mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-12 20:31:49 +00:00
87f39f0493
Follow-on patch to the previous driver model patch for the MTD framework. This one makes various MTD drivers connect to the driver model tree, so /sys/devices/virtual/mtd/* nodes are no longer present ... mostly drivers used on boards I have handy. Based on a patch from Kay Sievers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
791 lines
20 KiB
C
791 lines
20 KiB
C
/*
|
|
* MTD SPI driver for ST M25Pxx (and similar) serial flash chips
|
|
*
|
|
* Author: Mike Lavender, mike@steroidmicros.com
|
|
*
|
|
* Copyright (c) 2005, Intec Automation Inc.
|
|
*
|
|
* Some parts are based on lart.c by Abraham Van Der Merwe
|
|
*
|
|
* Cleaned up and generalized based on mtd_dataflash.c
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/math64.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/flash.h>
|
|
|
|
|
|
#define FLASH_PAGESIZE 256
|
|
|
|
/* Flash opcodes. */
|
|
#define OPCODE_WREN 0x06 /* Write enable */
|
|
#define OPCODE_RDSR 0x05 /* Read status register */
|
|
#define OPCODE_WRSR 0x01 /* Write status register 1 byte */
|
|
#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
|
|
#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
|
|
#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
|
|
#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
|
|
#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
|
|
#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
|
|
#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
|
|
#define OPCODE_RDID 0x9f /* Read JEDEC ID */
|
|
|
|
/* Status Register bits. */
|
|
#define SR_WIP 1 /* Write in progress */
|
|
#define SR_WEL 2 /* Write enable latch */
|
|
/* meaning of other SR_* bits may differ between vendors */
|
|
#define SR_BP0 4 /* Block protect 0 */
|
|
#define SR_BP1 8 /* Block protect 1 */
|
|
#define SR_BP2 0x10 /* Block protect 2 */
|
|
#define SR_SRWD 0x80 /* SR write protect */
|
|
|
|
/* Define max times to check status register before we give up. */
|
|
#define MAX_READY_WAIT_COUNT 100000
|
|
#define CMD_SIZE 4
|
|
|
|
#ifdef CONFIG_M25PXX_USE_FAST_READ
|
|
#define OPCODE_READ OPCODE_FAST_READ
|
|
#define FAST_READ_DUMMY_BYTE 1
|
|
#else
|
|
#define OPCODE_READ OPCODE_NORM_READ
|
|
#define FAST_READ_DUMMY_BYTE 0
|
|
#endif
|
|
|
|
/****************************************************************************/
|
|
|
|
struct m25p {
|
|
struct spi_device *spi;
|
|
struct mutex lock;
|
|
struct mtd_info mtd;
|
|
unsigned partitioned:1;
|
|
u8 erase_opcode;
|
|
u8 command[CMD_SIZE + FAST_READ_DUMMY_BYTE];
|
|
};
|
|
|
|
static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
|
|
{
|
|
return container_of(mtd, struct m25p, mtd);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* Internal helper functions
|
|
*/
|
|
|
|
/*
|
|
* Read the status register, returning its value in the location
|
|
* Return the status register value.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static int read_sr(struct m25p *flash)
|
|
{
|
|
ssize_t retval;
|
|
u8 code = OPCODE_RDSR;
|
|
u8 val;
|
|
|
|
retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
|
|
|
|
if (retval < 0) {
|
|
dev_err(&flash->spi->dev, "error %d reading SR\n",
|
|
(int) retval);
|
|
return retval;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Write status register 1 byte
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static int write_sr(struct m25p *flash, u8 val)
|
|
{
|
|
flash->command[0] = OPCODE_WRSR;
|
|
flash->command[1] = val;
|
|
|
|
return spi_write(flash->spi, flash->command, 2);
|
|
}
|
|
|
|
/*
|
|
* Set write enable latch with Write Enable command.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static inline int write_enable(struct m25p *flash)
|
|
{
|
|
u8 code = OPCODE_WREN;
|
|
|
|
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Service routine to read status register until ready, or timeout occurs.
|
|
* Returns non-zero if error.
|
|
*/
|
|
static int wait_till_ready(struct m25p *flash)
|
|
{
|
|
int count;
|
|
int sr;
|
|
|
|
/* one chip guarantees max 5 msec wait here after page writes,
|
|
* but potentially three seconds (!) after page erase.
|
|
*/
|
|
for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {
|
|
if ((sr = read_sr(flash)) < 0)
|
|
break;
|
|
else if (!(sr & SR_WIP))
|
|
return 0;
|
|
|
|
/* REVISIT sometimes sleeping would be best */
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Erase the whole flash memory
|
|
*
|
|
* Returns 0 if successful, non-zero otherwise.
|
|
*/
|
|
static int erase_chip(struct m25p *flash)
|
|
{
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
|
|
dev_name(&flash->spi->dev), __func__,
|
|
(long long)(flash->mtd.size >> 10));
|
|
|
|
/* Wait until finished previous write command. */
|
|
if (wait_till_ready(flash))
|
|
return 1;
|
|
|
|
/* Send write enable, then erase commands. */
|
|
write_enable(flash);
|
|
|
|
/* Set up command buffer. */
|
|
flash->command[0] = OPCODE_CHIP_ERASE;
|
|
|
|
spi_write(flash->spi, flash->command, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Erase one sector of flash memory at offset ``offset'' which is any
|
|
* address within the sector which should be erased.
|
|
*
|
|
* Returns 0 if successful, non-zero otherwise.
|
|
*/
|
|
static int erase_sector(struct m25p *flash, u32 offset)
|
|
{
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
|
|
dev_name(&flash->spi->dev), __func__,
|
|
flash->mtd.erasesize / 1024, offset);
|
|
|
|
/* Wait until finished previous write command. */
|
|
if (wait_till_ready(flash))
|
|
return 1;
|
|
|
|
/* Send write enable, then erase commands. */
|
|
write_enable(flash);
|
|
|
|
/* Set up command buffer. */
|
|
flash->command[0] = flash->erase_opcode;
|
|
flash->command[1] = offset >> 16;
|
|
flash->command[2] = offset >> 8;
|
|
flash->command[3] = offset;
|
|
|
|
spi_write(flash->spi, flash->command, CMD_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* MTD implementation
|
|
*/
|
|
|
|
/*
|
|
* Erase an address range on the flash chip. The address range may extend
|
|
* one or more erase sectors. Return an error is there is a problem erasing.
|
|
*/
|
|
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct m25p *flash = mtd_to_m25p(mtd);
|
|
u32 addr,len;
|
|
uint32_t rem;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
|
|
dev_name(&flash->spi->dev), __func__, "at",
|
|
(long long)instr->addr, (long long)instr->len);
|
|
|
|
/* sanity checks */
|
|
if (instr->addr + instr->len > flash->mtd.size)
|
|
return -EINVAL;
|
|
div_u64_rem(instr->len, mtd->erasesize, &rem);
|
|
if (rem)
|
|
return -EINVAL;
|
|
|
|
addr = instr->addr;
|
|
len = instr->len;
|
|
|
|
mutex_lock(&flash->lock);
|
|
|
|
/* whole-chip erase? */
|
|
if (len == flash->mtd.size && erase_chip(flash)) {
|
|
instr->state = MTD_ERASE_FAILED;
|
|
mutex_unlock(&flash->lock);
|
|
return -EIO;
|
|
|
|
/* REVISIT in some cases we could speed up erasing large regions
|
|
* by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
|
|
* to use "small sector erase", but that's not always optimal.
|
|
*/
|
|
|
|
/* "sector"-at-a-time erase */
|
|
} else {
|
|
while (len) {
|
|
if (erase_sector(flash, addr)) {
|
|
instr->state = MTD_ERASE_FAILED;
|
|
mutex_unlock(&flash->lock);
|
|
return -EIO;
|
|
}
|
|
|
|
addr += mtd->erasesize;
|
|
len -= mtd->erasesize;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&flash->lock);
|
|
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read an address range from the flash chip. The address range
|
|
* may be any size provided it is within the physical boundaries.
|
|
*/
|
|
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct m25p *flash = mtd_to_m25p(mtd);
|
|
struct spi_transfer t[2];
|
|
struct spi_message m;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
|
|
dev_name(&flash->spi->dev), __func__, "from",
|
|
(u32)from, len);
|
|
|
|
/* sanity checks */
|
|
if (!len)
|
|
return 0;
|
|
|
|
if (from + len > flash->mtd.size)
|
|
return -EINVAL;
|
|
|
|
spi_message_init(&m);
|
|
memset(t, 0, (sizeof t));
|
|
|
|
/* NOTE:
|
|
* OPCODE_FAST_READ (if available) is faster.
|
|
* Should add 1 byte DUMMY_BYTE.
|
|
*/
|
|
t[0].tx_buf = flash->command;
|
|
t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;
|
|
spi_message_add_tail(&t[0], &m);
|
|
|
|
t[1].rx_buf = buf;
|
|
t[1].len = len;
|
|
spi_message_add_tail(&t[1], &m);
|
|
|
|
/* Byte count starts at zero. */
|
|
if (retlen)
|
|
*retlen = 0;
|
|
|
|
mutex_lock(&flash->lock);
|
|
|
|
/* Wait till previous write/erase is done. */
|
|
if (wait_till_ready(flash)) {
|
|
/* REVISIT status return?? */
|
|
mutex_unlock(&flash->lock);
|
|
return 1;
|
|
}
|
|
|
|
/* FIXME switch to OPCODE_FAST_READ. It's required for higher
|
|
* clocks; and at this writing, every chip this driver handles
|
|
* supports that opcode.
|
|
*/
|
|
|
|
/* Set up the write data buffer. */
|
|
flash->command[0] = OPCODE_READ;
|
|
flash->command[1] = from >> 16;
|
|
flash->command[2] = from >> 8;
|
|
flash->command[3] = from;
|
|
|
|
spi_sync(flash->spi, &m);
|
|
|
|
*retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE;
|
|
|
|
mutex_unlock(&flash->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write an address range to the flash chip. Data must be written in
|
|
* FLASH_PAGESIZE chunks. The address range may be any size provided
|
|
* it is within the physical boundaries.
|
|
*/
|
|
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct m25p *flash = mtd_to_m25p(mtd);
|
|
u32 page_offset, page_size;
|
|
struct spi_transfer t[2];
|
|
struct spi_message m;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
|
|
dev_name(&flash->spi->dev), __func__, "to",
|
|
(u32)to, len);
|
|
|
|
if (retlen)
|
|
*retlen = 0;
|
|
|
|
/* sanity checks */
|
|
if (!len)
|
|
return(0);
|
|
|
|
if (to + len > flash->mtd.size)
|
|
return -EINVAL;
|
|
|
|
spi_message_init(&m);
|
|
memset(t, 0, (sizeof t));
|
|
|
|
t[0].tx_buf = flash->command;
|
|
t[0].len = CMD_SIZE;
|
|
spi_message_add_tail(&t[0], &m);
|
|
|
|
t[1].tx_buf = buf;
|
|
spi_message_add_tail(&t[1], &m);
|
|
|
|
mutex_lock(&flash->lock);
|
|
|
|
/* Wait until finished previous write command. */
|
|
if (wait_till_ready(flash)) {
|
|
mutex_unlock(&flash->lock);
|
|
return 1;
|
|
}
|
|
|
|
write_enable(flash);
|
|
|
|
/* Set up the opcode in the write buffer. */
|
|
flash->command[0] = OPCODE_PP;
|
|
flash->command[1] = to >> 16;
|
|
flash->command[2] = to >> 8;
|
|
flash->command[3] = to;
|
|
|
|
/* what page do we start with? */
|
|
page_offset = to % FLASH_PAGESIZE;
|
|
|
|
/* do all the bytes fit onto one page? */
|
|
if (page_offset + len <= FLASH_PAGESIZE) {
|
|
t[1].len = len;
|
|
|
|
spi_sync(flash->spi, &m);
|
|
|
|
*retlen = m.actual_length - CMD_SIZE;
|
|
} else {
|
|
u32 i;
|
|
|
|
/* the size of data remaining on the first page */
|
|
page_size = FLASH_PAGESIZE - page_offset;
|
|
|
|
t[1].len = page_size;
|
|
spi_sync(flash->spi, &m);
|
|
|
|
*retlen = m.actual_length - CMD_SIZE;
|
|
|
|
/* write everything in PAGESIZE chunks */
|
|
for (i = page_size; i < len; i += page_size) {
|
|
page_size = len - i;
|
|
if (page_size > FLASH_PAGESIZE)
|
|
page_size = FLASH_PAGESIZE;
|
|
|
|
/* write the next page to flash */
|
|
flash->command[1] = (to + i) >> 16;
|
|
flash->command[2] = (to + i) >> 8;
|
|
flash->command[3] = (to + i);
|
|
|
|
t[1].tx_buf = buf + i;
|
|
t[1].len = page_size;
|
|
|
|
wait_till_ready(flash);
|
|
|
|
write_enable(flash);
|
|
|
|
spi_sync(flash->spi, &m);
|
|
|
|
if (retlen)
|
|
*retlen += m.actual_length - CMD_SIZE;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&flash->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* SPI device driver setup and teardown
|
|
*/
|
|
|
|
struct flash_info {
|
|
char *name;
|
|
|
|
/* JEDEC id zero means "no ID" (most older chips); otherwise it has
|
|
* a high byte of zero plus three data bytes: the manufacturer id,
|
|
* then a two byte device id.
|
|
*/
|
|
u32 jedec_id;
|
|
u16 ext_id;
|
|
|
|
/* The size listed here is what works with OPCODE_SE, which isn't
|
|
* necessarily called a "sector" by the vendor.
|
|
*/
|
|
unsigned sector_size;
|
|
u16 n_sectors;
|
|
|
|
u16 flags;
|
|
#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
|
|
};
|
|
|
|
|
|
/* NOTE: double check command sets and memory organization when you add
|
|
* more flash chips. This current list focusses on newer chips, which
|
|
* have been converging on command sets which including JEDEC ID.
|
|
*/
|
|
static struct flash_info __devinitdata m25p_data [] = {
|
|
|
|
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
|
|
{ "at25fs010", 0x1f6601, 0, 32 * 1024, 4, SECT_4K, },
|
|
{ "at25fs040", 0x1f6604, 0, 64 * 1024, 8, SECT_4K, },
|
|
|
|
{ "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K, },
|
|
{ "at25df641", 0x1f4800, 0, 64 * 1024, 128, SECT_4K, },
|
|
|
|
{ "at26f004", 0x1f0400, 0, 64 * 1024, 8, SECT_4K, },
|
|
{ "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K, },
|
|
{ "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K, },
|
|
{ "at26df321", 0x1f4701, 0, 64 * 1024, 64, SECT_4K, },
|
|
|
|
/* Spansion -- single (large) sector size only, at least
|
|
* for the chips listed here (without boot sectors).
|
|
*/
|
|
{ "s25sl004a", 0x010212, 0, 64 * 1024, 8, },
|
|
{ "s25sl008a", 0x010213, 0, 64 * 1024, 16, },
|
|
{ "s25sl016a", 0x010214, 0, 64 * 1024, 32, },
|
|
{ "s25sl032a", 0x010215, 0, 64 * 1024, 64, },
|
|
{ "s25sl064a", 0x010216, 0, 64 * 1024, 128, },
|
|
{ "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, },
|
|
{ "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, },
|
|
|
|
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
|
|
{ "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K, },
|
|
{ "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K, },
|
|
{ "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K, },
|
|
{ "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K, },
|
|
|
|
/* ST Microelectronics -- newer production may have feature updates */
|
|
{ "m25p05", 0x202010, 0, 32 * 1024, 2, },
|
|
{ "m25p10", 0x202011, 0, 32 * 1024, 4, },
|
|
{ "m25p20", 0x202012, 0, 64 * 1024, 4, },
|
|
{ "m25p40", 0x202013, 0, 64 * 1024, 8, },
|
|
{ "m25p80", 0, 0, 64 * 1024, 16, },
|
|
{ "m25p16", 0x202015, 0, 64 * 1024, 32, },
|
|
{ "m25p32", 0x202016, 0, 64 * 1024, 64, },
|
|
{ "m25p64", 0x202017, 0, 64 * 1024, 128, },
|
|
{ "m25p128", 0x202018, 0, 256 * 1024, 64, },
|
|
|
|
{ "m45pe80", 0x204014, 0, 64 * 1024, 16, },
|
|
{ "m45pe16", 0x204015, 0, 64 * 1024, 32, },
|
|
|
|
{ "m25pe80", 0x208014, 0, 64 * 1024, 16, },
|
|
{ "m25pe16", 0x208015, 0, 64 * 1024, 32, SECT_4K, },
|
|
|
|
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
|
|
{ "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, },
|
|
{ "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, },
|
|
{ "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, },
|
|
{ "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, },
|
|
{ "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, },
|
|
{ "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, },
|
|
{ "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, },
|
|
};
|
|
|
|
static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
|
|
{
|
|
int tmp;
|
|
u8 code = OPCODE_RDID;
|
|
u8 id[5];
|
|
u32 jedec;
|
|
u16 ext_jedec;
|
|
struct flash_info *info;
|
|
|
|
/* JEDEC also defines an optional "extended device information"
|
|
* string for after vendor-specific data, after the three bytes
|
|
* we use here. Supporting some chips might require using it.
|
|
*/
|
|
tmp = spi_write_then_read(spi, &code, 1, id, 5);
|
|
if (tmp < 0) {
|
|
DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
|
|
dev_name(&spi->dev), tmp);
|
|
return NULL;
|
|
}
|
|
jedec = id[0];
|
|
jedec = jedec << 8;
|
|
jedec |= id[1];
|
|
jedec = jedec << 8;
|
|
jedec |= id[2];
|
|
|
|
ext_jedec = id[3] << 8 | id[4];
|
|
|
|
for (tmp = 0, info = m25p_data;
|
|
tmp < ARRAY_SIZE(m25p_data);
|
|
tmp++, info++) {
|
|
if (info->jedec_id == jedec) {
|
|
if (info->ext_id != 0 && info->ext_id != ext_jedec)
|
|
continue;
|
|
return info;
|
|
}
|
|
}
|
|
dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* board specific setup should have ensured the SPI clock used here
|
|
* matches what the READ command supports, at least until this driver
|
|
* understands FAST_READ (for clocks over 25 MHz).
|
|
*/
|
|
static int __devinit m25p_probe(struct spi_device *spi)
|
|
{
|
|
struct flash_platform_data *data;
|
|
struct m25p *flash;
|
|
struct flash_info *info;
|
|
unsigned i;
|
|
|
|
/* Platform data helps sort out which chip type we have, as
|
|
* well as how this board partitions it. If we don't have
|
|
* a chip ID, try the JEDEC id commands; they'll work for most
|
|
* newer chips, even if we don't recognize the particular chip.
|
|
*/
|
|
data = spi->dev.platform_data;
|
|
if (data && data->type) {
|
|
for (i = 0, info = m25p_data;
|
|
i < ARRAY_SIZE(m25p_data);
|
|
i++, info++) {
|
|
if (strcmp(data->type, info->name) == 0)
|
|
break;
|
|
}
|
|
|
|
/* unrecognized chip? */
|
|
if (i == ARRAY_SIZE(m25p_data)) {
|
|
DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
|
|
dev_name(&spi->dev), data->type);
|
|
info = NULL;
|
|
|
|
/* recognized; is that chip really what's there? */
|
|
} else if (info->jedec_id) {
|
|
struct flash_info *chip = jedec_probe(spi);
|
|
|
|
if (!chip || chip != info) {
|
|
dev_warn(&spi->dev, "found %s, expected %s\n",
|
|
chip ? chip->name : "UNKNOWN",
|
|
info->name);
|
|
info = NULL;
|
|
}
|
|
}
|
|
} else
|
|
info = jedec_probe(spi);
|
|
|
|
if (!info)
|
|
return -ENODEV;
|
|
|
|
flash = kzalloc(sizeof *flash, GFP_KERNEL);
|
|
if (!flash)
|
|
return -ENOMEM;
|
|
|
|
flash->spi = spi;
|
|
mutex_init(&flash->lock);
|
|
dev_set_drvdata(&spi->dev, flash);
|
|
|
|
/*
|
|
* Atmel serial flash tend to power up
|
|
* with the software protection bits set
|
|
*/
|
|
|
|
if (info->jedec_id >> 16 == 0x1f) {
|
|
write_enable(flash);
|
|
write_sr(flash, 0);
|
|
}
|
|
|
|
if (data && data->name)
|
|
flash->mtd.name = data->name;
|
|
else
|
|
flash->mtd.name = dev_name(&spi->dev);
|
|
|
|
flash->mtd.type = MTD_NORFLASH;
|
|
flash->mtd.writesize = 1;
|
|
flash->mtd.flags = MTD_CAP_NORFLASH;
|
|
flash->mtd.size = info->sector_size * info->n_sectors;
|
|
flash->mtd.erase = m25p80_erase;
|
|
flash->mtd.read = m25p80_read;
|
|
flash->mtd.write = m25p80_write;
|
|
|
|
/* prefer "small sector" erase if possible */
|
|
if (info->flags & SECT_4K) {
|
|
flash->erase_opcode = OPCODE_BE_4K;
|
|
flash->mtd.erasesize = 4096;
|
|
} else {
|
|
flash->erase_opcode = OPCODE_SE;
|
|
flash->mtd.erasesize = info->sector_size;
|
|
}
|
|
|
|
flash->mtd.dev.parent = &spi->dev;
|
|
|
|
dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name,
|
|
(long long)flash->mtd.size >> 10);
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL2,
|
|
"mtd .name = %s, .size = 0x%llx (%lldMiB) "
|
|
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
|
|
flash->mtd.name,
|
|
(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
|
|
flash->mtd.erasesize, flash->mtd.erasesize / 1024,
|
|
flash->mtd.numeraseregions);
|
|
|
|
if (flash->mtd.numeraseregions)
|
|
for (i = 0; i < flash->mtd.numeraseregions; i++)
|
|
DEBUG(MTD_DEBUG_LEVEL2,
|
|
"mtd.eraseregions[%d] = { .offset = 0x%llx, "
|
|
".erasesize = 0x%.8x (%uKiB), "
|
|
".numblocks = %d }\n",
|
|
i, (long long)flash->mtd.eraseregions[i].offset,
|
|
flash->mtd.eraseregions[i].erasesize,
|
|
flash->mtd.eraseregions[i].erasesize / 1024,
|
|
flash->mtd.eraseregions[i].numblocks);
|
|
|
|
|
|
/* partitions should match sector boundaries; and it may be good to
|
|
* use readonly partitions for writeprotected sectors (BP2..BP0).
|
|
*/
|
|
if (mtd_has_partitions()) {
|
|
struct mtd_partition *parts = NULL;
|
|
int nr_parts = 0;
|
|
|
|
if (mtd_has_cmdlinepart()) {
|
|
static const char *part_probes[]
|
|
= { "cmdlinepart", NULL, };
|
|
|
|
nr_parts = parse_mtd_partitions(&flash->mtd,
|
|
part_probes, &parts, 0);
|
|
}
|
|
|
|
if (nr_parts <= 0 && data && data->parts) {
|
|
parts = data->parts;
|
|
nr_parts = data->nr_parts;
|
|
}
|
|
|
|
if (nr_parts > 0) {
|
|
for (i = 0; i < nr_parts; i++) {
|
|
DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
|
|
"{.name = %s, .offset = 0x%llx, "
|
|
".size = 0x%llx (%lldKiB) }\n",
|
|
i, parts[i].name,
|
|
(long long)parts[i].offset,
|
|
(long long)parts[i].size,
|
|
(long long)(parts[i].size >> 10));
|
|
}
|
|
flash->partitioned = 1;
|
|
return add_mtd_partitions(&flash->mtd, parts, nr_parts);
|
|
}
|
|
} else if (data->nr_parts)
|
|
dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
|
|
data->nr_parts, data->name);
|
|
|
|
return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
|
|
}
|
|
|
|
|
|
static int __devexit m25p_remove(struct spi_device *spi)
|
|
{
|
|
struct m25p *flash = dev_get_drvdata(&spi->dev);
|
|
int status;
|
|
|
|
/* Clean up MTD stuff. */
|
|
if (mtd_has_partitions() && flash->partitioned)
|
|
status = del_mtd_partitions(&flash->mtd);
|
|
else
|
|
status = del_mtd_device(&flash->mtd);
|
|
if (status == 0)
|
|
kfree(flash);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct spi_driver m25p80_driver = {
|
|
.driver = {
|
|
.name = "m25p80",
|
|
.bus = &spi_bus_type,
|
|
.owner = THIS_MODULE,
|
|
},
|
|
.probe = m25p_probe,
|
|
.remove = __devexit_p(m25p_remove),
|
|
|
|
/* REVISIT: many of these chips have deep power-down modes, which
|
|
* should clearly be entered on suspend() to minimize power use.
|
|
* And also when they're otherwise idle...
|
|
*/
|
|
};
|
|
|
|
|
|
static int m25p80_init(void)
|
|
{
|
|
return spi_register_driver(&m25p80_driver);
|
|
}
|
|
|
|
|
|
static void m25p80_exit(void)
|
|
{
|
|
spi_unregister_driver(&m25p80_driver);
|
|
}
|
|
|
|
|
|
module_init(m25p80_init);
|
|
module_exit(m25p80_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Mike Lavender");
|
|
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");
|