mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-14 13:39:10 +00:00
accf62422b
Similarly to direct reclaim/compaction, kswapd attempts to combine reclaim and compaction to attempt making memory allocation of given order available. The details differ from direct reclaim e.g. in having high watermark as a goal. The code involved in kswapd's reclaim/compaction decisions has evolved to be quite complex. Testing reveals that it doesn't actually work in at least one scenario, and closer inspection suggests that it could be greatly simplified without compromising on the goal (make high-order page available) or efficiency (don't reclaim too much). The simplification relieas of doing all compaction in kcompactd, which is simply woken up when high watermarks are reached by kswapd's reclaim. The scenario where kswapd compaction doesn't work was found with mmtests test stress-highalloc configured to attempt order-9 allocations without direct reclaim, just waking up kswapd. There was no compaction attempt from kswapd during the whole test. Some added instrumentation shows what happens: - balance_pgdat() sets end_zone to Normal, as it's not balanced - reclaim is attempted on DMA zone, which sets nr_attempted to 99, but it cannot reclaim anything, so sc.nr_reclaimed is 0 - for zones DMA32 and Normal, kswapd_shrink_zone uses testorder=0, so it merely checks if high watermarks were reached for base pages. This is true, so no reclaim is attempted. For DMA, testorder=0 wasn't used, as compaction_suitable() returned COMPACT_SKIPPED - even though the pgdat_needs_compaction flag wasn't set to false, no compaction happens due to the condition sc.nr_reclaimed > nr_attempted being false (as 0 < 99) - priority-- due to nr_reclaimed being 0, repeat until priority reaches 0 pgdat_balanced() is false as only the small zone DMA appears balanced (curiously in that check, watermark appears OK and compaction_suitable() returns COMPACT_PARTIAL, because a lower classzone_idx is used there) Now, even if it was decided that reclaim shouldn't be attempted on the DMA zone, the scenario would be the same, as (sc.nr_reclaimed=0 > nr_attempted=0) is also false. The condition really should use >= as the comment suggests. Then there is a mismatch in the check for setting pgdat_needs_compaction to false using low watermark, while the rest uses high watermark, and who knows what other subtlety. Hopefully this demonstrates that this is unsustainable. Luckily we can simplify this a lot. The reclaim/compaction decisions make sense for direct reclaim scenario, but in kswapd, our primary goal is to reach high watermark in order-0 pages. Afterwards we can attempt compaction just once. Unlike direct reclaim, we don't reclaim extra pages (over the high watermark), the current code already disallows it for good reasons. After this patch, we simply wake up kcompactd to process the pgdat, after we have either succeeded or failed to reach the high watermarks in kswapd, which goes to sleep. We pass kswapd's order and classzone_idx, so kcompactd can apply the same criteria to determine which zones are worth compacting. Note that we use the classzone_idx from wakeup_kswapd(), not balanced_classzone_idx which can include higher zones that kswapd tried to balance too, but didn't consider them in pgdat_balanced(). Since kswapd now cannot create high-order pages itself, we need to adjust how it determines the zones to be balanced. The key element here is adding a "highorder" parameter to zone_balanced, which, when set to false, makes it consider only order-0 watermark instead of the desired higher order (this was done previously by kswapd_shrink_zone(), but not elsewhere). This false is passed for example in pgdat_balanced(). Importantly, wakeup_kswapd() uses true to make sure kswapd and thus kcompactd are woken up for a high-order allocation failure. The last thing is to decide what to do with pageblock_skip bitmap handling. Compaction maintains a pageblock_skip bitmap to record pageblocks where isolation recently failed. This bitmap can be reset by three ways: 1) direct compaction is restarting after going through the full deferred cycle 2) kswapd goes to sleep, and some other direct compaction has previously finished scanning the whole zone and set zone->compact_blockskip_flush. Note that a successful direct compaction clears this flag. 3) compaction was invoked manually via trigger in /proc The case 2) is somewhat fuzzy to begin with, but after introducing kcompactd we should update it. The check for direct compaction in 1), and to set the flush flag in 2) use current_is_kswapd(), which doesn't work for kcompactd. Thus, this patch adds bool direct_compaction to compact_control to use in 2). For the case 1) we remove the check completely - unlike the former kswapd compaction, kcompactd does use the deferred compaction functionality, so flushing tied to restarting from deferred compaction makes sense here. Note that when kswapd goes to sleep, kcompactd is woken up, so it will see the flushed pageblock_skip bits. This is different from when the former kswapd compaction observed the bits and I believe it makes more sense. Kcompactd can afford to be more thorough than a direct compaction trying to limit allocation latency, or kswapd whose primary goal is to reclaim. For testing, I used stress-highalloc configured to do order-9 allocations with GFP_NOWAIT|__GFP_HIGH|__GFP_COMP, so they relied just on kswapd/kcompactd reclaim/compaction (the interfering kernel builds in phases 1 and 2 work as usual): stress-highalloc 4.5-rc1+before 4.5-rc1+after -nodirect -nodirect Success 1 Min 1.00 ( 0.00%) 5.00 (-66.67%) Success 1 Mean 1.40 ( 0.00%) 6.20 (-55.00%) Success 1 Max 2.00 ( 0.00%) 7.00 (-16.67%) Success 2 Min 1.00 ( 0.00%) 5.00 (-66.67%) Success 2 Mean 1.80 ( 0.00%) 6.40 (-52.38%) Success 2 Max 3.00 ( 0.00%) 7.00 (-16.67%) Success 3 Min 34.00 ( 0.00%) 62.00 ( 1.59%) Success 3 Mean 41.80 ( 0.00%) 63.80 ( 1.24%) Success 3 Max 53.00 ( 0.00%) 65.00 ( 2.99%) User 3166.67 3181.09 System 1153.37 1158.25 Elapsed 1768.53 1799.37 4.5-rc1+before 4.5-rc1+after -nodirect -nodirect Direct pages scanned 32938 32797 Kswapd pages scanned 2183166 2202613 Kswapd pages reclaimed 2152359 2143524 Direct pages reclaimed 32735 32545 Percentage direct scans 1% 1% THP fault alloc 579 612 THP collapse alloc 304 316 THP splits 0 0 THP fault fallback 793 778 THP collapse fail 11 16 Compaction stalls 1013 1007 Compaction success 92 67 Compaction failures 920 939 Page migrate success 238457 721374 Page migrate failure 23021 23469 Compaction pages isolated 504695 1479924 Compaction migrate scanned 661390 8812554 Compaction free scanned 13476658 84327916 Compaction cost 262 838 After this patch we see improvements in allocation success rate (especially for phase 3) along with increased compaction activity. The compaction stalls (direct compaction) in the interfering kernel builds (probably THP's) also decreased somewhat thanks to kcompactd activity, yet THP alloc successes improved a bit. Note that elapsed and user time isn't so useful for this benchmark, because of the background interference being unpredictable. It's just to quickly spot some major unexpected differences. System time is somewhat more useful and that didn't increase. Also (after adjusting mmtests' ftrace monitor): Time kswapd awake 2547781 2269241 Time kcompactd awake 0 119253 Time direct compacting 939937 557649 Time kswapd compacting 0 0 Time kcompactd compacting 0 119099 The decrease of overal time spent compacting appears to not match the increased compaction stats. I suspect the tasks get rescheduled and since the ftrace monitor doesn't see that, the reported time is wall time, not CPU time. But arguably direct compactors care about overall latency anyway, whether busy compacting or waiting for CPU doesn't matter. And that latency seems to almost halved. It's also interesting how much time kswapd spent awake just going through all the priorities and failing to even try compacting, over and over. We can also configure stress-highalloc to perform both direct reclaim/compaction and wakeup kswapd/kcompactd, by using GFP_KERNEL|__GFP_HIGH|__GFP_COMP: stress-highalloc 4.5-rc1+before 4.5-rc1+after -direct -direct Success 1 Min 4.00 ( 0.00%) 9.00 (-50.00%) Success 1 Mean 8.00 ( 0.00%) 10.00 (-19.05%) Success 1 Max 12.00 ( 0.00%) 11.00 ( 15.38%) Success 2 Min 4.00 ( 0.00%) 9.00 (-50.00%) Success 2 Mean 8.20 ( 0.00%) 10.00 (-16.28%) Success 2 Max 13.00 ( 0.00%) 11.00 ( 8.33%) Success 3 Min 75.00 ( 0.00%) 74.00 ( 1.33%) Success 3 Mean 75.60 ( 0.00%) 75.20 ( 0.53%) Success 3 Max 77.00 ( 0.00%) 76.00 ( 0.00%) User 3344.73 3246.04 System 1194.24 1172.29 Elapsed 1838.04 1836.76 4.5-rc1+before 4.5-rc1+after -direct -direct Direct pages scanned 125146 120966 Kswapd pages scanned 2119757 2135012 Kswapd pages reclaimed 2073183 2108388 Direct pages reclaimed 124909 120577 Percentage direct scans 5% 5% THP fault alloc 599 652 THP collapse alloc 323 354 THP splits 0 0 THP fault fallback 806 793 THP collapse fail 17 16 Compaction stalls 2457 2025 Compaction success 906 518 Compaction failures 1551 1507 Page migrate success 2031423 2360608 Page migrate failure 32845 40852 Compaction pages isolated 4129761 4802025 Compaction migrate scanned 11996712 21750613 Compaction free scanned 214970969 344372001 Compaction cost 2271 2694 In this scenario, this patch doesn't change the overall success rate as direct compaction already tries all it can. There's however significant reduction in direct compaction stalls (that is, the number of allocations that went into direct compaction). The number of successes (i.e. direct compaction stalls that ended up with successful allocation) is reduced by the same number. This means the offload to kcompactd is working as expected, and direct compaction is reduced either due to detecting contention, or compaction deferred by kcompactd. In the previous version of this patchset there was some apparent reduction of success rate, but the changes in this version (such as using sync compaction only), new baseline kernel, and/or averaging results from 5 executions (my bet), made this go away. Ftrace-based stats seem to roughly agree: Time kswapd awake 2532984 2326824 Time kcompactd awake 0 257916 Time direct compacting 864839 735130 Time kswapd compacting 0 0 Time kcompactd compacting 0 257585 Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1962 lines
53 KiB
C
1962 lines
53 KiB
C
/*
|
|
* linux/mm/compaction.c
|
|
*
|
|
* Memory compaction for the reduction of external fragmentation. Note that
|
|
* this heavily depends upon page migration to do all the real heavy
|
|
* lifting
|
|
*
|
|
* Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/compaction.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/balloon_compaction.h>
|
|
#include <linux/page-isolation.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/freezer.h>
|
|
#include "internal.h"
|
|
|
|
#ifdef CONFIG_COMPACTION
|
|
static inline void count_compact_event(enum vm_event_item item)
|
|
{
|
|
count_vm_event(item);
|
|
}
|
|
|
|
static inline void count_compact_events(enum vm_event_item item, long delta)
|
|
{
|
|
count_vm_events(item, delta);
|
|
}
|
|
#else
|
|
#define count_compact_event(item) do { } while (0)
|
|
#define count_compact_events(item, delta) do { } while (0)
|
|
#endif
|
|
|
|
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/compaction.h>
|
|
|
|
static unsigned long release_freepages(struct list_head *freelist)
|
|
{
|
|
struct page *page, *next;
|
|
unsigned long high_pfn = 0;
|
|
|
|
list_for_each_entry_safe(page, next, freelist, lru) {
|
|
unsigned long pfn = page_to_pfn(page);
|
|
list_del(&page->lru);
|
|
__free_page(page);
|
|
if (pfn > high_pfn)
|
|
high_pfn = pfn;
|
|
}
|
|
|
|
return high_pfn;
|
|
}
|
|
|
|
static void map_pages(struct list_head *list)
|
|
{
|
|
struct page *page;
|
|
|
|
list_for_each_entry(page, list, lru) {
|
|
arch_alloc_page(page, 0);
|
|
kernel_map_pages(page, 1, 1);
|
|
kasan_alloc_pages(page, 0);
|
|
}
|
|
}
|
|
|
|
static inline bool migrate_async_suitable(int migratetype)
|
|
{
|
|
return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPACTION
|
|
|
|
/* Do not skip compaction more than 64 times */
|
|
#define COMPACT_MAX_DEFER_SHIFT 6
|
|
|
|
/*
|
|
* Compaction is deferred when compaction fails to result in a page
|
|
* allocation success. 1 << compact_defer_limit compactions are skipped up
|
|
* to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
|
|
*/
|
|
void defer_compaction(struct zone *zone, int order)
|
|
{
|
|
zone->compact_considered = 0;
|
|
zone->compact_defer_shift++;
|
|
|
|
if (order < zone->compact_order_failed)
|
|
zone->compact_order_failed = order;
|
|
|
|
if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
|
|
zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
|
|
|
|
trace_mm_compaction_defer_compaction(zone, order);
|
|
}
|
|
|
|
/* Returns true if compaction should be skipped this time */
|
|
bool compaction_deferred(struct zone *zone, int order)
|
|
{
|
|
unsigned long defer_limit = 1UL << zone->compact_defer_shift;
|
|
|
|
if (order < zone->compact_order_failed)
|
|
return false;
|
|
|
|
/* Avoid possible overflow */
|
|
if (++zone->compact_considered > defer_limit)
|
|
zone->compact_considered = defer_limit;
|
|
|
|
if (zone->compact_considered >= defer_limit)
|
|
return false;
|
|
|
|
trace_mm_compaction_deferred(zone, order);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Update defer tracking counters after successful compaction of given order,
|
|
* which means an allocation either succeeded (alloc_success == true) or is
|
|
* expected to succeed.
|
|
*/
|
|
void compaction_defer_reset(struct zone *zone, int order,
|
|
bool alloc_success)
|
|
{
|
|
if (alloc_success) {
|
|
zone->compact_considered = 0;
|
|
zone->compact_defer_shift = 0;
|
|
}
|
|
if (order >= zone->compact_order_failed)
|
|
zone->compact_order_failed = order + 1;
|
|
|
|
trace_mm_compaction_defer_reset(zone, order);
|
|
}
|
|
|
|
/* Returns true if restarting compaction after many failures */
|
|
bool compaction_restarting(struct zone *zone, int order)
|
|
{
|
|
if (order < zone->compact_order_failed)
|
|
return false;
|
|
|
|
return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
|
|
zone->compact_considered >= 1UL << zone->compact_defer_shift;
|
|
}
|
|
|
|
/* Returns true if the pageblock should be scanned for pages to isolate. */
|
|
static inline bool isolation_suitable(struct compact_control *cc,
|
|
struct page *page)
|
|
{
|
|
if (cc->ignore_skip_hint)
|
|
return true;
|
|
|
|
return !get_pageblock_skip(page);
|
|
}
|
|
|
|
static void reset_cached_positions(struct zone *zone)
|
|
{
|
|
zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
|
|
zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
|
|
zone->compact_cached_free_pfn =
|
|
round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
|
|
}
|
|
|
|
/*
|
|
* This function is called to clear all cached information on pageblocks that
|
|
* should be skipped for page isolation when the migrate and free page scanner
|
|
* meet.
|
|
*/
|
|
static void __reset_isolation_suitable(struct zone *zone)
|
|
{
|
|
unsigned long start_pfn = zone->zone_start_pfn;
|
|
unsigned long end_pfn = zone_end_pfn(zone);
|
|
unsigned long pfn;
|
|
|
|
zone->compact_blockskip_flush = false;
|
|
|
|
/* Walk the zone and mark every pageblock as suitable for isolation */
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
|
|
struct page *page;
|
|
|
|
cond_resched();
|
|
|
|
if (!pfn_valid(pfn))
|
|
continue;
|
|
|
|
page = pfn_to_page(pfn);
|
|
if (zone != page_zone(page))
|
|
continue;
|
|
|
|
clear_pageblock_skip(page);
|
|
}
|
|
|
|
reset_cached_positions(zone);
|
|
}
|
|
|
|
void reset_isolation_suitable(pg_data_t *pgdat)
|
|
{
|
|
int zoneid;
|
|
|
|
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
|
|
struct zone *zone = &pgdat->node_zones[zoneid];
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
/* Only flush if a full compaction finished recently */
|
|
if (zone->compact_blockskip_flush)
|
|
__reset_isolation_suitable(zone);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If no pages were isolated then mark this pageblock to be skipped in the
|
|
* future. The information is later cleared by __reset_isolation_suitable().
|
|
*/
|
|
static void update_pageblock_skip(struct compact_control *cc,
|
|
struct page *page, unsigned long nr_isolated,
|
|
bool migrate_scanner)
|
|
{
|
|
struct zone *zone = cc->zone;
|
|
unsigned long pfn;
|
|
|
|
if (cc->ignore_skip_hint)
|
|
return;
|
|
|
|
if (!page)
|
|
return;
|
|
|
|
if (nr_isolated)
|
|
return;
|
|
|
|
set_pageblock_skip(page);
|
|
|
|
pfn = page_to_pfn(page);
|
|
|
|
/* Update where async and sync compaction should restart */
|
|
if (migrate_scanner) {
|
|
if (pfn > zone->compact_cached_migrate_pfn[0])
|
|
zone->compact_cached_migrate_pfn[0] = pfn;
|
|
if (cc->mode != MIGRATE_ASYNC &&
|
|
pfn > zone->compact_cached_migrate_pfn[1])
|
|
zone->compact_cached_migrate_pfn[1] = pfn;
|
|
} else {
|
|
if (pfn < zone->compact_cached_free_pfn)
|
|
zone->compact_cached_free_pfn = pfn;
|
|
}
|
|
}
|
|
#else
|
|
static inline bool isolation_suitable(struct compact_control *cc,
|
|
struct page *page)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static void update_pageblock_skip(struct compact_control *cc,
|
|
struct page *page, unsigned long nr_isolated,
|
|
bool migrate_scanner)
|
|
{
|
|
}
|
|
#endif /* CONFIG_COMPACTION */
|
|
|
|
/*
|
|
* Compaction requires the taking of some coarse locks that are potentially
|
|
* very heavily contended. For async compaction, back out if the lock cannot
|
|
* be taken immediately. For sync compaction, spin on the lock if needed.
|
|
*
|
|
* Returns true if the lock is held
|
|
* Returns false if the lock is not held and compaction should abort
|
|
*/
|
|
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
|
|
struct compact_control *cc)
|
|
{
|
|
if (cc->mode == MIGRATE_ASYNC) {
|
|
if (!spin_trylock_irqsave(lock, *flags)) {
|
|
cc->contended = COMPACT_CONTENDED_LOCK;
|
|
return false;
|
|
}
|
|
} else {
|
|
spin_lock_irqsave(lock, *flags);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Compaction requires the taking of some coarse locks that are potentially
|
|
* very heavily contended. The lock should be periodically unlocked to avoid
|
|
* having disabled IRQs for a long time, even when there is nobody waiting on
|
|
* the lock. It might also be that allowing the IRQs will result in
|
|
* need_resched() becoming true. If scheduling is needed, async compaction
|
|
* aborts. Sync compaction schedules.
|
|
* Either compaction type will also abort if a fatal signal is pending.
|
|
* In either case if the lock was locked, it is dropped and not regained.
|
|
*
|
|
* Returns true if compaction should abort due to fatal signal pending, or
|
|
* async compaction due to need_resched()
|
|
* Returns false when compaction can continue (sync compaction might have
|
|
* scheduled)
|
|
*/
|
|
static bool compact_unlock_should_abort(spinlock_t *lock,
|
|
unsigned long flags, bool *locked, struct compact_control *cc)
|
|
{
|
|
if (*locked) {
|
|
spin_unlock_irqrestore(lock, flags);
|
|
*locked = false;
|
|
}
|
|
|
|
if (fatal_signal_pending(current)) {
|
|
cc->contended = COMPACT_CONTENDED_SCHED;
|
|
return true;
|
|
}
|
|
|
|
if (need_resched()) {
|
|
if (cc->mode == MIGRATE_ASYNC) {
|
|
cc->contended = COMPACT_CONTENDED_SCHED;
|
|
return true;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Aside from avoiding lock contention, compaction also periodically checks
|
|
* need_resched() and either schedules in sync compaction or aborts async
|
|
* compaction. This is similar to what compact_unlock_should_abort() does, but
|
|
* is used where no lock is concerned.
|
|
*
|
|
* Returns false when no scheduling was needed, or sync compaction scheduled.
|
|
* Returns true when async compaction should abort.
|
|
*/
|
|
static inline bool compact_should_abort(struct compact_control *cc)
|
|
{
|
|
/* async compaction aborts if contended */
|
|
if (need_resched()) {
|
|
if (cc->mode == MIGRATE_ASYNC) {
|
|
cc->contended = COMPACT_CONTENDED_SCHED;
|
|
return true;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Isolate free pages onto a private freelist. If @strict is true, will abort
|
|
* returning 0 on any invalid PFNs or non-free pages inside of the pageblock
|
|
* (even though it may still end up isolating some pages).
|
|
*/
|
|
static unsigned long isolate_freepages_block(struct compact_control *cc,
|
|
unsigned long *start_pfn,
|
|
unsigned long end_pfn,
|
|
struct list_head *freelist,
|
|
bool strict)
|
|
{
|
|
int nr_scanned = 0, total_isolated = 0;
|
|
struct page *cursor, *valid_page = NULL;
|
|
unsigned long flags = 0;
|
|
bool locked = false;
|
|
unsigned long blockpfn = *start_pfn;
|
|
|
|
cursor = pfn_to_page(blockpfn);
|
|
|
|
/* Isolate free pages. */
|
|
for (; blockpfn < end_pfn; blockpfn++, cursor++) {
|
|
int isolated, i;
|
|
struct page *page = cursor;
|
|
|
|
/*
|
|
* Periodically drop the lock (if held) regardless of its
|
|
* contention, to give chance to IRQs. Abort if fatal signal
|
|
* pending or async compaction detects need_resched()
|
|
*/
|
|
if (!(blockpfn % SWAP_CLUSTER_MAX)
|
|
&& compact_unlock_should_abort(&cc->zone->lock, flags,
|
|
&locked, cc))
|
|
break;
|
|
|
|
nr_scanned++;
|
|
if (!pfn_valid_within(blockpfn))
|
|
goto isolate_fail;
|
|
|
|
if (!valid_page)
|
|
valid_page = page;
|
|
|
|
/*
|
|
* For compound pages such as THP and hugetlbfs, we can save
|
|
* potentially a lot of iterations if we skip them at once.
|
|
* The check is racy, but we can consider only valid values
|
|
* and the only danger is skipping too much.
|
|
*/
|
|
if (PageCompound(page)) {
|
|
unsigned int comp_order = compound_order(page);
|
|
|
|
if (likely(comp_order < MAX_ORDER)) {
|
|
blockpfn += (1UL << comp_order) - 1;
|
|
cursor += (1UL << comp_order) - 1;
|
|
}
|
|
|
|
goto isolate_fail;
|
|
}
|
|
|
|
if (!PageBuddy(page))
|
|
goto isolate_fail;
|
|
|
|
/*
|
|
* If we already hold the lock, we can skip some rechecking.
|
|
* Note that if we hold the lock now, checked_pageblock was
|
|
* already set in some previous iteration (or strict is true),
|
|
* so it is correct to skip the suitable migration target
|
|
* recheck as well.
|
|
*/
|
|
if (!locked) {
|
|
/*
|
|
* The zone lock must be held to isolate freepages.
|
|
* Unfortunately this is a very coarse lock and can be
|
|
* heavily contended if there are parallel allocations
|
|
* or parallel compactions. For async compaction do not
|
|
* spin on the lock and we acquire the lock as late as
|
|
* possible.
|
|
*/
|
|
locked = compact_trylock_irqsave(&cc->zone->lock,
|
|
&flags, cc);
|
|
if (!locked)
|
|
break;
|
|
|
|
/* Recheck this is a buddy page under lock */
|
|
if (!PageBuddy(page))
|
|
goto isolate_fail;
|
|
}
|
|
|
|
/* Found a free page, break it into order-0 pages */
|
|
isolated = split_free_page(page);
|
|
total_isolated += isolated;
|
|
for (i = 0; i < isolated; i++) {
|
|
list_add(&page->lru, freelist);
|
|
page++;
|
|
}
|
|
|
|
/* If a page was split, advance to the end of it */
|
|
if (isolated) {
|
|
cc->nr_freepages += isolated;
|
|
if (!strict &&
|
|
cc->nr_migratepages <= cc->nr_freepages) {
|
|
blockpfn += isolated;
|
|
break;
|
|
}
|
|
|
|
blockpfn += isolated - 1;
|
|
cursor += isolated - 1;
|
|
continue;
|
|
}
|
|
|
|
isolate_fail:
|
|
if (strict)
|
|
break;
|
|
else
|
|
continue;
|
|
|
|
}
|
|
|
|
/*
|
|
* There is a tiny chance that we have read bogus compound_order(),
|
|
* so be careful to not go outside of the pageblock.
|
|
*/
|
|
if (unlikely(blockpfn > end_pfn))
|
|
blockpfn = end_pfn;
|
|
|
|
trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
|
|
nr_scanned, total_isolated);
|
|
|
|
/* Record how far we have got within the block */
|
|
*start_pfn = blockpfn;
|
|
|
|
/*
|
|
* If strict isolation is requested by CMA then check that all the
|
|
* pages requested were isolated. If there were any failures, 0 is
|
|
* returned and CMA will fail.
|
|
*/
|
|
if (strict && blockpfn < end_pfn)
|
|
total_isolated = 0;
|
|
|
|
if (locked)
|
|
spin_unlock_irqrestore(&cc->zone->lock, flags);
|
|
|
|
/* Update the pageblock-skip if the whole pageblock was scanned */
|
|
if (blockpfn == end_pfn)
|
|
update_pageblock_skip(cc, valid_page, total_isolated, false);
|
|
|
|
count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
|
|
if (total_isolated)
|
|
count_compact_events(COMPACTISOLATED, total_isolated);
|
|
return total_isolated;
|
|
}
|
|
|
|
/**
|
|
* isolate_freepages_range() - isolate free pages.
|
|
* @start_pfn: The first PFN to start isolating.
|
|
* @end_pfn: The one-past-last PFN.
|
|
*
|
|
* Non-free pages, invalid PFNs, or zone boundaries within the
|
|
* [start_pfn, end_pfn) range are considered errors, cause function to
|
|
* undo its actions and return zero.
|
|
*
|
|
* Otherwise, function returns one-past-the-last PFN of isolated page
|
|
* (which may be greater then end_pfn if end fell in a middle of
|
|
* a free page).
|
|
*/
|
|
unsigned long
|
|
isolate_freepages_range(struct compact_control *cc,
|
|
unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
|
|
LIST_HEAD(freelist);
|
|
|
|
pfn = start_pfn;
|
|
block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
|
|
if (block_start_pfn < cc->zone->zone_start_pfn)
|
|
block_start_pfn = cc->zone->zone_start_pfn;
|
|
block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
|
|
|
|
for (; pfn < end_pfn; pfn += isolated,
|
|
block_start_pfn = block_end_pfn,
|
|
block_end_pfn += pageblock_nr_pages) {
|
|
/* Protect pfn from changing by isolate_freepages_block */
|
|
unsigned long isolate_start_pfn = pfn;
|
|
|
|
block_end_pfn = min(block_end_pfn, end_pfn);
|
|
|
|
/*
|
|
* pfn could pass the block_end_pfn if isolated freepage
|
|
* is more than pageblock order. In this case, we adjust
|
|
* scanning range to right one.
|
|
*/
|
|
if (pfn >= block_end_pfn) {
|
|
block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
|
|
block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
|
|
block_end_pfn = min(block_end_pfn, end_pfn);
|
|
}
|
|
|
|
if (!pageblock_pfn_to_page(block_start_pfn,
|
|
block_end_pfn, cc->zone))
|
|
break;
|
|
|
|
isolated = isolate_freepages_block(cc, &isolate_start_pfn,
|
|
block_end_pfn, &freelist, true);
|
|
|
|
/*
|
|
* In strict mode, isolate_freepages_block() returns 0 if
|
|
* there are any holes in the block (ie. invalid PFNs or
|
|
* non-free pages).
|
|
*/
|
|
if (!isolated)
|
|
break;
|
|
|
|
/*
|
|
* If we managed to isolate pages, it is always (1 << n) *
|
|
* pageblock_nr_pages for some non-negative n. (Max order
|
|
* page may span two pageblocks).
|
|
*/
|
|
}
|
|
|
|
/* split_free_page does not map the pages */
|
|
map_pages(&freelist);
|
|
|
|
if (pfn < end_pfn) {
|
|
/* Loop terminated early, cleanup. */
|
|
release_freepages(&freelist);
|
|
return 0;
|
|
}
|
|
|
|
/* We don't use freelists for anything. */
|
|
return pfn;
|
|
}
|
|
|
|
/* Update the number of anon and file isolated pages in the zone */
|
|
static void acct_isolated(struct zone *zone, struct compact_control *cc)
|
|
{
|
|
struct page *page;
|
|
unsigned int count[2] = { 0, };
|
|
|
|
if (list_empty(&cc->migratepages))
|
|
return;
|
|
|
|
list_for_each_entry(page, &cc->migratepages, lru)
|
|
count[!!page_is_file_cache(page)]++;
|
|
|
|
mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
|
|
mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
|
|
}
|
|
|
|
/* Similar to reclaim, but different enough that they don't share logic */
|
|
static bool too_many_isolated(struct zone *zone)
|
|
{
|
|
unsigned long active, inactive, isolated;
|
|
|
|
inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
|
|
zone_page_state(zone, NR_INACTIVE_ANON);
|
|
active = zone_page_state(zone, NR_ACTIVE_FILE) +
|
|
zone_page_state(zone, NR_ACTIVE_ANON);
|
|
isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
|
|
zone_page_state(zone, NR_ISOLATED_ANON);
|
|
|
|
return isolated > (inactive + active) / 2;
|
|
}
|
|
|
|
/**
|
|
* isolate_migratepages_block() - isolate all migrate-able pages within
|
|
* a single pageblock
|
|
* @cc: Compaction control structure.
|
|
* @low_pfn: The first PFN to isolate
|
|
* @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
|
|
* @isolate_mode: Isolation mode to be used.
|
|
*
|
|
* Isolate all pages that can be migrated from the range specified by
|
|
* [low_pfn, end_pfn). The range is expected to be within same pageblock.
|
|
* Returns zero if there is a fatal signal pending, otherwise PFN of the
|
|
* first page that was not scanned (which may be both less, equal to or more
|
|
* than end_pfn).
|
|
*
|
|
* The pages are isolated on cc->migratepages list (not required to be empty),
|
|
* and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
|
|
* is neither read nor updated.
|
|
*/
|
|
static unsigned long
|
|
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
|
|
unsigned long end_pfn, isolate_mode_t isolate_mode)
|
|
{
|
|
struct zone *zone = cc->zone;
|
|
unsigned long nr_scanned = 0, nr_isolated = 0;
|
|
struct list_head *migratelist = &cc->migratepages;
|
|
struct lruvec *lruvec;
|
|
unsigned long flags = 0;
|
|
bool locked = false;
|
|
struct page *page = NULL, *valid_page = NULL;
|
|
unsigned long start_pfn = low_pfn;
|
|
|
|
/*
|
|
* Ensure that there are not too many pages isolated from the LRU
|
|
* list by either parallel reclaimers or compaction. If there are,
|
|
* delay for some time until fewer pages are isolated
|
|
*/
|
|
while (unlikely(too_many_isolated(zone))) {
|
|
/* async migration should just abort */
|
|
if (cc->mode == MIGRATE_ASYNC)
|
|
return 0;
|
|
|
|
congestion_wait(BLK_RW_ASYNC, HZ/10);
|
|
|
|
if (fatal_signal_pending(current))
|
|
return 0;
|
|
}
|
|
|
|
if (compact_should_abort(cc))
|
|
return 0;
|
|
|
|
/* Time to isolate some pages for migration */
|
|
for (; low_pfn < end_pfn; low_pfn++) {
|
|
bool is_lru;
|
|
|
|
/*
|
|
* Periodically drop the lock (if held) regardless of its
|
|
* contention, to give chance to IRQs. Abort async compaction
|
|
* if contended.
|
|
*/
|
|
if (!(low_pfn % SWAP_CLUSTER_MAX)
|
|
&& compact_unlock_should_abort(&zone->lru_lock, flags,
|
|
&locked, cc))
|
|
break;
|
|
|
|
if (!pfn_valid_within(low_pfn))
|
|
continue;
|
|
nr_scanned++;
|
|
|
|
page = pfn_to_page(low_pfn);
|
|
|
|
if (!valid_page)
|
|
valid_page = page;
|
|
|
|
/*
|
|
* Skip if free. We read page order here without zone lock
|
|
* which is generally unsafe, but the race window is small and
|
|
* the worst thing that can happen is that we skip some
|
|
* potential isolation targets.
|
|
*/
|
|
if (PageBuddy(page)) {
|
|
unsigned long freepage_order = page_order_unsafe(page);
|
|
|
|
/*
|
|
* Without lock, we cannot be sure that what we got is
|
|
* a valid page order. Consider only values in the
|
|
* valid order range to prevent low_pfn overflow.
|
|
*/
|
|
if (freepage_order > 0 && freepage_order < MAX_ORDER)
|
|
low_pfn += (1UL << freepage_order) - 1;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Check may be lockless but that's ok as we recheck later.
|
|
* It's possible to migrate LRU pages and balloon pages
|
|
* Skip any other type of page
|
|
*/
|
|
is_lru = PageLRU(page);
|
|
if (!is_lru) {
|
|
if (unlikely(balloon_page_movable(page))) {
|
|
if (balloon_page_isolate(page)) {
|
|
/* Successfully isolated */
|
|
goto isolate_success;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Regardless of being on LRU, compound pages such as THP and
|
|
* hugetlbfs are not to be compacted. We can potentially save
|
|
* a lot of iterations if we skip them at once. The check is
|
|
* racy, but we can consider only valid values and the only
|
|
* danger is skipping too much.
|
|
*/
|
|
if (PageCompound(page)) {
|
|
unsigned int comp_order = compound_order(page);
|
|
|
|
if (likely(comp_order < MAX_ORDER))
|
|
low_pfn += (1UL << comp_order) - 1;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (!is_lru)
|
|
continue;
|
|
|
|
/*
|
|
* Migration will fail if an anonymous page is pinned in memory,
|
|
* so avoid taking lru_lock and isolating it unnecessarily in an
|
|
* admittedly racy check.
|
|
*/
|
|
if (!page_mapping(page) &&
|
|
page_count(page) > page_mapcount(page))
|
|
continue;
|
|
|
|
/* If we already hold the lock, we can skip some rechecking */
|
|
if (!locked) {
|
|
locked = compact_trylock_irqsave(&zone->lru_lock,
|
|
&flags, cc);
|
|
if (!locked)
|
|
break;
|
|
|
|
/* Recheck PageLRU and PageCompound under lock */
|
|
if (!PageLRU(page))
|
|
continue;
|
|
|
|
/*
|
|
* Page become compound since the non-locked check,
|
|
* and it's on LRU. It can only be a THP so the order
|
|
* is safe to read and it's 0 for tail pages.
|
|
*/
|
|
if (unlikely(PageCompound(page))) {
|
|
low_pfn += (1UL << compound_order(page)) - 1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
lruvec = mem_cgroup_page_lruvec(page, zone);
|
|
|
|
/* Try isolate the page */
|
|
if (__isolate_lru_page(page, isolate_mode) != 0)
|
|
continue;
|
|
|
|
VM_BUG_ON_PAGE(PageCompound(page), page);
|
|
|
|
/* Successfully isolated */
|
|
del_page_from_lru_list(page, lruvec, page_lru(page));
|
|
|
|
isolate_success:
|
|
list_add(&page->lru, migratelist);
|
|
cc->nr_migratepages++;
|
|
nr_isolated++;
|
|
|
|
/* Avoid isolating too much */
|
|
if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
|
|
++low_pfn;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The PageBuddy() check could have potentially brought us outside
|
|
* the range to be scanned.
|
|
*/
|
|
if (unlikely(low_pfn > end_pfn))
|
|
low_pfn = end_pfn;
|
|
|
|
if (locked)
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
|
|
/*
|
|
* Update the pageblock-skip information and cached scanner pfn,
|
|
* if the whole pageblock was scanned without isolating any page.
|
|
*/
|
|
if (low_pfn == end_pfn)
|
|
update_pageblock_skip(cc, valid_page, nr_isolated, true);
|
|
|
|
trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
|
|
nr_scanned, nr_isolated);
|
|
|
|
count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
|
|
if (nr_isolated)
|
|
count_compact_events(COMPACTISOLATED, nr_isolated);
|
|
|
|
return low_pfn;
|
|
}
|
|
|
|
/**
|
|
* isolate_migratepages_range() - isolate migrate-able pages in a PFN range
|
|
* @cc: Compaction control structure.
|
|
* @start_pfn: The first PFN to start isolating.
|
|
* @end_pfn: The one-past-last PFN.
|
|
*
|
|
* Returns zero if isolation fails fatally due to e.g. pending signal.
|
|
* Otherwise, function returns one-past-the-last PFN of isolated page
|
|
* (which may be greater than end_pfn if end fell in a middle of a THP page).
|
|
*/
|
|
unsigned long
|
|
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn, block_start_pfn, block_end_pfn;
|
|
|
|
/* Scan block by block. First and last block may be incomplete */
|
|
pfn = start_pfn;
|
|
block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
|
|
if (block_start_pfn < cc->zone->zone_start_pfn)
|
|
block_start_pfn = cc->zone->zone_start_pfn;
|
|
block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
|
|
|
|
for (; pfn < end_pfn; pfn = block_end_pfn,
|
|
block_start_pfn = block_end_pfn,
|
|
block_end_pfn += pageblock_nr_pages) {
|
|
|
|
block_end_pfn = min(block_end_pfn, end_pfn);
|
|
|
|
if (!pageblock_pfn_to_page(block_start_pfn,
|
|
block_end_pfn, cc->zone))
|
|
continue;
|
|
|
|
pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
|
|
ISOLATE_UNEVICTABLE);
|
|
|
|
/*
|
|
* In case of fatal failure, release everything that might
|
|
* have been isolated in the previous iteration, and signal
|
|
* the failure back to caller.
|
|
*/
|
|
if (!pfn) {
|
|
putback_movable_pages(&cc->migratepages);
|
|
cc->nr_migratepages = 0;
|
|
break;
|
|
}
|
|
|
|
if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
|
|
break;
|
|
}
|
|
acct_isolated(cc->zone, cc);
|
|
|
|
return pfn;
|
|
}
|
|
|
|
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
|
|
#ifdef CONFIG_COMPACTION
|
|
|
|
/* Returns true if the page is within a block suitable for migration to */
|
|
static bool suitable_migration_target(struct page *page)
|
|
{
|
|
/* If the page is a large free page, then disallow migration */
|
|
if (PageBuddy(page)) {
|
|
/*
|
|
* We are checking page_order without zone->lock taken. But
|
|
* the only small danger is that we skip a potentially suitable
|
|
* pageblock, so it's not worth to check order for valid range.
|
|
*/
|
|
if (page_order_unsafe(page) >= pageblock_order)
|
|
return false;
|
|
}
|
|
|
|
/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
|
|
if (migrate_async_suitable(get_pageblock_migratetype(page)))
|
|
return true;
|
|
|
|
/* Otherwise skip the block */
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Test whether the free scanner has reached the same or lower pageblock than
|
|
* the migration scanner, and compaction should thus terminate.
|
|
*/
|
|
static inline bool compact_scanners_met(struct compact_control *cc)
|
|
{
|
|
return (cc->free_pfn >> pageblock_order)
|
|
<= (cc->migrate_pfn >> pageblock_order);
|
|
}
|
|
|
|
/*
|
|
* Based on information in the current compact_control, find blocks
|
|
* suitable for isolating free pages from and then isolate them.
|
|
*/
|
|
static void isolate_freepages(struct compact_control *cc)
|
|
{
|
|
struct zone *zone = cc->zone;
|
|
struct page *page;
|
|
unsigned long block_start_pfn; /* start of current pageblock */
|
|
unsigned long isolate_start_pfn; /* exact pfn we start at */
|
|
unsigned long block_end_pfn; /* end of current pageblock */
|
|
unsigned long low_pfn; /* lowest pfn scanner is able to scan */
|
|
struct list_head *freelist = &cc->freepages;
|
|
|
|
/*
|
|
* Initialise the free scanner. The starting point is where we last
|
|
* successfully isolated from, zone-cached value, or the end of the
|
|
* zone when isolating for the first time. For looping we also need
|
|
* this pfn aligned down to the pageblock boundary, because we do
|
|
* block_start_pfn -= pageblock_nr_pages in the for loop.
|
|
* For ending point, take care when isolating in last pageblock of a
|
|
* a zone which ends in the middle of a pageblock.
|
|
* The low boundary is the end of the pageblock the migration scanner
|
|
* is using.
|
|
*/
|
|
isolate_start_pfn = cc->free_pfn;
|
|
block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
|
|
block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
|
|
zone_end_pfn(zone));
|
|
low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
|
|
|
|
/*
|
|
* Isolate free pages until enough are available to migrate the
|
|
* pages on cc->migratepages. We stop searching if the migrate
|
|
* and free page scanners meet or enough free pages are isolated.
|
|
*/
|
|
for (; block_start_pfn >= low_pfn;
|
|
block_end_pfn = block_start_pfn,
|
|
block_start_pfn -= pageblock_nr_pages,
|
|
isolate_start_pfn = block_start_pfn) {
|
|
|
|
/*
|
|
* This can iterate a massively long zone without finding any
|
|
* suitable migration targets, so periodically check if we need
|
|
* to schedule, or even abort async compaction.
|
|
*/
|
|
if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
|
|
&& compact_should_abort(cc))
|
|
break;
|
|
|
|
page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
|
|
zone);
|
|
if (!page)
|
|
continue;
|
|
|
|
/* Check the block is suitable for migration */
|
|
if (!suitable_migration_target(page))
|
|
continue;
|
|
|
|
/* If isolation recently failed, do not retry */
|
|
if (!isolation_suitable(cc, page))
|
|
continue;
|
|
|
|
/* Found a block suitable for isolating free pages from. */
|
|
isolate_freepages_block(cc, &isolate_start_pfn,
|
|
block_end_pfn, freelist, false);
|
|
|
|
/*
|
|
* If we isolated enough freepages, or aborted due to async
|
|
* compaction being contended, terminate the loop.
|
|
* Remember where the free scanner should restart next time,
|
|
* which is where isolate_freepages_block() left off.
|
|
* But if it scanned the whole pageblock, isolate_start_pfn
|
|
* now points at block_end_pfn, which is the start of the next
|
|
* pageblock.
|
|
* In that case we will however want to restart at the start
|
|
* of the previous pageblock.
|
|
*/
|
|
if ((cc->nr_freepages >= cc->nr_migratepages)
|
|
|| cc->contended) {
|
|
if (isolate_start_pfn >= block_end_pfn)
|
|
isolate_start_pfn =
|
|
block_start_pfn - pageblock_nr_pages;
|
|
break;
|
|
} else {
|
|
/*
|
|
* isolate_freepages_block() should not terminate
|
|
* prematurely unless contended, or isolated enough
|
|
*/
|
|
VM_BUG_ON(isolate_start_pfn < block_end_pfn);
|
|
}
|
|
}
|
|
|
|
/* split_free_page does not map the pages */
|
|
map_pages(freelist);
|
|
|
|
/*
|
|
* Record where the free scanner will restart next time. Either we
|
|
* broke from the loop and set isolate_start_pfn based on the last
|
|
* call to isolate_freepages_block(), or we met the migration scanner
|
|
* and the loop terminated due to isolate_start_pfn < low_pfn
|
|
*/
|
|
cc->free_pfn = isolate_start_pfn;
|
|
}
|
|
|
|
/*
|
|
* This is a migrate-callback that "allocates" freepages by taking pages
|
|
* from the isolated freelists in the block we are migrating to.
|
|
*/
|
|
static struct page *compaction_alloc(struct page *migratepage,
|
|
unsigned long data,
|
|
int **result)
|
|
{
|
|
struct compact_control *cc = (struct compact_control *)data;
|
|
struct page *freepage;
|
|
|
|
/*
|
|
* Isolate free pages if necessary, and if we are not aborting due to
|
|
* contention.
|
|
*/
|
|
if (list_empty(&cc->freepages)) {
|
|
if (!cc->contended)
|
|
isolate_freepages(cc);
|
|
|
|
if (list_empty(&cc->freepages))
|
|
return NULL;
|
|
}
|
|
|
|
freepage = list_entry(cc->freepages.next, struct page, lru);
|
|
list_del(&freepage->lru);
|
|
cc->nr_freepages--;
|
|
|
|
return freepage;
|
|
}
|
|
|
|
/*
|
|
* This is a migrate-callback that "frees" freepages back to the isolated
|
|
* freelist. All pages on the freelist are from the same zone, so there is no
|
|
* special handling needed for NUMA.
|
|
*/
|
|
static void compaction_free(struct page *page, unsigned long data)
|
|
{
|
|
struct compact_control *cc = (struct compact_control *)data;
|
|
|
|
list_add(&page->lru, &cc->freepages);
|
|
cc->nr_freepages++;
|
|
}
|
|
|
|
/* possible outcome of isolate_migratepages */
|
|
typedef enum {
|
|
ISOLATE_ABORT, /* Abort compaction now */
|
|
ISOLATE_NONE, /* No pages isolated, continue scanning */
|
|
ISOLATE_SUCCESS, /* Pages isolated, migrate */
|
|
} isolate_migrate_t;
|
|
|
|
/*
|
|
* Allow userspace to control policy on scanning the unevictable LRU for
|
|
* compactable pages.
|
|
*/
|
|
int sysctl_compact_unevictable_allowed __read_mostly = 1;
|
|
|
|
/*
|
|
* Isolate all pages that can be migrated from the first suitable block,
|
|
* starting at the block pointed to by the migrate scanner pfn within
|
|
* compact_control.
|
|
*/
|
|
static isolate_migrate_t isolate_migratepages(struct zone *zone,
|
|
struct compact_control *cc)
|
|
{
|
|
unsigned long block_start_pfn;
|
|
unsigned long block_end_pfn;
|
|
unsigned long low_pfn;
|
|
unsigned long isolate_start_pfn;
|
|
struct page *page;
|
|
const isolate_mode_t isolate_mode =
|
|
(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
|
|
(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
|
|
|
|
/*
|
|
* Start at where we last stopped, or beginning of the zone as
|
|
* initialized by compact_zone()
|
|
*/
|
|
low_pfn = cc->migrate_pfn;
|
|
block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1);
|
|
if (block_start_pfn < zone->zone_start_pfn)
|
|
block_start_pfn = zone->zone_start_pfn;
|
|
|
|
/* Only scan within a pageblock boundary */
|
|
block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
|
|
|
|
/*
|
|
* Iterate over whole pageblocks until we find the first suitable.
|
|
* Do not cross the free scanner.
|
|
*/
|
|
for (; block_end_pfn <= cc->free_pfn;
|
|
low_pfn = block_end_pfn,
|
|
block_start_pfn = block_end_pfn,
|
|
block_end_pfn += pageblock_nr_pages) {
|
|
|
|
/*
|
|
* This can potentially iterate a massively long zone with
|
|
* many pageblocks unsuitable, so periodically check if we
|
|
* need to schedule, or even abort async compaction.
|
|
*/
|
|
if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
|
|
&& compact_should_abort(cc))
|
|
break;
|
|
|
|
page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
|
|
zone);
|
|
if (!page)
|
|
continue;
|
|
|
|
/* If isolation recently failed, do not retry */
|
|
if (!isolation_suitable(cc, page))
|
|
continue;
|
|
|
|
/*
|
|
* For async compaction, also only scan in MOVABLE blocks.
|
|
* Async compaction is optimistic to see if the minimum amount
|
|
* of work satisfies the allocation.
|
|
*/
|
|
if (cc->mode == MIGRATE_ASYNC &&
|
|
!migrate_async_suitable(get_pageblock_migratetype(page)))
|
|
continue;
|
|
|
|
/* Perform the isolation */
|
|
isolate_start_pfn = low_pfn;
|
|
low_pfn = isolate_migratepages_block(cc, low_pfn,
|
|
block_end_pfn, isolate_mode);
|
|
|
|
if (!low_pfn || cc->contended) {
|
|
acct_isolated(zone, cc);
|
|
return ISOLATE_ABORT;
|
|
}
|
|
|
|
/*
|
|
* Record where we could have freed pages by migration and not
|
|
* yet flushed them to buddy allocator.
|
|
* - this is the lowest page that could have been isolated and
|
|
* then freed by migration.
|
|
*/
|
|
if (cc->nr_migratepages && !cc->last_migrated_pfn)
|
|
cc->last_migrated_pfn = isolate_start_pfn;
|
|
|
|
/*
|
|
* Either we isolated something and proceed with migration. Or
|
|
* we failed and compact_zone should decide if we should
|
|
* continue or not.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
acct_isolated(zone, cc);
|
|
/* Record where migration scanner will be restarted. */
|
|
cc->migrate_pfn = low_pfn;
|
|
|
|
return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
|
|
}
|
|
|
|
/*
|
|
* order == -1 is expected when compacting via
|
|
* /proc/sys/vm/compact_memory
|
|
*/
|
|
static inline bool is_via_compact_memory(int order)
|
|
{
|
|
return order == -1;
|
|
}
|
|
|
|
static int __compact_finished(struct zone *zone, struct compact_control *cc,
|
|
const int migratetype)
|
|
{
|
|
unsigned int order;
|
|
unsigned long watermark;
|
|
|
|
if (cc->contended || fatal_signal_pending(current))
|
|
return COMPACT_CONTENDED;
|
|
|
|
/* Compaction run completes if the migrate and free scanner meet */
|
|
if (compact_scanners_met(cc)) {
|
|
/* Let the next compaction start anew. */
|
|
reset_cached_positions(zone);
|
|
|
|
/*
|
|
* Mark that the PG_migrate_skip information should be cleared
|
|
* by kswapd when it goes to sleep. kcompactd does not set the
|
|
* flag itself as the decision to be clear should be directly
|
|
* based on an allocation request.
|
|
*/
|
|
if (cc->direct_compaction)
|
|
zone->compact_blockskip_flush = true;
|
|
|
|
return COMPACT_COMPLETE;
|
|
}
|
|
|
|
if (is_via_compact_memory(cc->order))
|
|
return COMPACT_CONTINUE;
|
|
|
|
/* Compaction run is not finished if the watermark is not met */
|
|
watermark = low_wmark_pages(zone);
|
|
|
|
if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
|
|
cc->alloc_flags))
|
|
return COMPACT_CONTINUE;
|
|
|
|
/* Direct compactor: Is a suitable page free? */
|
|
for (order = cc->order; order < MAX_ORDER; order++) {
|
|
struct free_area *area = &zone->free_area[order];
|
|
bool can_steal;
|
|
|
|
/* Job done if page is free of the right migratetype */
|
|
if (!list_empty(&area->free_list[migratetype]))
|
|
return COMPACT_PARTIAL;
|
|
|
|
#ifdef CONFIG_CMA
|
|
/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
|
|
if (migratetype == MIGRATE_MOVABLE &&
|
|
!list_empty(&area->free_list[MIGRATE_CMA]))
|
|
return COMPACT_PARTIAL;
|
|
#endif
|
|
/*
|
|
* Job done if allocation would steal freepages from
|
|
* other migratetype buddy lists.
|
|
*/
|
|
if (find_suitable_fallback(area, order, migratetype,
|
|
true, &can_steal) != -1)
|
|
return COMPACT_PARTIAL;
|
|
}
|
|
|
|
return COMPACT_NO_SUITABLE_PAGE;
|
|
}
|
|
|
|
static int compact_finished(struct zone *zone, struct compact_control *cc,
|
|
const int migratetype)
|
|
{
|
|
int ret;
|
|
|
|
ret = __compact_finished(zone, cc, migratetype);
|
|
trace_mm_compaction_finished(zone, cc->order, ret);
|
|
if (ret == COMPACT_NO_SUITABLE_PAGE)
|
|
ret = COMPACT_CONTINUE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* compaction_suitable: Is this suitable to run compaction on this zone now?
|
|
* Returns
|
|
* COMPACT_SKIPPED - If there are too few free pages for compaction
|
|
* COMPACT_PARTIAL - If the allocation would succeed without compaction
|
|
* COMPACT_CONTINUE - If compaction should run now
|
|
*/
|
|
static unsigned long __compaction_suitable(struct zone *zone, int order,
|
|
int alloc_flags, int classzone_idx)
|
|
{
|
|
int fragindex;
|
|
unsigned long watermark;
|
|
|
|
if (is_via_compact_memory(order))
|
|
return COMPACT_CONTINUE;
|
|
|
|
watermark = low_wmark_pages(zone);
|
|
/*
|
|
* If watermarks for high-order allocation are already met, there
|
|
* should be no need for compaction at all.
|
|
*/
|
|
if (zone_watermark_ok(zone, order, watermark, classzone_idx,
|
|
alloc_flags))
|
|
return COMPACT_PARTIAL;
|
|
|
|
/*
|
|
* Watermarks for order-0 must be met for compaction. Note the 2UL.
|
|
* This is because during migration, copies of pages need to be
|
|
* allocated and for a short time, the footprint is higher
|
|
*/
|
|
watermark += (2UL << order);
|
|
if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
|
|
return COMPACT_SKIPPED;
|
|
|
|
/*
|
|
* fragmentation index determines if allocation failures are due to
|
|
* low memory or external fragmentation
|
|
*
|
|
* index of -1000 would imply allocations might succeed depending on
|
|
* watermarks, but we already failed the high-order watermark check
|
|
* index towards 0 implies failure is due to lack of memory
|
|
* index towards 1000 implies failure is due to fragmentation
|
|
*
|
|
* Only compact if a failure would be due to fragmentation.
|
|
*/
|
|
fragindex = fragmentation_index(zone, order);
|
|
if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
|
|
return COMPACT_NOT_SUITABLE_ZONE;
|
|
|
|
return COMPACT_CONTINUE;
|
|
}
|
|
|
|
unsigned long compaction_suitable(struct zone *zone, int order,
|
|
int alloc_flags, int classzone_idx)
|
|
{
|
|
unsigned long ret;
|
|
|
|
ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
|
|
trace_mm_compaction_suitable(zone, order, ret);
|
|
if (ret == COMPACT_NOT_SUITABLE_ZONE)
|
|
ret = COMPACT_SKIPPED;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int compact_zone(struct zone *zone, struct compact_control *cc)
|
|
{
|
|
int ret;
|
|
unsigned long start_pfn = zone->zone_start_pfn;
|
|
unsigned long end_pfn = zone_end_pfn(zone);
|
|
const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
|
|
const bool sync = cc->mode != MIGRATE_ASYNC;
|
|
|
|
ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
|
|
cc->classzone_idx);
|
|
switch (ret) {
|
|
case COMPACT_PARTIAL:
|
|
case COMPACT_SKIPPED:
|
|
/* Compaction is likely to fail */
|
|
return ret;
|
|
case COMPACT_CONTINUE:
|
|
/* Fall through to compaction */
|
|
;
|
|
}
|
|
|
|
/*
|
|
* Clear pageblock skip if there were failures recently and compaction
|
|
* is about to be retried after being deferred.
|
|
*/
|
|
if (compaction_restarting(zone, cc->order))
|
|
__reset_isolation_suitable(zone);
|
|
|
|
/*
|
|
* Setup to move all movable pages to the end of the zone. Used cached
|
|
* information on where the scanners should start but check that it
|
|
* is initialised by ensuring the values are within zone boundaries.
|
|
*/
|
|
cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
|
|
cc->free_pfn = zone->compact_cached_free_pfn;
|
|
if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
|
|
cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
|
|
zone->compact_cached_free_pfn = cc->free_pfn;
|
|
}
|
|
if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
|
|
cc->migrate_pfn = start_pfn;
|
|
zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
|
|
zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
|
|
}
|
|
cc->last_migrated_pfn = 0;
|
|
|
|
trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
|
|
cc->free_pfn, end_pfn, sync);
|
|
|
|
migrate_prep_local();
|
|
|
|
while ((ret = compact_finished(zone, cc, migratetype)) ==
|
|
COMPACT_CONTINUE) {
|
|
int err;
|
|
|
|
switch (isolate_migratepages(zone, cc)) {
|
|
case ISOLATE_ABORT:
|
|
ret = COMPACT_CONTENDED;
|
|
putback_movable_pages(&cc->migratepages);
|
|
cc->nr_migratepages = 0;
|
|
goto out;
|
|
case ISOLATE_NONE:
|
|
/*
|
|
* We haven't isolated and migrated anything, but
|
|
* there might still be unflushed migrations from
|
|
* previous cc->order aligned block.
|
|
*/
|
|
goto check_drain;
|
|
case ISOLATE_SUCCESS:
|
|
;
|
|
}
|
|
|
|
err = migrate_pages(&cc->migratepages, compaction_alloc,
|
|
compaction_free, (unsigned long)cc, cc->mode,
|
|
MR_COMPACTION);
|
|
|
|
trace_mm_compaction_migratepages(cc->nr_migratepages, err,
|
|
&cc->migratepages);
|
|
|
|
/* All pages were either migrated or will be released */
|
|
cc->nr_migratepages = 0;
|
|
if (err) {
|
|
putback_movable_pages(&cc->migratepages);
|
|
/*
|
|
* migrate_pages() may return -ENOMEM when scanners meet
|
|
* and we want compact_finished() to detect it
|
|
*/
|
|
if (err == -ENOMEM && !compact_scanners_met(cc)) {
|
|
ret = COMPACT_CONTENDED;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
check_drain:
|
|
/*
|
|
* Has the migration scanner moved away from the previous
|
|
* cc->order aligned block where we migrated from? If yes,
|
|
* flush the pages that were freed, so that they can merge and
|
|
* compact_finished() can detect immediately if allocation
|
|
* would succeed.
|
|
*/
|
|
if (cc->order > 0 && cc->last_migrated_pfn) {
|
|
int cpu;
|
|
unsigned long current_block_start =
|
|
cc->migrate_pfn & ~((1UL << cc->order) - 1);
|
|
|
|
if (cc->last_migrated_pfn < current_block_start) {
|
|
cpu = get_cpu();
|
|
lru_add_drain_cpu(cpu);
|
|
drain_local_pages(zone);
|
|
put_cpu();
|
|
/* No more flushing until we migrate again */
|
|
cc->last_migrated_pfn = 0;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* Release free pages and update where the free scanner should restart,
|
|
* so we don't leave any returned pages behind in the next attempt.
|
|
*/
|
|
if (cc->nr_freepages > 0) {
|
|
unsigned long free_pfn = release_freepages(&cc->freepages);
|
|
|
|
cc->nr_freepages = 0;
|
|
VM_BUG_ON(free_pfn == 0);
|
|
/* The cached pfn is always the first in a pageblock */
|
|
free_pfn &= ~(pageblock_nr_pages-1);
|
|
/*
|
|
* Only go back, not forward. The cached pfn might have been
|
|
* already reset to zone end in compact_finished()
|
|
*/
|
|
if (free_pfn > zone->compact_cached_free_pfn)
|
|
zone->compact_cached_free_pfn = free_pfn;
|
|
}
|
|
|
|
trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
|
|
cc->free_pfn, end_pfn, sync, ret);
|
|
|
|
if (ret == COMPACT_CONTENDED)
|
|
ret = COMPACT_PARTIAL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long compact_zone_order(struct zone *zone, int order,
|
|
gfp_t gfp_mask, enum migrate_mode mode, int *contended,
|
|
int alloc_flags, int classzone_idx)
|
|
{
|
|
unsigned long ret;
|
|
struct compact_control cc = {
|
|
.nr_freepages = 0,
|
|
.nr_migratepages = 0,
|
|
.order = order,
|
|
.gfp_mask = gfp_mask,
|
|
.zone = zone,
|
|
.mode = mode,
|
|
.alloc_flags = alloc_flags,
|
|
.classzone_idx = classzone_idx,
|
|
.direct_compaction = true,
|
|
};
|
|
INIT_LIST_HEAD(&cc.freepages);
|
|
INIT_LIST_HEAD(&cc.migratepages);
|
|
|
|
ret = compact_zone(zone, &cc);
|
|
|
|
VM_BUG_ON(!list_empty(&cc.freepages));
|
|
VM_BUG_ON(!list_empty(&cc.migratepages));
|
|
|
|
*contended = cc.contended;
|
|
return ret;
|
|
}
|
|
|
|
int sysctl_extfrag_threshold = 500;
|
|
|
|
/**
|
|
* try_to_compact_pages - Direct compact to satisfy a high-order allocation
|
|
* @gfp_mask: The GFP mask of the current allocation
|
|
* @order: The order of the current allocation
|
|
* @alloc_flags: The allocation flags of the current allocation
|
|
* @ac: The context of current allocation
|
|
* @mode: The migration mode for async, sync light, or sync migration
|
|
* @contended: Return value that determines if compaction was aborted due to
|
|
* need_resched() or lock contention
|
|
*
|
|
* This is the main entry point for direct page compaction.
|
|
*/
|
|
unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
|
|
int alloc_flags, const struct alloc_context *ac,
|
|
enum migrate_mode mode, int *contended)
|
|
{
|
|
int may_enter_fs = gfp_mask & __GFP_FS;
|
|
int may_perform_io = gfp_mask & __GFP_IO;
|
|
struct zoneref *z;
|
|
struct zone *zone;
|
|
int rc = COMPACT_DEFERRED;
|
|
int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
|
|
|
|
*contended = COMPACT_CONTENDED_NONE;
|
|
|
|
/* Check if the GFP flags allow compaction */
|
|
if (!order || !may_enter_fs || !may_perform_io)
|
|
return COMPACT_SKIPPED;
|
|
|
|
trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
|
|
|
|
/* Compact each zone in the list */
|
|
for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
|
|
ac->nodemask) {
|
|
int status;
|
|
int zone_contended;
|
|
|
|
if (compaction_deferred(zone, order))
|
|
continue;
|
|
|
|
status = compact_zone_order(zone, order, gfp_mask, mode,
|
|
&zone_contended, alloc_flags,
|
|
ac->classzone_idx);
|
|
rc = max(status, rc);
|
|
/*
|
|
* It takes at least one zone that wasn't lock contended
|
|
* to clear all_zones_contended.
|
|
*/
|
|
all_zones_contended &= zone_contended;
|
|
|
|
/* If a normal allocation would succeed, stop compacting */
|
|
if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
|
|
ac->classzone_idx, alloc_flags)) {
|
|
/*
|
|
* We think the allocation will succeed in this zone,
|
|
* but it is not certain, hence the false. The caller
|
|
* will repeat this with true if allocation indeed
|
|
* succeeds in this zone.
|
|
*/
|
|
compaction_defer_reset(zone, order, false);
|
|
/*
|
|
* It is possible that async compaction aborted due to
|
|
* need_resched() and the watermarks were ok thanks to
|
|
* somebody else freeing memory. The allocation can
|
|
* however still fail so we better signal the
|
|
* need_resched() contention anyway (this will not
|
|
* prevent the allocation attempt).
|
|
*/
|
|
if (zone_contended == COMPACT_CONTENDED_SCHED)
|
|
*contended = COMPACT_CONTENDED_SCHED;
|
|
|
|
goto break_loop;
|
|
}
|
|
|
|
if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
|
|
/*
|
|
* We think that allocation won't succeed in this zone
|
|
* so we defer compaction there. If it ends up
|
|
* succeeding after all, it will be reset.
|
|
*/
|
|
defer_compaction(zone, order);
|
|
}
|
|
|
|
/*
|
|
* We might have stopped compacting due to need_resched() in
|
|
* async compaction, or due to a fatal signal detected. In that
|
|
* case do not try further zones and signal need_resched()
|
|
* contention.
|
|
*/
|
|
if ((zone_contended == COMPACT_CONTENDED_SCHED)
|
|
|| fatal_signal_pending(current)) {
|
|
*contended = COMPACT_CONTENDED_SCHED;
|
|
goto break_loop;
|
|
}
|
|
|
|
continue;
|
|
break_loop:
|
|
/*
|
|
* We might not have tried all the zones, so be conservative
|
|
* and assume they are not all lock contended.
|
|
*/
|
|
all_zones_contended = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If at least one zone wasn't deferred or skipped, we report if all
|
|
* zones that were tried were lock contended.
|
|
*/
|
|
if (rc > COMPACT_SKIPPED && all_zones_contended)
|
|
*contended = COMPACT_CONTENDED_LOCK;
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* Compact all zones within a node */
|
|
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
|
|
{
|
|
int zoneid;
|
|
struct zone *zone;
|
|
|
|
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
|
|
|
|
zone = &pgdat->node_zones[zoneid];
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
cc->nr_freepages = 0;
|
|
cc->nr_migratepages = 0;
|
|
cc->zone = zone;
|
|
INIT_LIST_HEAD(&cc->freepages);
|
|
INIT_LIST_HEAD(&cc->migratepages);
|
|
|
|
/*
|
|
* When called via /proc/sys/vm/compact_memory
|
|
* this makes sure we compact the whole zone regardless of
|
|
* cached scanner positions.
|
|
*/
|
|
if (is_via_compact_memory(cc->order))
|
|
__reset_isolation_suitable(zone);
|
|
|
|
if (is_via_compact_memory(cc->order) ||
|
|
!compaction_deferred(zone, cc->order))
|
|
compact_zone(zone, cc);
|
|
|
|
VM_BUG_ON(!list_empty(&cc->freepages));
|
|
VM_BUG_ON(!list_empty(&cc->migratepages));
|
|
|
|
if (is_via_compact_memory(cc->order))
|
|
continue;
|
|
|
|
if (zone_watermark_ok(zone, cc->order,
|
|
low_wmark_pages(zone), 0, 0))
|
|
compaction_defer_reset(zone, cc->order, false);
|
|
}
|
|
}
|
|
|
|
void compact_pgdat(pg_data_t *pgdat, int order)
|
|
{
|
|
struct compact_control cc = {
|
|
.order = order,
|
|
.mode = MIGRATE_ASYNC,
|
|
};
|
|
|
|
if (!order)
|
|
return;
|
|
|
|
__compact_pgdat(pgdat, &cc);
|
|
}
|
|
|
|
static void compact_node(int nid)
|
|
{
|
|
struct compact_control cc = {
|
|
.order = -1,
|
|
.mode = MIGRATE_SYNC,
|
|
.ignore_skip_hint = true,
|
|
};
|
|
|
|
__compact_pgdat(NODE_DATA(nid), &cc);
|
|
}
|
|
|
|
/* Compact all nodes in the system */
|
|
static void compact_nodes(void)
|
|
{
|
|
int nid;
|
|
|
|
/* Flush pending updates to the LRU lists */
|
|
lru_add_drain_all();
|
|
|
|
for_each_online_node(nid)
|
|
compact_node(nid);
|
|
}
|
|
|
|
/* The written value is actually unused, all memory is compacted */
|
|
int sysctl_compact_memory;
|
|
|
|
/*
|
|
* This is the entry point for compacting all nodes via
|
|
* /proc/sys/vm/compact_memory
|
|
*/
|
|
int sysctl_compaction_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
if (write)
|
|
compact_nodes();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sysctl_extfrag_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
|
|
static ssize_t sysfs_compact_node(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int nid = dev->id;
|
|
|
|
if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
|
|
/* Flush pending updates to the LRU lists */
|
|
lru_add_drain_all();
|
|
|
|
compact_node(nid);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
|
|
|
|
int compaction_register_node(struct node *node)
|
|
{
|
|
return device_create_file(&node->dev, &dev_attr_compact);
|
|
}
|
|
|
|
void compaction_unregister_node(struct node *node)
|
|
{
|
|
return device_remove_file(&node->dev, &dev_attr_compact);
|
|
}
|
|
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
|
|
|
|
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
|
|
{
|
|
return pgdat->kcompactd_max_order > 0;
|
|
}
|
|
|
|
static bool kcompactd_node_suitable(pg_data_t *pgdat)
|
|
{
|
|
int zoneid;
|
|
struct zone *zone;
|
|
enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
|
|
|
|
for (zoneid = 0; zoneid < classzone_idx; zoneid++) {
|
|
zone = &pgdat->node_zones[zoneid];
|
|
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
|
|
classzone_idx) == COMPACT_CONTINUE)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void kcompactd_do_work(pg_data_t *pgdat)
|
|
{
|
|
/*
|
|
* With no special task, compact all zones so that a page of requested
|
|
* order is allocatable.
|
|
*/
|
|
int zoneid;
|
|
struct zone *zone;
|
|
struct compact_control cc = {
|
|
.order = pgdat->kcompactd_max_order,
|
|
.classzone_idx = pgdat->kcompactd_classzone_idx,
|
|
.mode = MIGRATE_SYNC_LIGHT,
|
|
.ignore_skip_hint = true,
|
|
|
|
};
|
|
bool success = false;
|
|
|
|
trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
|
|
cc.classzone_idx);
|
|
count_vm_event(KCOMPACTD_WAKE);
|
|
|
|
for (zoneid = 0; zoneid < cc.classzone_idx; zoneid++) {
|
|
int status;
|
|
|
|
zone = &pgdat->node_zones[zoneid];
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
if (compaction_deferred(zone, cc.order))
|
|
continue;
|
|
|
|
if (compaction_suitable(zone, cc.order, 0, zoneid) !=
|
|
COMPACT_CONTINUE)
|
|
continue;
|
|
|
|
cc.nr_freepages = 0;
|
|
cc.nr_migratepages = 0;
|
|
cc.zone = zone;
|
|
INIT_LIST_HEAD(&cc.freepages);
|
|
INIT_LIST_HEAD(&cc.migratepages);
|
|
|
|
status = compact_zone(zone, &cc);
|
|
|
|
if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
|
|
cc.classzone_idx, 0)) {
|
|
success = true;
|
|
compaction_defer_reset(zone, cc.order, false);
|
|
} else if (status == COMPACT_COMPLETE) {
|
|
/*
|
|
* We use sync migration mode here, so we defer like
|
|
* sync direct compaction does.
|
|
*/
|
|
defer_compaction(zone, cc.order);
|
|
}
|
|
|
|
VM_BUG_ON(!list_empty(&cc.freepages));
|
|
VM_BUG_ON(!list_empty(&cc.migratepages));
|
|
}
|
|
|
|
/*
|
|
* Regardless of success, we are done until woken up next. But remember
|
|
* the requested order/classzone_idx in case it was higher/tighter than
|
|
* our current ones
|
|
*/
|
|
if (pgdat->kcompactd_max_order <= cc.order)
|
|
pgdat->kcompactd_max_order = 0;
|
|
if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
|
|
pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
|
|
}
|
|
|
|
void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
|
|
{
|
|
if (!order)
|
|
return;
|
|
|
|
if (pgdat->kcompactd_max_order < order)
|
|
pgdat->kcompactd_max_order = order;
|
|
|
|
if (pgdat->kcompactd_classzone_idx > classzone_idx)
|
|
pgdat->kcompactd_classzone_idx = classzone_idx;
|
|
|
|
if (!waitqueue_active(&pgdat->kcompactd_wait))
|
|
return;
|
|
|
|
if (!kcompactd_node_suitable(pgdat))
|
|
return;
|
|
|
|
trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
|
|
classzone_idx);
|
|
wake_up_interruptible(&pgdat->kcompactd_wait);
|
|
}
|
|
|
|
/*
|
|
* The background compaction daemon, started as a kernel thread
|
|
* from the init process.
|
|
*/
|
|
static int kcompactd(void *p)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t*)p;
|
|
struct task_struct *tsk = current;
|
|
|
|
const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
|
|
|
|
if (!cpumask_empty(cpumask))
|
|
set_cpus_allowed_ptr(tsk, cpumask);
|
|
|
|
set_freezable();
|
|
|
|
pgdat->kcompactd_max_order = 0;
|
|
pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
|
|
|
|
while (!kthread_should_stop()) {
|
|
trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
|
|
wait_event_freezable(pgdat->kcompactd_wait,
|
|
kcompactd_work_requested(pgdat));
|
|
|
|
kcompactd_do_work(pgdat);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This kcompactd start function will be called by init and node-hot-add.
|
|
* On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
|
|
*/
|
|
int kcompactd_run(int nid)
|
|
{
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
int ret = 0;
|
|
|
|
if (pgdat->kcompactd)
|
|
return 0;
|
|
|
|
pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
|
|
if (IS_ERR(pgdat->kcompactd)) {
|
|
pr_err("Failed to start kcompactd on node %d\n", nid);
|
|
ret = PTR_ERR(pgdat->kcompactd);
|
|
pgdat->kcompactd = NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called by memory hotplug when all memory in a node is offlined. Caller must
|
|
* hold mem_hotplug_begin/end().
|
|
*/
|
|
void kcompactd_stop(int nid)
|
|
{
|
|
struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
|
|
|
|
if (kcompactd) {
|
|
kthread_stop(kcompactd);
|
|
NODE_DATA(nid)->kcompactd = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It's optimal to keep kcompactd on the same CPUs as their memory, but
|
|
* not required for correctness. So if the last cpu in a node goes
|
|
* away, we get changed to run anywhere: as the first one comes back,
|
|
* restore their cpu bindings.
|
|
*/
|
|
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
int nid;
|
|
|
|
if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
|
|
for_each_node_state(nid, N_MEMORY) {
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
const struct cpumask *mask;
|
|
|
|
mask = cpumask_of_node(pgdat->node_id);
|
|
|
|
if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
|
|
/* One of our CPUs online: restore mask */
|
|
set_cpus_allowed_ptr(pgdat->kcompactd, mask);
|
|
}
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static int __init kcompactd_init(void)
|
|
{
|
|
int nid;
|
|
|
|
for_each_node_state(nid, N_MEMORY)
|
|
kcompactd_run(nid);
|
|
hotcpu_notifier(cpu_callback, 0);
|
|
return 0;
|
|
}
|
|
subsys_initcall(kcompactd_init)
|
|
|
|
#endif /* CONFIG_COMPACTION */
|