mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-27 03:47:43 +00:00
2679d04041
The ovs kernel data path currently defers the execution of all recirc actions until stack utilization is at a minimum. This is too limiting for some packet forwarding scenarios due to the small size of the deferred action FIFO (10 entries). For example, broadcast traffic sent out more than 10 ports with recirculation results in packet drops when the deferred action FIFO becomes full, as reported here: http://openvswitch.org/pipermail/dev/2016-March/067672.html Since the current recursion depth is available (it is already tracked by the exec_actions_level pcpu variable), we can use it to determine whether to execute recirculation actions immediately (safe when recursion depth is low) or defer execution until more stack space is available. With this change, the deferred action fifo size becomes a non-issue for currently failing scenarios because it is no longer used when there are three or fewer recursions through ovs_execute_actions(). Suggested-by: Pravin Shelar <pshelar@ovn.org> Signed-off-by: Lance Richardson <lrichard@redhat.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
1274 lines
31 KiB
C
1274 lines
31 KiB
C
/*
|
|
* Copyright (c) 2007-2014 Nicira, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
* License as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/skbuff.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/openvswitch.h>
|
|
#include <linux/netfilter_ipv6.h>
|
|
#include <linux/sctp.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/in6.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <net/dst.h>
|
|
#include <net/ip.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/ip6_fib.h>
|
|
#include <net/checksum.h>
|
|
#include <net/dsfield.h>
|
|
#include <net/mpls.h>
|
|
#include <net/sctp/checksum.h>
|
|
|
|
#include "datapath.h"
|
|
#include "flow.h"
|
|
#include "conntrack.h"
|
|
#include "vport.h"
|
|
|
|
static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *attr, int len);
|
|
|
|
struct deferred_action {
|
|
struct sk_buff *skb;
|
|
const struct nlattr *actions;
|
|
|
|
/* Store pkt_key clone when creating deferred action. */
|
|
struct sw_flow_key pkt_key;
|
|
};
|
|
|
|
#define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
|
|
struct ovs_frag_data {
|
|
unsigned long dst;
|
|
struct vport *vport;
|
|
struct ovs_skb_cb cb;
|
|
__be16 inner_protocol;
|
|
__u16 vlan_tci;
|
|
__be16 vlan_proto;
|
|
unsigned int l2_len;
|
|
u8 l2_data[MAX_L2_LEN];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
|
|
|
|
#define DEFERRED_ACTION_FIFO_SIZE 10
|
|
#define OVS_RECURSION_LIMIT 5
|
|
#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
|
|
struct action_fifo {
|
|
int head;
|
|
int tail;
|
|
/* Deferred action fifo queue storage. */
|
|
struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
|
|
};
|
|
|
|
struct recirc_keys {
|
|
struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
|
|
};
|
|
|
|
static struct action_fifo __percpu *action_fifos;
|
|
static struct recirc_keys __percpu *recirc_keys;
|
|
static DEFINE_PER_CPU(int, exec_actions_level);
|
|
|
|
static void action_fifo_init(struct action_fifo *fifo)
|
|
{
|
|
fifo->head = 0;
|
|
fifo->tail = 0;
|
|
}
|
|
|
|
static bool action_fifo_is_empty(const struct action_fifo *fifo)
|
|
{
|
|
return (fifo->head == fifo->tail);
|
|
}
|
|
|
|
static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
|
|
{
|
|
if (action_fifo_is_empty(fifo))
|
|
return NULL;
|
|
|
|
return &fifo->fifo[fifo->tail++];
|
|
}
|
|
|
|
static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
|
|
{
|
|
if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
|
|
return NULL;
|
|
|
|
return &fifo->fifo[fifo->head++];
|
|
}
|
|
|
|
/* Return true if fifo is not full */
|
|
static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
|
|
const struct sw_flow_key *key,
|
|
const struct nlattr *attr)
|
|
{
|
|
struct action_fifo *fifo;
|
|
struct deferred_action *da;
|
|
|
|
fifo = this_cpu_ptr(action_fifos);
|
|
da = action_fifo_put(fifo);
|
|
if (da) {
|
|
da->skb = skb;
|
|
da->actions = attr;
|
|
da->pkt_key = *key;
|
|
}
|
|
|
|
return da;
|
|
}
|
|
|
|
static void invalidate_flow_key(struct sw_flow_key *key)
|
|
{
|
|
key->eth.type = htons(0);
|
|
}
|
|
|
|
static bool is_flow_key_valid(const struct sw_flow_key *key)
|
|
{
|
|
return !!key->eth.type;
|
|
}
|
|
|
|
static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
|
|
__be16 ethertype)
|
|
{
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE) {
|
|
__be16 diff[] = { ~(hdr->h_proto), ethertype };
|
|
|
|
skb->csum = ~csum_partial((char *)diff, sizeof(diff),
|
|
~skb->csum);
|
|
}
|
|
|
|
hdr->h_proto = ethertype;
|
|
}
|
|
|
|
static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
|
|
const struct ovs_action_push_mpls *mpls)
|
|
{
|
|
__be32 *new_mpls_lse;
|
|
|
|
/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
|
|
if (skb->encapsulation)
|
|
return -ENOTSUPP;
|
|
|
|
if (skb_cow_head(skb, MPLS_HLEN) < 0)
|
|
return -ENOMEM;
|
|
|
|
if (!skb->inner_protocol) {
|
|
skb_set_inner_network_header(skb, skb->mac_len);
|
|
skb_set_inner_protocol(skb, skb->protocol);
|
|
}
|
|
|
|
skb_push(skb, MPLS_HLEN);
|
|
memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
|
|
skb->mac_len);
|
|
skb_reset_mac_header(skb);
|
|
skb_set_network_header(skb, skb->mac_len);
|
|
|
|
new_mpls_lse = (__be32 *)skb_mpls_header(skb);
|
|
*new_mpls_lse = mpls->mpls_lse;
|
|
|
|
skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
|
|
|
|
update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
|
|
skb->protocol = mpls->mpls_ethertype;
|
|
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
|
|
const __be16 ethertype)
|
|
{
|
|
struct ethhdr *hdr;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
|
|
|
|
memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
|
|
skb->mac_len);
|
|
|
|
__skb_pull(skb, MPLS_HLEN);
|
|
skb_reset_mac_header(skb);
|
|
skb_set_network_header(skb, skb->mac_len);
|
|
|
|
/* skb_mpls_header() is used to locate the ethertype
|
|
* field correctly in the presence of VLAN tags.
|
|
*/
|
|
hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
|
|
update_ethertype(skb, hdr, ethertype);
|
|
if (eth_p_mpls(skb->protocol))
|
|
skb->protocol = ethertype;
|
|
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const __be32 *mpls_lse, const __be32 *mask)
|
|
{
|
|
__be32 *stack;
|
|
__be32 lse;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
stack = (__be32 *)skb_mpls_header(skb);
|
|
lse = OVS_MASKED(*stack, *mpls_lse, *mask);
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE) {
|
|
__be32 diff[] = { ~(*stack), lse };
|
|
|
|
skb->csum = ~csum_partial((char *)diff, sizeof(diff),
|
|
~skb->csum);
|
|
}
|
|
|
|
*stack = lse;
|
|
flow_key->mpls.top_lse = lse;
|
|
return 0;
|
|
}
|
|
|
|
static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int err;
|
|
|
|
err = skb_vlan_pop(skb);
|
|
if (skb_vlan_tag_present(skb)) {
|
|
invalidate_flow_key(key);
|
|
} else {
|
|
key->eth.vlan.tci = 0;
|
|
key->eth.vlan.tpid = 0;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
|
|
const struct ovs_action_push_vlan *vlan)
|
|
{
|
|
if (skb_vlan_tag_present(skb)) {
|
|
invalidate_flow_key(key);
|
|
} else {
|
|
key->eth.vlan.tci = vlan->vlan_tci;
|
|
key->eth.vlan.tpid = vlan->vlan_tpid;
|
|
}
|
|
return skb_vlan_push(skb, vlan->vlan_tpid,
|
|
ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
|
|
}
|
|
|
|
/* 'src' is already properly masked. */
|
|
static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
|
|
{
|
|
u16 *dst = (u16 *)dst_;
|
|
const u16 *src = (const u16 *)src_;
|
|
const u16 *mask = (const u16 *)mask_;
|
|
|
|
OVS_SET_MASKED(dst[0], src[0], mask[0]);
|
|
OVS_SET_MASKED(dst[1], src[1], mask[1]);
|
|
OVS_SET_MASKED(dst[2], src[2], mask[2]);
|
|
}
|
|
|
|
static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_ethernet *key,
|
|
const struct ovs_key_ethernet *mask)
|
|
{
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, ETH_HLEN);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
|
|
|
|
ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
|
|
mask->eth_src);
|
|
ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
|
|
mask->eth_dst);
|
|
|
|
skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
|
|
|
|
ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
|
|
ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
|
|
return 0;
|
|
}
|
|
|
|
static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
|
|
__be32 addr, __be32 new_addr)
|
|
{
|
|
int transport_len = skb->len - skb_transport_offset(skb);
|
|
|
|
if (nh->frag_off & htons(IP_OFFSET))
|
|
return;
|
|
|
|
if (nh->protocol == IPPROTO_TCP) {
|
|
if (likely(transport_len >= sizeof(struct tcphdr)))
|
|
inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
|
|
addr, new_addr, true);
|
|
} else if (nh->protocol == IPPROTO_UDP) {
|
|
if (likely(transport_len >= sizeof(struct udphdr))) {
|
|
struct udphdr *uh = udp_hdr(skb);
|
|
|
|
if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
inet_proto_csum_replace4(&uh->check, skb,
|
|
addr, new_addr, true);
|
|
if (!uh->check)
|
|
uh->check = CSUM_MANGLED_0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
|
|
__be32 *addr, __be32 new_addr)
|
|
{
|
|
update_ip_l4_checksum(skb, nh, *addr, new_addr);
|
|
csum_replace4(&nh->check, *addr, new_addr);
|
|
skb_clear_hash(skb);
|
|
*addr = new_addr;
|
|
}
|
|
|
|
static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
|
|
__be32 addr[4], const __be32 new_addr[4])
|
|
{
|
|
int transport_len = skb->len - skb_transport_offset(skb);
|
|
|
|
if (l4_proto == NEXTHDR_TCP) {
|
|
if (likely(transport_len >= sizeof(struct tcphdr)))
|
|
inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
|
|
addr, new_addr, true);
|
|
} else if (l4_proto == NEXTHDR_UDP) {
|
|
if (likely(transport_len >= sizeof(struct udphdr))) {
|
|
struct udphdr *uh = udp_hdr(skb);
|
|
|
|
if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
inet_proto_csum_replace16(&uh->check, skb,
|
|
addr, new_addr, true);
|
|
if (!uh->check)
|
|
uh->check = CSUM_MANGLED_0;
|
|
}
|
|
}
|
|
} else if (l4_proto == NEXTHDR_ICMP) {
|
|
if (likely(transport_len >= sizeof(struct icmp6hdr)))
|
|
inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
|
|
skb, addr, new_addr, true);
|
|
}
|
|
}
|
|
|
|
static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
|
|
const __be32 mask[4], __be32 masked[4])
|
|
{
|
|
masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
|
|
masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
|
|
masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
|
|
masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
|
|
}
|
|
|
|
static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
|
|
__be32 addr[4], const __be32 new_addr[4],
|
|
bool recalculate_csum)
|
|
{
|
|
if (recalculate_csum)
|
|
update_ipv6_checksum(skb, l4_proto, addr, new_addr);
|
|
|
|
skb_clear_hash(skb);
|
|
memcpy(addr, new_addr, sizeof(__be32[4]));
|
|
}
|
|
|
|
static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
|
|
{
|
|
/* Bits 21-24 are always unmasked, so this retains their values. */
|
|
OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
|
|
OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
|
|
OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
|
|
}
|
|
|
|
static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
|
|
u8 mask)
|
|
{
|
|
new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
|
|
|
|
csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
|
|
nh->ttl = new_ttl;
|
|
}
|
|
|
|
static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_ipv4 *key,
|
|
const struct ovs_key_ipv4 *mask)
|
|
{
|
|
struct iphdr *nh;
|
|
__be32 new_addr;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb_network_offset(skb) +
|
|
sizeof(struct iphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ip_hdr(skb);
|
|
|
|
/* Setting an IP addresses is typically only a side effect of
|
|
* matching on them in the current userspace implementation, so it
|
|
* makes sense to check if the value actually changed.
|
|
*/
|
|
if (mask->ipv4_src) {
|
|
new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
|
|
|
|
if (unlikely(new_addr != nh->saddr)) {
|
|
set_ip_addr(skb, nh, &nh->saddr, new_addr);
|
|
flow_key->ipv4.addr.src = new_addr;
|
|
}
|
|
}
|
|
if (mask->ipv4_dst) {
|
|
new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
|
|
|
|
if (unlikely(new_addr != nh->daddr)) {
|
|
set_ip_addr(skb, nh, &nh->daddr, new_addr);
|
|
flow_key->ipv4.addr.dst = new_addr;
|
|
}
|
|
}
|
|
if (mask->ipv4_tos) {
|
|
ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
|
|
flow_key->ip.tos = nh->tos;
|
|
}
|
|
if (mask->ipv4_ttl) {
|
|
set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
|
|
flow_key->ip.ttl = nh->ttl;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool is_ipv6_mask_nonzero(const __be32 addr[4])
|
|
{
|
|
return !!(addr[0] | addr[1] | addr[2] | addr[3]);
|
|
}
|
|
|
|
static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_ipv6 *key,
|
|
const struct ovs_key_ipv6 *mask)
|
|
{
|
|
struct ipv6hdr *nh;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb_network_offset(skb) +
|
|
sizeof(struct ipv6hdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ipv6_hdr(skb);
|
|
|
|
/* Setting an IP addresses is typically only a side effect of
|
|
* matching on them in the current userspace implementation, so it
|
|
* makes sense to check if the value actually changed.
|
|
*/
|
|
if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
|
|
__be32 *saddr = (__be32 *)&nh->saddr;
|
|
__be32 masked[4];
|
|
|
|
mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
|
|
|
|
if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
|
|
set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
|
|
true);
|
|
memcpy(&flow_key->ipv6.addr.src, masked,
|
|
sizeof(flow_key->ipv6.addr.src));
|
|
}
|
|
}
|
|
if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
|
|
unsigned int offset = 0;
|
|
int flags = IP6_FH_F_SKIP_RH;
|
|
bool recalc_csum = true;
|
|
__be32 *daddr = (__be32 *)&nh->daddr;
|
|
__be32 masked[4];
|
|
|
|
mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
|
|
|
|
if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
|
|
if (ipv6_ext_hdr(nh->nexthdr))
|
|
recalc_csum = (ipv6_find_hdr(skb, &offset,
|
|
NEXTHDR_ROUTING,
|
|
NULL, &flags)
|
|
!= NEXTHDR_ROUTING);
|
|
|
|
set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
|
|
recalc_csum);
|
|
memcpy(&flow_key->ipv6.addr.dst, masked,
|
|
sizeof(flow_key->ipv6.addr.dst));
|
|
}
|
|
}
|
|
if (mask->ipv6_tclass) {
|
|
ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
|
|
flow_key->ip.tos = ipv6_get_dsfield(nh);
|
|
}
|
|
if (mask->ipv6_label) {
|
|
set_ipv6_fl(nh, ntohl(key->ipv6_label),
|
|
ntohl(mask->ipv6_label));
|
|
flow_key->ipv6.label =
|
|
*(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
|
|
}
|
|
if (mask->ipv6_hlimit) {
|
|
OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
|
|
mask->ipv6_hlimit);
|
|
flow_key->ip.ttl = nh->hop_limit;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Must follow skb_ensure_writable() since that can move the skb data. */
|
|
static void set_tp_port(struct sk_buff *skb, __be16 *port,
|
|
__be16 new_port, __sum16 *check)
|
|
{
|
|
inet_proto_csum_replace2(check, skb, *port, new_port, false);
|
|
*port = new_port;
|
|
}
|
|
|
|
static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_udp *key,
|
|
const struct ovs_key_udp *mask)
|
|
{
|
|
struct udphdr *uh;
|
|
__be16 src, dst;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb_transport_offset(skb) +
|
|
sizeof(struct udphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
uh = udp_hdr(skb);
|
|
/* Either of the masks is non-zero, so do not bother checking them. */
|
|
src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
|
|
dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
|
|
|
|
if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
|
|
if (likely(src != uh->source)) {
|
|
set_tp_port(skb, &uh->source, src, &uh->check);
|
|
flow_key->tp.src = src;
|
|
}
|
|
if (likely(dst != uh->dest)) {
|
|
set_tp_port(skb, &uh->dest, dst, &uh->check);
|
|
flow_key->tp.dst = dst;
|
|
}
|
|
|
|
if (unlikely(!uh->check))
|
|
uh->check = CSUM_MANGLED_0;
|
|
} else {
|
|
uh->source = src;
|
|
uh->dest = dst;
|
|
flow_key->tp.src = src;
|
|
flow_key->tp.dst = dst;
|
|
}
|
|
|
|
skb_clear_hash(skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_tcp *key,
|
|
const struct ovs_key_tcp *mask)
|
|
{
|
|
struct tcphdr *th;
|
|
__be16 src, dst;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb_transport_offset(skb) +
|
|
sizeof(struct tcphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
th = tcp_hdr(skb);
|
|
src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
|
|
if (likely(src != th->source)) {
|
|
set_tp_port(skb, &th->source, src, &th->check);
|
|
flow_key->tp.src = src;
|
|
}
|
|
dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
|
|
if (likely(dst != th->dest)) {
|
|
set_tp_port(skb, &th->dest, dst, &th->check);
|
|
flow_key->tp.dst = dst;
|
|
}
|
|
skb_clear_hash(skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_sctp *key,
|
|
const struct ovs_key_sctp *mask)
|
|
{
|
|
unsigned int sctphoff = skb_transport_offset(skb);
|
|
struct sctphdr *sh;
|
|
__le32 old_correct_csum, new_csum, old_csum;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
sh = sctp_hdr(skb);
|
|
old_csum = sh->checksum;
|
|
old_correct_csum = sctp_compute_cksum(skb, sctphoff);
|
|
|
|
sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
|
|
sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
|
|
|
|
new_csum = sctp_compute_cksum(skb, sctphoff);
|
|
|
|
/* Carry any checksum errors through. */
|
|
sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
|
|
|
|
skb_clear_hash(skb);
|
|
flow_key->tp.src = sh->source;
|
|
flow_key->tp.dst = sh->dest;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
|
|
struct vport *vport = data->vport;
|
|
|
|
if (skb_cow_head(skb, data->l2_len) < 0) {
|
|
kfree_skb(skb);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
__skb_dst_copy(skb, data->dst);
|
|
*OVS_CB(skb) = data->cb;
|
|
skb->inner_protocol = data->inner_protocol;
|
|
skb->vlan_tci = data->vlan_tci;
|
|
skb->vlan_proto = data->vlan_proto;
|
|
|
|
/* Reconstruct the MAC header. */
|
|
skb_push(skb, data->l2_len);
|
|
memcpy(skb->data, &data->l2_data, data->l2_len);
|
|
skb_postpush_rcsum(skb, skb->data, data->l2_len);
|
|
skb_reset_mac_header(skb);
|
|
|
|
ovs_vport_send(vport, skb);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int
|
|
ovs_dst_get_mtu(const struct dst_entry *dst)
|
|
{
|
|
return dst->dev->mtu;
|
|
}
|
|
|
|
static struct dst_ops ovs_dst_ops = {
|
|
.family = AF_UNSPEC,
|
|
.mtu = ovs_dst_get_mtu,
|
|
};
|
|
|
|
/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
|
|
* ovs_vport_output(), which is called once per fragmented packet.
|
|
*/
|
|
static void prepare_frag(struct vport *vport, struct sk_buff *skb)
|
|
{
|
|
unsigned int hlen = skb_network_offset(skb);
|
|
struct ovs_frag_data *data;
|
|
|
|
data = this_cpu_ptr(&ovs_frag_data_storage);
|
|
data->dst = skb->_skb_refdst;
|
|
data->vport = vport;
|
|
data->cb = *OVS_CB(skb);
|
|
data->inner_protocol = skb->inner_protocol;
|
|
data->vlan_tci = skb->vlan_tci;
|
|
data->vlan_proto = skb->vlan_proto;
|
|
data->l2_len = hlen;
|
|
memcpy(&data->l2_data, skb->data, hlen);
|
|
|
|
memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
|
|
skb_pull(skb, hlen);
|
|
}
|
|
|
|
static void ovs_fragment(struct net *net, struct vport *vport,
|
|
struct sk_buff *skb, u16 mru, __be16 ethertype)
|
|
{
|
|
if (skb_network_offset(skb) > MAX_L2_LEN) {
|
|
OVS_NLERR(1, "L2 header too long to fragment");
|
|
goto err;
|
|
}
|
|
|
|
if (ethertype == htons(ETH_P_IP)) {
|
|
struct dst_entry ovs_dst;
|
|
unsigned long orig_dst;
|
|
|
|
prepare_frag(vport, skb);
|
|
dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
|
|
DST_OBSOLETE_NONE, DST_NOCOUNT);
|
|
ovs_dst.dev = vport->dev;
|
|
|
|
orig_dst = skb->_skb_refdst;
|
|
skb_dst_set_noref(skb, &ovs_dst);
|
|
IPCB(skb)->frag_max_size = mru;
|
|
|
|
ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
|
|
refdst_drop(orig_dst);
|
|
} else if (ethertype == htons(ETH_P_IPV6)) {
|
|
const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
|
|
unsigned long orig_dst;
|
|
struct rt6_info ovs_rt;
|
|
|
|
if (!v6ops) {
|
|
goto err;
|
|
}
|
|
|
|
prepare_frag(vport, skb);
|
|
memset(&ovs_rt, 0, sizeof(ovs_rt));
|
|
dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
|
|
DST_OBSOLETE_NONE, DST_NOCOUNT);
|
|
ovs_rt.dst.dev = vport->dev;
|
|
|
|
orig_dst = skb->_skb_refdst;
|
|
skb_dst_set_noref(skb, &ovs_rt.dst);
|
|
IP6CB(skb)->frag_max_size = mru;
|
|
|
|
v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
|
|
refdst_drop(orig_dst);
|
|
} else {
|
|
WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
|
|
ovs_vport_name(vport), ntohs(ethertype), mru,
|
|
vport->dev->mtu);
|
|
goto err;
|
|
}
|
|
|
|
return;
|
|
err:
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
|
|
struct sw_flow_key *key)
|
|
{
|
|
struct vport *vport = ovs_vport_rcu(dp, out_port);
|
|
|
|
if (likely(vport)) {
|
|
u16 mru = OVS_CB(skb)->mru;
|
|
u32 cutlen = OVS_CB(skb)->cutlen;
|
|
|
|
if (unlikely(cutlen > 0)) {
|
|
if (skb->len - cutlen > ETH_HLEN)
|
|
pskb_trim(skb, skb->len - cutlen);
|
|
else
|
|
pskb_trim(skb, ETH_HLEN);
|
|
}
|
|
|
|
if (likely(!mru || (skb->len <= mru + ETH_HLEN))) {
|
|
ovs_vport_send(vport, skb);
|
|
} else if (mru <= vport->dev->mtu) {
|
|
struct net *net = read_pnet(&dp->net);
|
|
__be16 ethertype = key->eth.type;
|
|
|
|
if (!is_flow_key_valid(key)) {
|
|
if (eth_p_mpls(skb->protocol))
|
|
ethertype = skb->inner_protocol;
|
|
else
|
|
ethertype = vlan_get_protocol(skb);
|
|
}
|
|
|
|
ovs_fragment(net, vport, skb, mru, ethertype);
|
|
} else {
|
|
kfree_skb(skb);
|
|
}
|
|
} else {
|
|
kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
static int output_userspace(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key, const struct nlattr *attr,
|
|
const struct nlattr *actions, int actions_len,
|
|
uint32_t cutlen)
|
|
{
|
|
struct dp_upcall_info upcall;
|
|
const struct nlattr *a;
|
|
int rem;
|
|
|
|
memset(&upcall, 0, sizeof(upcall));
|
|
upcall.cmd = OVS_PACKET_CMD_ACTION;
|
|
upcall.mru = OVS_CB(skb)->mru;
|
|
|
|
for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
|
|
a = nla_next(a, &rem)) {
|
|
switch (nla_type(a)) {
|
|
case OVS_USERSPACE_ATTR_USERDATA:
|
|
upcall.userdata = a;
|
|
break;
|
|
|
|
case OVS_USERSPACE_ATTR_PID:
|
|
upcall.portid = nla_get_u32(a);
|
|
break;
|
|
|
|
case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
|
|
/* Get out tunnel info. */
|
|
struct vport *vport;
|
|
|
|
vport = ovs_vport_rcu(dp, nla_get_u32(a));
|
|
if (vport) {
|
|
int err;
|
|
|
|
err = dev_fill_metadata_dst(vport->dev, skb);
|
|
if (!err)
|
|
upcall.egress_tun_info = skb_tunnel_info(skb);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case OVS_USERSPACE_ATTR_ACTIONS: {
|
|
/* Include actions. */
|
|
upcall.actions = actions;
|
|
upcall.actions_len = actions_len;
|
|
break;
|
|
}
|
|
|
|
} /* End of switch. */
|
|
}
|
|
|
|
return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
|
|
}
|
|
|
|
static int sample(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key, const struct nlattr *attr,
|
|
const struct nlattr *actions, int actions_len)
|
|
{
|
|
const struct nlattr *acts_list = NULL;
|
|
const struct nlattr *a;
|
|
int rem;
|
|
u32 cutlen = 0;
|
|
|
|
for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
|
|
a = nla_next(a, &rem)) {
|
|
u32 probability;
|
|
|
|
switch (nla_type(a)) {
|
|
case OVS_SAMPLE_ATTR_PROBABILITY:
|
|
probability = nla_get_u32(a);
|
|
if (!probability || prandom_u32() > probability)
|
|
return 0;
|
|
break;
|
|
|
|
case OVS_SAMPLE_ATTR_ACTIONS:
|
|
acts_list = a;
|
|
break;
|
|
}
|
|
}
|
|
|
|
rem = nla_len(acts_list);
|
|
a = nla_data(acts_list);
|
|
|
|
/* Actions list is empty, do nothing */
|
|
if (unlikely(!rem))
|
|
return 0;
|
|
|
|
/* The only known usage of sample action is having a single user-space
|
|
* action, or having a truncate action followed by a single user-space
|
|
* action. Treat this usage as a special case.
|
|
* The output_userspace() should clone the skb to be sent to the
|
|
* user space. This skb will be consumed by its caller.
|
|
*/
|
|
if (unlikely(nla_type(a) == OVS_ACTION_ATTR_TRUNC)) {
|
|
struct ovs_action_trunc *trunc = nla_data(a);
|
|
|
|
if (skb->len > trunc->max_len)
|
|
cutlen = skb->len - trunc->max_len;
|
|
|
|
a = nla_next(a, &rem);
|
|
}
|
|
|
|
if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
|
|
nla_is_last(a, rem)))
|
|
return output_userspace(dp, skb, key, a, actions,
|
|
actions_len, cutlen);
|
|
|
|
skb = skb_clone(skb, GFP_ATOMIC);
|
|
if (!skb)
|
|
/* Skip the sample action when out of memory. */
|
|
return 0;
|
|
|
|
if (!add_deferred_actions(skb, key, a)) {
|
|
if (net_ratelimit())
|
|
pr_warn("%s: deferred actions limit reached, dropping sample action\n",
|
|
ovs_dp_name(dp));
|
|
|
|
kfree_skb(skb);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
|
|
const struct nlattr *attr)
|
|
{
|
|
struct ovs_action_hash *hash_act = nla_data(attr);
|
|
u32 hash = 0;
|
|
|
|
/* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
|
|
hash = skb_get_hash(skb);
|
|
hash = jhash_1word(hash, hash_act->hash_basis);
|
|
if (!hash)
|
|
hash = 0x1;
|
|
|
|
key->ovs_flow_hash = hash;
|
|
}
|
|
|
|
static int execute_set_action(struct sk_buff *skb,
|
|
struct sw_flow_key *flow_key,
|
|
const struct nlattr *a)
|
|
{
|
|
/* Only tunnel set execution is supported without a mask. */
|
|
if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
|
|
struct ovs_tunnel_info *tun = nla_data(a);
|
|
|
|
skb_dst_drop(skb);
|
|
dst_hold((struct dst_entry *)tun->tun_dst);
|
|
skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Mask is at the midpoint of the data. */
|
|
#define get_mask(a, type) ((const type)nla_data(a) + 1)
|
|
|
|
static int execute_masked_set_action(struct sk_buff *skb,
|
|
struct sw_flow_key *flow_key,
|
|
const struct nlattr *a)
|
|
{
|
|
int err = 0;
|
|
|
|
switch (nla_type(a)) {
|
|
case OVS_KEY_ATTR_PRIORITY:
|
|
OVS_SET_MASKED(skb->priority, nla_get_u32(a),
|
|
*get_mask(a, u32 *));
|
|
flow_key->phy.priority = skb->priority;
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_SKB_MARK:
|
|
OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
|
|
flow_key->phy.skb_mark = skb->mark;
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_TUNNEL_INFO:
|
|
/* Masked data not supported for tunnel. */
|
|
err = -EINVAL;
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_ETHERNET:
|
|
err = set_eth_addr(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_ethernet *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_IPV4:
|
|
err = set_ipv4(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_ipv4 *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_IPV6:
|
|
err = set_ipv6(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_ipv6 *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_TCP:
|
|
err = set_tcp(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_tcp *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_UDP:
|
|
err = set_udp(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_udp *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_SCTP:
|
|
err = set_sctp(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_sctp *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_MPLS:
|
|
err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
|
|
__be32 *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_CT_STATE:
|
|
case OVS_KEY_ATTR_CT_ZONE:
|
|
case OVS_KEY_ATTR_CT_MARK:
|
|
case OVS_KEY_ATTR_CT_LABELS:
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *a, int rem)
|
|
{
|
|
struct deferred_action *da;
|
|
int level;
|
|
|
|
if (!is_flow_key_valid(key)) {
|
|
int err;
|
|
|
|
err = ovs_flow_key_update(skb, key);
|
|
if (err)
|
|
return err;
|
|
}
|
|
BUG_ON(!is_flow_key_valid(key));
|
|
|
|
if (!nla_is_last(a, rem)) {
|
|
/* Recirc action is the not the last action
|
|
* of the action list, need to clone the skb.
|
|
*/
|
|
skb = skb_clone(skb, GFP_ATOMIC);
|
|
|
|
/* Skip the recirc action when out of memory, but
|
|
* continue on with the rest of the action list.
|
|
*/
|
|
if (!skb)
|
|
return 0;
|
|
}
|
|
|
|
level = this_cpu_read(exec_actions_level);
|
|
if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
|
|
struct recirc_keys *rks = this_cpu_ptr(recirc_keys);
|
|
struct sw_flow_key *recirc_key = &rks->key[level - 1];
|
|
|
|
*recirc_key = *key;
|
|
recirc_key->recirc_id = nla_get_u32(a);
|
|
ovs_dp_process_packet(skb, recirc_key);
|
|
|
|
return 0;
|
|
}
|
|
|
|
da = add_deferred_actions(skb, key, NULL);
|
|
if (da) {
|
|
da->pkt_key.recirc_id = nla_get_u32(a);
|
|
} else {
|
|
kfree_skb(skb);
|
|
|
|
if (net_ratelimit())
|
|
pr_warn("%s: deferred action limit reached, drop recirc action\n",
|
|
ovs_dp_name(dp));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Execute a list of actions against 'skb'. */
|
|
static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *attr, int len)
|
|
{
|
|
/* Every output action needs a separate clone of 'skb', but the common
|
|
* case is just a single output action, so that doing a clone and
|
|
* then freeing the original skbuff is wasteful. So the following code
|
|
* is slightly obscure just to avoid that.
|
|
*/
|
|
int prev_port = -1;
|
|
const struct nlattr *a;
|
|
int rem;
|
|
|
|
for (a = attr, rem = len; rem > 0;
|
|
a = nla_next(a, &rem)) {
|
|
int err = 0;
|
|
|
|
if (unlikely(prev_port != -1)) {
|
|
struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
|
|
|
|
if (out_skb)
|
|
do_output(dp, out_skb, prev_port, key);
|
|
|
|
OVS_CB(skb)->cutlen = 0;
|
|
prev_port = -1;
|
|
}
|
|
|
|
switch (nla_type(a)) {
|
|
case OVS_ACTION_ATTR_OUTPUT:
|
|
prev_port = nla_get_u32(a);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_TRUNC: {
|
|
struct ovs_action_trunc *trunc = nla_data(a);
|
|
|
|
if (skb->len > trunc->max_len)
|
|
OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_USERSPACE:
|
|
output_userspace(dp, skb, key, a, attr,
|
|
len, OVS_CB(skb)->cutlen);
|
|
OVS_CB(skb)->cutlen = 0;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_HASH:
|
|
execute_hash(skb, key, a);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_MPLS:
|
|
err = push_mpls(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_POP_MPLS:
|
|
err = pop_mpls(skb, key, nla_get_be16(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_VLAN:
|
|
err = push_vlan(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_POP_VLAN:
|
|
err = pop_vlan(skb, key);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_RECIRC:
|
|
err = execute_recirc(dp, skb, key, a, rem);
|
|
if (nla_is_last(a, rem)) {
|
|
/* If this is the last action, the skb has
|
|
* been consumed or freed.
|
|
* Return immediately.
|
|
*/
|
|
return err;
|
|
}
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SET:
|
|
err = execute_set_action(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SET_MASKED:
|
|
case OVS_ACTION_ATTR_SET_TO_MASKED:
|
|
err = execute_masked_set_action(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SAMPLE:
|
|
err = sample(dp, skb, key, a, attr, len);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_CT:
|
|
if (!is_flow_key_valid(key)) {
|
|
err = ovs_flow_key_update(skb, key);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
|
|
nla_data(a));
|
|
|
|
/* Hide stolen IP fragments from user space. */
|
|
if (err)
|
|
return err == -EINPROGRESS ? 0 : err;
|
|
break;
|
|
}
|
|
|
|
if (unlikely(err)) {
|
|
kfree_skb(skb);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (prev_port != -1)
|
|
do_output(dp, skb, prev_port, key);
|
|
else
|
|
consume_skb(skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void process_deferred_actions(struct datapath *dp)
|
|
{
|
|
struct action_fifo *fifo = this_cpu_ptr(action_fifos);
|
|
|
|
/* Do not touch the FIFO in case there is no deferred actions. */
|
|
if (action_fifo_is_empty(fifo))
|
|
return;
|
|
|
|
/* Finishing executing all deferred actions. */
|
|
do {
|
|
struct deferred_action *da = action_fifo_get(fifo);
|
|
struct sk_buff *skb = da->skb;
|
|
struct sw_flow_key *key = &da->pkt_key;
|
|
const struct nlattr *actions = da->actions;
|
|
|
|
if (actions)
|
|
do_execute_actions(dp, skb, key, actions,
|
|
nla_len(actions));
|
|
else
|
|
ovs_dp_process_packet(skb, key);
|
|
} while (!action_fifo_is_empty(fifo));
|
|
|
|
/* Reset FIFO for the next packet. */
|
|
action_fifo_init(fifo);
|
|
}
|
|
|
|
/* Execute a list of actions against 'skb'. */
|
|
int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
|
|
const struct sw_flow_actions *acts,
|
|
struct sw_flow_key *key)
|
|
{
|
|
int err, level;
|
|
|
|
level = __this_cpu_inc_return(exec_actions_level);
|
|
if (unlikely(level > OVS_RECURSION_LIMIT)) {
|
|
net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
|
|
ovs_dp_name(dp));
|
|
kfree_skb(skb);
|
|
err = -ENETDOWN;
|
|
goto out;
|
|
}
|
|
|
|
err = do_execute_actions(dp, skb, key,
|
|
acts->actions, acts->actions_len);
|
|
|
|
if (level == 1)
|
|
process_deferred_actions(dp);
|
|
|
|
out:
|
|
__this_cpu_dec(exec_actions_level);
|
|
return err;
|
|
}
|
|
|
|
int action_fifos_init(void)
|
|
{
|
|
action_fifos = alloc_percpu(struct action_fifo);
|
|
if (!action_fifos)
|
|
return -ENOMEM;
|
|
|
|
recirc_keys = alloc_percpu(struct recirc_keys);
|
|
if (!recirc_keys) {
|
|
free_percpu(action_fifos);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void action_fifos_exit(void)
|
|
{
|
|
free_percpu(action_fifos);
|
|
free_percpu(recirc_keys);
|
|
}
|