|
|
= flash_safe_write(fmc->mtd, pos_dchksum,
|
|
&((u_char *)
|
|
&raw_inode)[JFFS_RAW_INODE_DCHKSUM_OFFSET],
|
|
sizeof(__u32) + sizeof(__u16)
|
|
+ sizeof(__u16))) < 0) {
|
|
jffs_fmfree_partly(fmc, fm, 0);
|
|
jffs_fm_write_unlock(fmc);
|
|
printk(KERN_ERR "JFFS: jffs_rewrite_data: Write error during "
|
|
"rewrite. (checksum)\n");
|
|
goto retry;
|
|
}
|
|
|
|
/* Now make the file system aware of the newly written node. */
|
|
jffs_insert_node(c, f, &raw_inode, f->name, new_node);
|
|
jffs_fm_write_unlock(fmc);
|
|
|
|
D3(printk("jffs_rewrite_data(): Leaving...\n"));
|
|
return 0;
|
|
} /* jffs_rewrite_data() */
|
|
|
|
|
|
/* jffs_garbage_collect_next implements one step in the garbage collect
|
|
process and is often called multiple times at each occasion of a
|
|
garbage collect. */
|
|
|
|
static int
|
|
jffs_garbage_collect_next(struct jffs_control *c)
|
|
{
|
|
struct jffs_fmcontrol *fmc = c->fmc;
|
|
struct jffs_node *node;
|
|
struct jffs_file *f;
|
|
int err = 0;
|
|
__u32 size;
|
|
__u32 data_size;
|
|
__u32 total_name_size;
|
|
__u32 extra_available;
|
|
__u32 space_needed;
|
|
__u32 free_chunk_size1 = jffs_free_size1(fmc);
|
|
D2(__u32 free_chunk_size2 = jffs_free_size2(fmc));
|
|
|
|
/* Get the oldest node in the flash. */
|
|
node = jffs_get_oldest_node(fmc);
|
|
ASSERT(if (!node) {
|
|
printk(KERN_ERR "JFFS: jffs_garbage_collect_next: "
|
|
"No oldest node found!\n");
|
|
err = -1;
|
|
goto jffs_garbage_collect_next_end;
|
|
|
|
|
|
});
|
|
|
|
/* Find its corresponding file too. */
|
|
f = jffs_find_file(c, node->ino);
|
|
|
|
if (!f) {
|
|
printk (KERN_ERR "JFFS: jffs_garbage_collect_next: "
|
|
"No file to garbage collect! "
|
|
"(ino = 0x%08x)\n", node->ino);
|
|
/* FIXME: Free the offending node and recover. */
|
|
err = -1;
|
|
goto jffs_garbage_collect_next_end;
|
|
}
|
|
|
|
/* We always write out the name. Theoretically, we don't need
|
|
to, but for now it's easier - because otherwise we'd have
|
|
to keep track of how many times the current name exists on
|
|
the flash and make sure it never reaches zero.
|
|
|
|
The current approach means that would be possible to cause
|
|
the GC to end up eating its tail by writing lots of nodes
|
|
with no name for it to garbage-collect. Hence the change in
|
|
inode.c to write names with _every_ node.
|
|
|
|
It sucks, but it _should_ work.
|
|
*/
|
|
total_name_size = JFFS_PAD(f->nsize);
|
|
|
|
D1(printk("jffs_garbage_collect_next(): \"%s\", "
|
|
"ino: %u, version: %u, location 0x%x, dsize %u\n",
|
|
(f->name ? f->name : ""), node->ino, node->version,
|
|
node->fm->offset, node->data_size));
|
|
|
|
/* Compute how many data it's possible to rewrite at the moment. */
|
|
data_size = f->size - node->data_offset;
|
|
|
|
/* And from that, the total size of the chunk we want to write */
|
|
size = sizeof(struct jffs_raw_inode) + total_name_size
|
|
+ data_size + JFFS_GET_PAD_BYTES(data_size);
|
|
|
|
/* If that's more than max_chunk_size, reduce it accordingly */
|
|
if (size > fmc->max_chunk_size) {
|
|
size = fmc->max_chunk_size;
|
|
data_size = size - sizeof(struct jffs_raw_inode)
|
|
- total_name_size;
|
|
}
|
|
|
|
/* If we're asking to take up more space than free_chunk_size1
|
|
but we _could_ fit in it, shrink accordingly.
|
|
*/
|
|
if (size > free_chunk_size1) {
|
|
|
|
if (free_chunk_size1 <
|
|
(sizeof(struct jffs_raw_inode) + total_name_size + BLOCK_SIZE)){
|
|
/* The space left is too small to be of any
|
|
use really. */
|
|
struct jffs_fm *dirty_fm
|
|
= jffs_fmalloced(fmc,
|
|
fmc->tail->offset + fmc->tail->size,
|
|
free_chunk_size1, NULL);
|
|
if (!dirty_fm) {
|
|
printk(KERN_ERR "JFFS: "
|
|
"jffs_garbage_collect_next: "
|
|
"Failed to allocate `dirty' "
|
|
"flash memory!\n");
|
|
err = -1;
|
|
goto jffs_garbage_collect_next_end;
|
|
}
|
|
D1(printk("Dirtying end of flash - too small\n"));
|
|
jffs_write_dummy_node(c, dirty_fm);
|
|
err = 0;
|
|
goto jffs_garbage_collect_next_end;
|
|
}
|
|
D1(printk("Reducing size of new node from %d to %d to avoid "
|
|
" exceeding free_chunk_size1\n",
|
|
size, free_chunk_size1));
|
|
|
|
size = free_chunk_size1;
|
|
data_size = size - sizeof(struct jffs_raw_inode)
|
|
- total_name_size;
|
|
}
|
|
|
|
|
|
/* Calculate the amount of space needed to hold the nodes
|
|
which are remaining in the tail */
|
|
space_needed = fmc->min_free_size - (node->fm->offset % fmc->sector_size);
|
|
|
|
/* From that, calculate how much 'extra' space we can use to
|
|
increase the size of the node we're writing from the size
|
|
of the node we're obsoleting
|
|
*/
|
|
if (space_needed > fmc->free_size) {
|
|
/* If we've gone below min_free_size for some reason,
|
|
don't fuck up. This is why we have
|
|
min_free_size > sector_size. Whinge about it though,
|
|
just so I can convince myself my maths is right.
|
|
*/
|
|
D1(printk(KERN_WARNING "jffs_garbage_collect_next(): "
|
|
"space_needed %d exceeded free_size %d\n",
|
|
space_needed, fmc->free_size));
|
|
extra_available = 0;
|
|
} else {
|
|
extra_available = fmc->free_size - space_needed;
|
|
}
|
|
|
|
/* Check that we don't use up any more 'extra' space than
|
|
what's available */
|
|
if (size > JFFS_PAD(node->data_size) + total_name_size +
|
|
sizeof(struct jffs_raw_inode) + extra_available) {
|
|
D1(printk("Reducing size of new node from %d to %ld to avoid "
|
|
"catching our tail\n", size,
|
|
(long) (JFFS_PAD(node->data_size) + JFFS_PAD(node->name_size) +
|
|
sizeof(struct jffs_raw_inode) + extra_available)));
|
|
D1(printk("space_needed = %d, extra_available = %d\n",
|
|
space_needed, extra_available));
|
|
|
|
size = JFFS_PAD(node->data_size) + total_name_size +
|
|
sizeof(struct jffs_raw_inode) + extra_available;
|
|
data_size = size - sizeof(struct jffs_raw_inode)
|
|
- total_name_size;
|
|
};
|
|
|
|
D2(printk(" total_name_size: %u\n", total_name_size));
|
|
D2(printk(" data_size: %u\n", data_size));
|
|
D2(printk(" size: %u\n", size));
|
|
D2(printk(" f->nsize: %u\n", f->nsize));
|
|
D2(printk(" f->size: %u\n", f->size));
|
|
D2(printk(" node->data_offset: %u\n", node->data_offset));
|
|
D2(printk(" free_chunk_size1: %u\n", free_chunk_size1));
|
|
D2(printk(" free_chunk_size2: %u\n", free_chunk_size2));
|
|
D2(printk(" node->fm->offset: 0x%08x\n", node->fm->offset));
|
|
|
|
if ((err = jffs_rewrite_data(f, node, data_size))) {
|
|
printk(KERN_WARNING "jffs_rewrite_data() failed: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
jffs_garbage_collect_next_end:
|
|
D3(printk("jffs_garbage_collect_next: Leaving...\n"));
|
|
return err;
|
|
} /* jffs_garbage_collect_next */
|
|
|
|
|
|
/* If an obsolete node is partly going to be erased due to garbage
|
|
collection, the part that isn't going to be erased must be filled
|
|
with zeroes so that the scan of the flash will work smoothly next
|
|
time. (The data in the file could for instance be a JFFS image
|
|
which could cause enormous confusion during a scan of the flash
|
|
device if we didn't do this.)
|
|
There are two phases in this procedure: First, the clearing of
|
|
the name and data parts of the node. Second, possibly also clearing
|
|
a part of the raw inode as well. If the box is power cycled during
|
|
the first phase, only the checksum of this node-to-be-cleared-at-
|
|
the-end will be wrong. If the box is power cycled during, or after,
|
|
the clearing of the raw inode, the information like the length of
|
|
the name and data parts are zeroed. The next time the box is
|
|
powered up, the scanning algorithm manages this faulty data too
|
|
because:
|
|
|
|
- The checksum is invalid and thus the raw inode must be discarded
|
|
in any case.
|
|
- If the lengths of the data part or the name part are zeroed, the
|
|
scanning just continues after the raw inode. But after the inode
|
|
the scanning procedure just finds zeroes which is the same as
|
|
dirt.
|
|
|
|
So, in the end, this could never fail. :-) Even if it does fail,
|
|
the scanning algorithm should manage that too. */
|
|
|
|
static int
|
|
jffs_clear_end_of_node(struct jffs_control *c, __u32 erase_size)
|
|
{
|
|
struct jffs_fm *fm;
|
|
struct jffs_fmcontrol *fmc = c->fmc;
|
|
__u32 zero_offset;
|
|
__u32 zero_size;
|
|
__u32 zero_offset_data;
|
|
__u32 zero_size_data;
|
|
__u32 cutting_raw_inode = 0;
|
|
|
|
if (!(fm = jffs_cut_node(fmc, erase_size))) {
|
|
D3(printk("jffs_clear_end_of_node(): fm == NULL\n"));
|
|
return 0;
|
|
}
|
|
|
|
/* Where and how much shall we clear? */
|
|
zero_offset = fmc->head->offset + erase_size;
|
|
zero_size = fm->offset + fm->size - zero_offset;
|
|
|
|
/* Do we have to clear the raw_inode explicitly? */
|
|
if (fm->size - zero_size < sizeof(struct jffs_raw_inode)) {
|
|
cutting_raw_inode = sizeof(struct jffs_raw_inode)
|
|
- (fm->size - zero_size);
|
|
}
|
|
|
|
/* First, clear the name and data fields. */
|
|
zero_offset_data = zero_offset + cutting_raw_inode;
|
|
zero_size_data = zero_size - cutting_raw_inode;
|
|
flash_safe_acquire(fmc->mtd);
|
|
flash_memset(fmc->mtd, zero_offset_data, 0, zero_size_data);
|
|
flash_safe_release(fmc->mtd);
|
|
|
|
/* Should we clear a part of the raw inode? */
|
|
if (cutting_raw_inode) {
|
|
/* I guess it is ok to clear the raw inode in this order. */
|
|
flash_safe_acquire(fmc->mtd);
|
|
flash_memset(fmc->mtd, zero_offset, 0,
|
|
cutting_raw_inode);
|
|
flash_safe_release(fmc->mtd);
|
|
}
|
|
|
|
return 0;
|
|
} /* jffs_clear_end_of_node() */
|
|
|
|
/* Try to erase as much as possible of the dirt in the flash memory. */
|
|
static long
|
|
jffs_try_to_erase(struct jffs_control *c)
|
|
{
|
|
struct jffs_fmcontrol *fmc = c->fmc;
|
|
long erase_size;
|
|
int err;
|
|
__u32 offset;
|
|
|
|
D3(printk("jffs_try_to_erase()\n"));
|
|
|
|
erase_size = jffs_erasable_size(fmc);
|
|
|
|
D2(printk("jffs_try_to_erase(): erase_size = %ld\n", erase_size));
|
|
|
|
if (erase_size == 0) {
|
|
return 0;
|
|
}
|
|
else if (erase_size < 0) {
|
|
printk(KERN_ERR "JFFS: jffs_try_to_erase: "
|
|
"jffs_erasable_size returned %ld.\n", erase_size);
|
|
return erase_size;
|
|
}
|
|
|
|
if ((err = jffs_clear_end_of_node(c, erase_size)) < 0) {
|
|
printk(KERN_ERR "JFFS: jffs_try_to_erase: "
|
|
"Clearing of node failed.\n");
|
|
return err;
|
|
}
|
|
|
|
offset = fmc->head->offset;
|
|
|
|
/* Now, let's try to do the erase. */
|
|
if ((err = flash_erase_region(fmc->mtd,
|
|
offset, erase_size)) < 0) {
|
|
printk(KERN_ERR "JFFS: Erase of flash failed. "
|
|
"offset = %u, erase_size = %ld\n",
|
|
offset, erase_size);
|
|
/* XXX: Here we should allocate this area as dirty
|
|
with jffs_fmalloced or something similar. Now
|
|
we just report the error. */
|
|
return err;
|
|
}
|
|
|
|
#if 0
|
|
/* Check if the erased sectors really got erased. */
|
|
{
|
|
__u32 pos;
|
|
__u32 end;
|
|
|
|
pos = (__u32)flash_get_direct_pointer(to_kdev_t(c->sb->s_dev), offset);
|
|
end = pos + erase_size;
|
|
|
|
D2(printk("JFFS: Checking erased sector(s)...\n"));
|
|
|
|
flash_safe_acquire(fmc->mtd);
|
|
|
|
for (; pos < end; pos += 4) {
|
|
if (*(__u32 *)pos != JFFS_EMPTY_BITMASK) {
|
|
printk("JFFS: Erase failed! pos = 0x%lx\n",
|
|
(long)pos);
|
|
jffs_hexdump(fmc->mtd, pos,
|
|
jffs_min(256, end - pos));
|
|
err = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
flash_safe_release(fmc->mtd);
|
|
|
|
if (!err) {
|
|
D2(printk("JFFS: Erase succeeded.\n"));
|
|
}
|
|
else {
|
|
/* XXX: Here we should allocate the memory
|
|
with jffs_fmalloced() in order to prevent
|
|
JFFS from using this area accidentally. */
|
|
return err;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Update the flash memory data structures. */
|
|
jffs_sync_erase(fmc, erase_size);
|
|
|
|
return erase_size;
|
|
}
|
|
|
|
|
|
/* There are different criteria that should trigger a garbage collect:
|
|
|
|
1. There is too much dirt in the memory.
|
|
2. The free space is becoming small.
|
|
3. There are many versions of a node.
|
|
|
|
The garbage collect should always be done in a manner that guarantees
|
|
that future garbage collects cannot be locked. E.g. Rewritten chunks
|
|
should not be too large (span more than one sector in the flash memory
|
|
for exemple). Of course there is a limit on how intelligent this garbage
|
|
collection can be. */
|
|
|
|
|
|
static int
|
|
jffs_garbage_collect_now(struct jffs_control *c)
|
|
{
|
|
struct jffs_fmcontrol *fmc = c->fmc;
|
|
long erased = 0;
|
|
int result = 0;
|
|
D1(int i = 1);
|
|
D2(printk("***jffs_garbage_collect_now(): fmc->dirty_size = %u, fmc->free_size = 0x%x\n, fcs1=0x%x, fcs2=0x%x",
|
|
fmc->dirty_size, fmc->free_size, jffs_free_size1(fmc), jffs_free_size2(fmc)));
|
|
D2(jffs_print_fmcontrol(fmc));
|
|
|
|
// down(&fmc->gclock);
|
|
|
|
/* If it is possible to garbage collect, do so. */
|
|
|
|
while (erased == 0) {
|
|
D1(printk("***jffs_garbage_collect_now(): round #%u, "
|
|
"fmc->dirty_size = %u\n", i++, fmc->dirty_size));
|
|
D2(jffs_print_fmcontrol(fmc));
|
|
|
|
if ((erased = jffs_try_to_erase(c)) < 0) {
|
|
printk(KERN_WARNING "JFFS: Error in "
|
|
"garbage collector.\n");
|
|
result = erased;
|
|
goto gc_end;
|
|
}
|
|
if (erased)
|
|
break;
|
|
|
|
if (fmc->free_size == 0) {
|
|
/* Argh */
|
|
printk(KERN_ERR "jffs_garbage_collect_now(): free_size == 0. This is BAD.\n");
|
|
result = -ENOSPC;
|
|
break;
|
|
}
|
|
|
|
if (fmc->dirty_size < fmc->sector_size) {
|
|
/* Actually, we _may_ have been able to free some,
|
|
* if there are many overlapping nodes which aren't
|
|
* actually marked dirty because they still have
|
|
* some valid data in each.
|
|
*/
|
|
result = -ENOSPC;
|
|
break;
|
|
}
|
|
|
|
/* Let's dare to make a garbage collect. */
|
|
if ((result = jffs_garbage_collect_next(c)) < 0) {
|
|
printk(KERN_ERR "JFFS: Something "
|
|
"has gone seriously wrong "
|
|
"with a garbage collect.\n");
|
|
goto gc_end;
|
|
}
|
|
|
|
D1(printk(" jffs_garbage_collect_now(): erased: %ld\n", erased));
|
|
DJM(jffs_print_memory_allocation_statistics());
|
|
}
|
|
|
|
gc_end:
|
|
// up(&fmc->gclock);
|
|
|
|
D3(printk(" jffs_garbage_collect_now(): Leaving...\n"));
|
|
D1(if (erased) {
|
|
printk("jffs_g_c_now(): erased = %ld\n", erased);
|
|
jffs_print_fmcontrol(fmc);
|
|
});
|
|
|
|
if (!erased && !result)
|
|
return -ENOSPC;
|
|
|
|
return result;
|
|
} /* jffs_garbage_collect_now() */
|
|
|
|
|
|
/* Determine if it is reasonable to start garbage collection.
|
|
We start a gc pass if either:
|
|
- The number of free bytes < MIN_FREE_BYTES && at least one
|
|
block is dirty, OR
|
|
- The number of dirty bytes > MAX_DIRTY_BYTES
|
|
*/
|
|
static inline int thread_should_wake (struct jffs_control *c)
|
|
{
|
|
D1(printk (KERN_NOTICE "thread_should_wake(): free=%d, dirty=%d, blocksize=%d.\n",
|
|
c->fmc->free_size, c->fmc->dirty_size, c->fmc->sector_size));
|
|
|
|
/* If there's not enough dirty space to free a block, there's no point. */
|
|
if (c->fmc->dirty_size < c->fmc->sector_size) {
|
|
D2(printk(KERN_NOTICE "thread_should_wake(): Not waking. Insufficient dirty space\n"));
|
|
return 0;
|
|
}
|
|
#if 1
|
|
/* If there is too much RAM used by the various structures, GC */
|
|
if (jffs_get_node_inuse() > (c->fmc->used_size/c->fmc->max_chunk_size * 5 + jffs_get_file_count() * 2 + 50)) {
|
|
/* FIXME: Provide proof that this test can be satisfied. We
|
|
don't want a filesystem doing endless GC just because this
|
|
condition cannot ever be false.
|
|
*/
|
|
D2(printk(KERN_NOTICE "thread_should_wake(): Waking due to number of nodes\n"));
|
|
return 1;
|
|
}
|
|
#endif
|
|
/* If there are fewer free bytes than the threshold, GC */
|
|
if (c->fmc->free_size < c->gc_minfree_threshold) {
|
|
D2(printk(KERN_NOTICE "thread_should_wake(): Waking due to insufficent free space\n"));
|
|
return 1;
|
|
}
|
|
/* If there are more dirty bytes than the threshold, GC */
|
|
if (c->fmc->dirty_size > c->gc_maxdirty_threshold) {
|
|
D2(printk(KERN_NOTICE "thread_should_wake(): Waking due to excessive dirty space\n"));
|
|
return 1;
|
|
}
|
|
/* FIXME: What about the "There are many versions of a node" condition? */
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void jffs_garbage_collect_trigger(struct jffs_control *c)
|
|
{
|
|
/* NOTE: We rely on the fact that we have the BKL here.
|
|
* Otherwise, the gc_task could go away between the check
|
|
* and the wake_up_process()
|
|
*/
|
|
if (c->gc_task && thread_should_wake(c))
|
|
send_sig(SIGHUP, c->gc_task, 1);
|
|
}
|
|
|
|
|
|
/* Kernel threads take (void *) as arguments. Thus we pass
|
|
the jffs_control data as a (void *) and then cast it. */
|
|
int
|
|
jffs_garbage_collect_thread(void *ptr)
|
|
{
|
|
struct jffs_control *c = (struct jffs_control *) ptr;
|
|
struct jffs_fmcontrol *fmc = c->fmc;
|
|
long erased;
|
|
int result = 0;
|
|
D1(int i = 1);
|
|
|
|
daemonize("jffs_gcd");
|
|
|
|
c->gc_task = current;
|
|
|
|
lock_kernel();
|
|
init_completion(&c->gc_thread_comp); /* barrier */
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
siginitsetinv (¤t->blocked, sigmask(SIGHUP) | sigmask(SIGKILL) | sigmask(SIGSTOP) | sigmask(SIGCONT));
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
D1(printk (KERN_NOTICE "jffs_garbage_collect_thread(): Starting infinite loop.\n"));
|
|
|
|
for (;;) {
|
|
|
|
/* See if we need to start gc. If we don't, go to sleep.
|
|
|
|
Current implementation is a BAD THING(tm). If we try
|
|
to unmount the FS, the unmount operation will sleep waiting
|
|
for this thread to exit. We need to arrange to send it a
|
|
sig before the umount process sleeps.
|
|
*/
|
|
|
|
if (!thread_should_wake(c))
|
|
set_current_state (TASK_INTERRUPTIBLE);
|
|
|
|
schedule(); /* Yes, we do this even if we want to go
|
|
on immediately - we're a low priority
|
|
background task. */
|
|
|
|
/* Put_super will send a SIGKILL and then wait on the sem.
|
|
*/
|
|
while (signal_pending(current)) {
|
|
siginfo_t info;
|
|
unsigned long signr = 0;
|
|
|
|
if (try_to_freeze())
|
|
continue;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
signr = dequeue_signal(current, ¤t->blocked, &info);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
switch(signr) {
|
|
case SIGSTOP:
|
|
D1(printk("jffs_garbage_collect_thread(): SIGSTOP received.\n"));
|
|
set_current_state(TASK_STOPPED);
|
|
schedule();
|
|
break;
|
|
|
|
case SIGKILL:
|
|
D1(printk("jffs_garbage_collect_thread(): SIGKILL received.\n"));
|
|
c->gc_task = NULL;
|
|
complete_and_exit(&c->gc_thread_comp, 0);
|
|
}
|
|
}
|
|
|
|
|
|
D1(printk (KERN_NOTICE "jffs_garbage_collect_thread(): collecting.\n"));
|
|
|
|
D3(printk (KERN_NOTICE "g_c_thread(): down biglock\n"));
|
|
mutex_lock(&fmc->biglock);
|
|
|
|
D1(printk("***jffs_garbage_collect_thread(): round #%u, "
|
|
"fmc->dirty_size = %u\n", i++, fmc->dirty_size));
|
|
D2(jffs_print_fmcontrol(fmc));
|
|
|
|
if ((erased = jffs_try_to_erase(c)) < 0) {
|
|
printk(KERN_WARNING "JFFS: Error in "
|
|
"garbage collector: %ld.\n", erased);
|
|
}
|
|
|
|
if (erased)
|
|
goto gc_end;
|
|
|
|
if (fmc->free_size == 0) {
|
|
/* Argh. Might as well commit suicide. */
|
|
printk(KERN_ERR "jffs_garbage_collect_thread(): free_size == 0. This is BAD.\n");
|
|
send_sig(SIGQUIT, c->gc_task, 1);
|
|
// panic()
|
|
goto gc_end;
|
|
}
|
|
|
|
/* Let's dare to make a garbage collect. */
|
|
if ((result = jffs_garbage_collect_next(c)) < 0) {
|
|
printk(KERN_ERR "JFFS: Something "
|
|
"has gone seriously wrong "
|
|
"with a garbage collect: %d\n", result);
|
|
}
|
|
|
|
gc_end:
|
|
D3(printk (KERN_NOTICE "g_c_thread(): up biglock\n"));
|
|
mutex_unlock(&fmc->biglock);
|
|
} /* for (;;) */
|
|
} /* jffs_garbage_collect_thread() */
|