mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-11 20:07:00 +00:00
56dd2c0691
sd will get hung up issuing commands to flush write cache if a SAS device behind the expander is unplugged without warning. Change libsas to reject commands to domain devices that have already gone away. [maciej.trela@intel.com: removed setting ->gone in sas_deform_port() to permit sync cache commands at module removal] Signed-off-by: Darrick J. Wong <djwong@us.ibm.com> Tested-by: Haipao Fan <haipao.fan@intel.com> Signed-off-by: Maciej Trela <maciej.trela@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: James Bottomley <James.Bottomley@suse.de>
784 lines
21 KiB
C
784 lines
21 KiB
C
/*
|
|
* Support for SATA devices on Serial Attached SCSI (SAS) controllers
|
|
*
|
|
* Copyright (C) 2006 IBM Corporation
|
|
*
|
|
* Written by: Darrick J. Wong <djwong@us.ibm.com>, IBM Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of the
|
|
* License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
|
* USA
|
|
*/
|
|
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <scsi/sas_ata.h>
|
|
#include "sas_internal.h"
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_tcq.h>
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_transport.h>
|
|
#include <scsi/scsi_transport_sas.h>
|
|
#include "../scsi_sas_internal.h"
|
|
#include "../scsi_transport_api.h"
|
|
#include <scsi/scsi_eh.h>
|
|
|
|
static enum ata_completion_errors sas_to_ata_err(struct task_status_struct *ts)
|
|
{
|
|
/* Cheesy attempt to translate SAS errors into ATA. Hah! */
|
|
|
|
/* transport error */
|
|
if (ts->resp == SAS_TASK_UNDELIVERED)
|
|
return AC_ERR_ATA_BUS;
|
|
|
|
/* ts->resp == SAS_TASK_COMPLETE */
|
|
/* task delivered, what happened afterwards? */
|
|
switch (ts->stat) {
|
|
case SAS_DEV_NO_RESPONSE:
|
|
return AC_ERR_TIMEOUT;
|
|
|
|
case SAS_INTERRUPTED:
|
|
case SAS_PHY_DOWN:
|
|
case SAS_NAK_R_ERR:
|
|
return AC_ERR_ATA_BUS;
|
|
|
|
|
|
case SAS_DATA_UNDERRUN:
|
|
/*
|
|
* Some programs that use the taskfile interface
|
|
* (smartctl in particular) can cause underrun
|
|
* problems. Ignore these errors, perhaps at our
|
|
* peril.
|
|
*/
|
|
return 0;
|
|
|
|
case SAS_DATA_OVERRUN:
|
|
case SAS_QUEUE_FULL:
|
|
case SAS_DEVICE_UNKNOWN:
|
|
case SAS_SG_ERR:
|
|
return AC_ERR_INVALID;
|
|
|
|
case SAM_STAT_CHECK_CONDITION:
|
|
case SAS_OPEN_TO:
|
|
case SAS_OPEN_REJECT:
|
|
SAS_DPRINTK("%s: Saw error %d. What to do?\n",
|
|
__func__, ts->stat);
|
|
return AC_ERR_OTHER;
|
|
|
|
case SAS_ABORTED_TASK:
|
|
return AC_ERR_DEV;
|
|
|
|
case SAS_PROTO_RESPONSE:
|
|
/* This means the ending_fis has the error
|
|
* value; return 0 here to collect it */
|
|
return 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void sas_ata_task_done(struct sas_task *task)
|
|
{
|
|
struct ata_queued_cmd *qc = task->uldd_task;
|
|
struct domain_device *dev;
|
|
struct task_status_struct *stat = &task->task_status;
|
|
struct ata_task_resp *resp = (struct ata_task_resp *)stat->buf;
|
|
struct sas_ha_struct *sas_ha;
|
|
enum ata_completion_errors ac;
|
|
unsigned long flags;
|
|
|
|
if (!qc)
|
|
goto qc_already_gone;
|
|
|
|
dev = qc->ap->private_data;
|
|
sas_ha = dev->port->ha;
|
|
|
|
spin_lock_irqsave(dev->sata_dev.ap->lock, flags);
|
|
if (stat->stat == SAS_PROTO_RESPONSE || stat->stat == SAM_STAT_GOOD) {
|
|
ata_tf_from_fis(resp->ending_fis, &dev->sata_dev.tf);
|
|
qc->err_mask |= ac_err_mask(dev->sata_dev.tf.command);
|
|
dev->sata_dev.sstatus = resp->sstatus;
|
|
dev->sata_dev.serror = resp->serror;
|
|
dev->sata_dev.scontrol = resp->scontrol;
|
|
} else if (stat->stat != SAM_STAT_GOOD) {
|
|
ac = sas_to_ata_err(stat);
|
|
if (ac) {
|
|
SAS_DPRINTK("%s: SAS error %x\n", __func__,
|
|
stat->stat);
|
|
/* We saw a SAS error. Send a vague error. */
|
|
qc->err_mask = ac;
|
|
dev->sata_dev.tf.feature = 0x04; /* status err */
|
|
dev->sata_dev.tf.command = ATA_ERR;
|
|
}
|
|
}
|
|
|
|
qc->lldd_task = NULL;
|
|
if (qc->scsicmd)
|
|
ASSIGN_SAS_TASK(qc->scsicmd, NULL);
|
|
ata_qc_complete(qc);
|
|
spin_unlock_irqrestore(dev->sata_dev.ap->lock, flags);
|
|
|
|
/*
|
|
* If the sas_task has an ata qc, a scsi_cmnd and the aborted
|
|
* flag is set, then we must have come in via the libsas EH
|
|
* functions. When we exit this function, we need to put the
|
|
* scsi_cmnd on the list of finished errors. The ata_qc_complete
|
|
* call cleans up the libata side of things but we're protected
|
|
* from the scsi_cmnd going away because the scsi_cmnd is owned
|
|
* by the EH, making libata's call to scsi_done a NOP.
|
|
*/
|
|
spin_lock_irqsave(&task->task_state_lock, flags);
|
|
if (qc->scsicmd && task->task_state_flags & SAS_TASK_STATE_ABORTED)
|
|
scsi_eh_finish_cmd(qc->scsicmd, &sas_ha->eh_done_q);
|
|
spin_unlock_irqrestore(&task->task_state_lock, flags);
|
|
|
|
qc_already_gone:
|
|
list_del_init(&task->list);
|
|
sas_free_task(task);
|
|
}
|
|
|
|
static unsigned int sas_ata_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
int res;
|
|
struct sas_task *task;
|
|
struct domain_device *dev = qc->ap->private_data;
|
|
struct sas_ha_struct *sas_ha = dev->port->ha;
|
|
struct Scsi_Host *host = sas_ha->core.shost;
|
|
struct sas_internal *i = to_sas_internal(host->transportt);
|
|
struct scatterlist *sg;
|
|
unsigned int xfer = 0;
|
|
unsigned int si;
|
|
|
|
/* If the device fell off, no sense in issuing commands */
|
|
if (dev->gone)
|
|
return AC_ERR_SYSTEM;
|
|
|
|
task = sas_alloc_task(GFP_ATOMIC);
|
|
if (!task)
|
|
return AC_ERR_SYSTEM;
|
|
task->dev = dev;
|
|
task->task_proto = SAS_PROTOCOL_STP;
|
|
task->task_done = sas_ata_task_done;
|
|
|
|
if (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
|
|
qc->tf.command == ATA_CMD_FPDMA_READ) {
|
|
/* Need to zero out the tag libata assigned us */
|
|
qc->tf.nsect = 0;
|
|
}
|
|
|
|
ata_tf_to_fis(&qc->tf, 1, 0, (u8*)&task->ata_task.fis);
|
|
task->uldd_task = qc;
|
|
if (ata_is_atapi(qc->tf.protocol)) {
|
|
memcpy(task->ata_task.atapi_packet, qc->cdb, qc->dev->cdb_len);
|
|
task->total_xfer_len = qc->nbytes;
|
|
task->num_scatter = qc->n_elem;
|
|
} else {
|
|
for_each_sg(qc->sg, sg, qc->n_elem, si)
|
|
xfer += sg->length;
|
|
|
|
task->total_xfer_len = xfer;
|
|
task->num_scatter = si;
|
|
}
|
|
|
|
task->data_dir = qc->dma_dir;
|
|
task->scatter = qc->sg;
|
|
task->ata_task.retry_count = 1;
|
|
task->task_state_flags = SAS_TASK_STATE_PENDING;
|
|
qc->lldd_task = task;
|
|
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_NCQ:
|
|
task->ata_task.use_ncq = 1;
|
|
/* fall through */
|
|
case ATAPI_PROT_DMA:
|
|
case ATA_PROT_DMA:
|
|
task->ata_task.dma_xfer = 1;
|
|
break;
|
|
}
|
|
|
|
if (qc->scsicmd)
|
|
ASSIGN_SAS_TASK(qc->scsicmd, task);
|
|
|
|
if (sas_ha->lldd_max_execute_num < 2)
|
|
res = i->dft->lldd_execute_task(task, 1, GFP_ATOMIC);
|
|
else
|
|
res = sas_queue_up(task);
|
|
|
|
/* Examine */
|
|
if (res) {
|
|
SAS_DPRINTK("lldd_execute_task returned: %d\n", res);
|
|
|
|
if (qc->scsicmd)
|
|
ASSIGN_SAS_TASK(qc->scsicmd, NULL);
|
|
sas_free_task(task);
|
|
return AC_ERR_SYSTEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool sas_ata_qc_fill_rtf(struct ata_queued_cmd *qc)
|
|
{
|
|
struct domain_device *dev = qc->ap->private_data;
|
|
|
|
memcpy(&qc->result_tf, &dev->sata_dev.tf, sizeof(qc->result_tf));
|
|
return true;
|
|
}
|
|
|
|
static void sas_ata_phy_reset(struct ata_port *ap)
|
|
{
|
|
struct domain_device *dev = ap->private_data;
|
|
struct sas_internal *i =
|
|
to_sas_internal(dev->port->ha->core.shost->transportt);
|
|
int res = TMF_RESP_FUNC_FAILED;
|
|
|
|
if (i->dft->lldd_I_T_nexus_reset)
|
|
res = i->dft->lldd_I_T_nexus_reset(dev);
|
|
|
|
if (res != TMF_RESP_FUNC_COMPLETE)
|
|
SAS_DPRINTK("%s: Unable to reset I T nexus?\n", __func__);
|
|
|
|
switch (dev->sata_dev.command_set) {
|
|
case ATA_COMMAND_SET:
|
|
SAS_DPRINTK("%s: Found ATA device.\n", __func__);
|
|
ap->link.device[0].class = ATA_DEV_ATA;
|
|
break;
|
|
case ATAPI_COMMAND_SET:
|
|
SAS_DPRINTK("%s: Found ATAPI device.\n", __func__);
|
|
ap->link.device[0].class = ATA_DEV_ATAPI;
|
|
break;
|
|
default:
|
|
SAS_DPRINTK("%s: Unknown SATA command set: %d.\n",
|
|
__func__,
|
|
dev->sata_dev.command_set);
|
|
ap->link.device[0].class = ATA_DEV_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
ap->cbl = ATA_CBL_SATA;
|
|
}
|
|
|
|
static void sas_ata_post_internal(struct ata_queued_cmd *qc)
|
|
{
|
|
if (qc->flags & ATA_QCFLAG_FAILED)
|
|
qc->err_mask |= AC_ERR_OTHER;
|
|
|
|
if (qc->err_mask) {
|
|
/*
|
|
* Find the sas_task and kill it. By this point,
|
|
* libata has decided to kill the qc, so we needn't
|
|
* bother with sas_ata_task_done. But we still
|
|
* ought to abort the task.
|
|
*/
|
|
struct sas_task *task = qc->lldd_task;
|
|
unsigned long flags;
|
|
|
|
qc->lldd_task = NULL;
|
|
if (task) {
|
|
/* Should this be a AT(API) device reset? */
|
|
spin_lock_irqsave(&task->task_state_lock, flags);
|
|
task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
|
|
spin_unlock_irqrestore(&task->task_state_lock, flags);
|
|
|
|
task->uldd_task = NULL;
|
|
__sas_task_abort(task);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int sas_ata_scr_write(struct ata_link *link, unsigned int sc_reg_in,
|
|
u32 val)
|
|
{
|
|
struct domain_device *dev = link->ap->private_data;
|
|
|
|
SAS_DPRINTK("STUB %s\n", __func__);
|
|
switch (sc_reg_in) {
|
|
case SCR_STATUS:
|
|
dev->sata_dev.sstatus = val;
|
|
break;
|
|
case SCR_CONTROL:
|
|
dev->sata_dev.scontrol = val;
|
|
break;
|
|
case SCR_ERROR:
|
|
dev->sata_dev.serror = val;
|
|
break;
|
|
case SCR_ACTIVE:
|
|
dev->sata_dev.ap->link.sactive = val;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sas_ata_scr_read(struct ata_link *link, unsigned int sc_reg_in,
|
|
u32 *val)
|
|
{
|
|
struct domain_device *dev = link->ap->private_data;
|
|
|
|
SAS_DPRINTK("STUB %s\n", __func__);
|
|
switch (sc_reg_in) {
|
|
case SCR_STATUS:
|
|
*val = dev->sata_dev.sstatus;
|
|
return 0;
|
|
case SCR_CONTROL:
|
|
*val = dev->sata_dev.scontrol;
|
|
return 0;
|
|
case SCR_ERROR:
|
|
*val = dev->sata_dev.serror;
|
|
return 0;
|
|
case SCR_ACTIVE:
|
|
*val = dev->sata_dev.ap->link.sactive;
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static struct ata_port_operations sas_sata_ops = {
|
|
.phy_reset = sas_ata_phy_reset,
|
|
.post_internal_cmd = sas_ata_post_internal,
|
|
.qc_defer = ata_std_qc_defer,
|
|
.qc_prep = ata_noop_qc_prep,
|
|
.qc_issue = sas_ata_qc_issue,
|
|
.qc_fill_rtf = sas_ata_qc_fill_rtf,
|
|
.port_start = ata_sas_port_start,
|
|
.port_stop = ata_sas_port_stop,
|
|
.scr_read = sas_ata_scr_read,
|
|
.scr_write = sas_ata_scr_write
|
|
};
|
|
|
|
static struct ata_port_info sata_port_info = {
|
|
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | ATA_FLAG_SATA_RESET |
|
|
ATA_FLAG_MMIO | ATA_FLAG_PIO_DMA | ATA_FLAG_NCQ,
|
|
.pio_mask = 0x1f, /* PIO0-4 */
|
|
.mwdma_mask = 0x07, /* MWDMA0-2 */
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &sas_sata_ops
|
|
};
|
|
|
|
int sas_ata_init_host_and_port(struct domain_device *found_dev,
|
|
struct scsi_target *starget)
|
|
{
|
|
struct Scsi_Host *shost = dev_to_shost(&starget->dev);
|
|
struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
|
|
struct ata_port *ap;
|
|
|
|
ata_host_init(&found_dev->sata_dev.ata_host,
|
|
ha->dev,
|
|
sata_port_info.flags,
|
|
&sas_sata_ops);
|
|
ap = ata_sas_port_alloc(&found_dev->sata_dev.ata_host,
|
|
&sata_port_info,
|
|
shost);
|
|
if (!ap) {
|
|
SAS_DPRINTK("ata_sas_port_alloc failed.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
ap->private_data = found_dev;
|
|
ap->cbl = ATA_CBL_SATA;
|
|
ap->scsi_host = shost;
|
|
found_dev->sata_dev.ap = ap;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void sas_ata_task_abort(struct sas_task *task)
|
|
{
|
|
struct ata_queued_cmd *qc = task->uldd_task;
|
|
struct completion *waiting;
|
|
|
|
/* Bounce SCSI-initiated commands to the SCSI EH */
|
|
if (qc->scsicmd) {
|
|
struct request_queue *q = qc->scsicmd->device->request_queue;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
blk_abort_request(qc->scsicmd->request);
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
scsi_schedule_eh(qc->scsicmd->device->host);
|
|
return;
|
|
}
|
|
|
|
/* Internal command, fake a timeout and complete. */
|
|
qc->flags &= ~ATA_QCFLAG_ACTIVE;
|
|
qc->flags |= ATA_QCFLAG_FAILED;
|
|
qc->err_mask |= AC_ERR_TIMEOUT;
|
|
waiting = qc->private_data;
|
|
complete(waiting);
|
|
}
|
|
|
|
static void sas_task_timedout(unsigned long _task)
|
|
{
|
|
struct sas_task *task = (void *) _task;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&task->task_state_lock, flags);
|
|
if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
|
|
task->task_state_flags |= SAS_TASK_STATE_ABORTED;
|
|
spin_unlock_irqrestore(&task->task_state_lock, flags);
|
|
|
|
complete(&task->completion);
|
|
}
|
|
|
|
static void sas_disc_task_done(struct sas_task *task)
|
|
{
|
|
if (!del_timer(&task->timer))
|
|
return;
|
|
complete(&task->completion);
|
|
}
|
|
|
|
#define SAS_DEV_TIMEOUT 10
|
|
|
|
/**
|
|
* sas_execute_task -- Basic task processing for discovery
|
|
* @task: the task to be executed
|
|
* @buffer: pointer to buffer to do I/O
|
|
* @size: size of @buffer
|
|
* @dma_dir: DMA direction. DMA_xxx
|
|
*/
|
|
static int sas_execute_task(struct sas_task *task, void *buffer, int size,
|
|
enum dma_data_direction dma_dir)
|
|
{
|
|
int res = 0;
|
|
struct scatterlist *scatter = NULL;
|
|
struct task_status_struct *ts = &task->task_status;
|
|
int num_scatter = 0;
|
|
int retries = 0;
|
|
struct sas_internal *i =
|
|
to_sas_internal(task->dev->port->ha->core.shost->transportt);
|
|
|
|
if (dma_dir != DMA_NONE) {
|
|
scatter = kzalloc(sizeof(*scatter), GFP_KERNEL);
|
|
if (!scatter)
|
|
goto out;
|
|
|
|
sg_init_one(scatter, buffer, size);
|
|
num_scatter = 1;
|
|
}
|
|
|
|
task->task_proto = task->dev->tproto;
|
|
task->scatter = scatter;
|
|
task->num_scatter = num_scatter;
|
|
task->total_xfer_len = size;
|
|
task->data_dir = dma_dir;
|
|
task->task_done = sas_disc_task_done;
|
|
if (dma_dir != DMA_NONE &&
|
|
sas_protocol_ata(task->task_proto)) {
|
|
task->num_scatter = dma_map_sg(task->dev->port->ha->dev,
|
|
task->scatter,
|
|
task->num_scatter,
|
|
task->data_dir);
|
|
}
|
|
|
|
for (retries = 0; retries < 5; retries++) {
|
|
task->task_state_flags = SAS_TASK_STATE_PENDING;
|
|
init_completion(&task->completion);
|
|
|
|
task->timer.data = (unsigned long) task;
|
|
task->timer.function = sas_task_timedout;
|
|
task->timer.expires = jiffies + SAS_DEV_TIMEOUT*HZ;
|
|
add_timer(&task->timer);
|
|
|
|
res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
|
|
if (res) {
|
|
del_timer(&task->timer);
|
|
SAS_DPRINTK("executing SAS discovery task failed:%d\n",
|
|
res);
|
|
goto ex_err;
|
|
}
|
|
wait_for_completion(&task->completion);
|
|
res = -ECOMM;
|
|
if (task->task_state_flags & SAS_TASK_STATE_ABORTED) {
|
|
int res2;
|
|
SAS_DPRINTK("task aborted, flags:0x%x\n",
|
|
task->task_state_flags);
|
|
res2 = i->dft->lldd_abort_task(task);
|
|
SAS_DPRINTK("came back from abort task\n");
|
|
if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
|
|
if (res2 == TMF_RESP_FUNC_COMPLETE)
|
|
continue; /* Retry the task */
|
|
else
|
|
goto ex_err;
|
|
}
|
|
}
|
|
if (task->task_status.stat == SAM_STAT_BUSY ||
|
|
task->task_status.stat == SAM_STAT_TASK_SET_FULL ||
|
|
task->task_status.stat == SAS_QUEUE_FULL) {
|
|
SAS_DPRINTK("task: q busy, sleeping...\n");
|
|
schedule_timeout_interruptible(HZ);
|
|
} else if (task->task_status.stat == SAM_STAT_CHECK_CONDITION) {
|
|
struct scsi_sense_hdr shdr;
|
|
|
|
if (!scsi_normalize_sense(ts->buf, ts->buf_valid_size,
|
|
&shdr)) {
|
|
SAS_DPRINTK("couldn't normalize sense\n");
|
|
continue;
|
|
}
|
|
if ((shdr.sense_key == 6 && shdr.asc == 0x29) ||
|
|
(shdr.sense_key == 2 && shdr.asc == 4 &&
|
|
shdr.ascq == 1)) {
|
|
SAS_DPRINTK("device %016llx LUN: %016llx "
|
|
"powering up or not ready yet, "
|
|
"sleeping...\n",
|
|
SAS_ADDR(task->dev->sas_addr),
|
|
SAS_ADDR(task->ssp_task.LUN));
|
|
|
|
schedule_timeout_interruptible(5*HZ);
|
|
} else if (shdr.sense_key == 1) {
|
|
res = 0;
|
|
break;
|
|
} else if (shdr.sense_key == 5) {
|
|
break;
|
|
} else {
|
|
SAS_DPRINTK("dev %016llx LUN: %016llx "
|
|
"sense key:0x%x ASC:0x%x ASCQ:0x%x"
|
|
"\n",
|
|
SAS_ADDR(task->dev->sas_addr),
|
|
SAS_ADDR(task->ssp_task.LUN),
|
|
shdr.sense_key,
|
|
shdr.asc, shdr.ascq);
|
|
}
|
|
} else if (task->task_status.resp != SAS_TASK_COMPLETE ||
|
|
task->task_status.stat != SAM_STAT_GOOD) {
|
|
SAS_DPRINTK("task finished with resp:0x%x, "
|
|
"stat:0x%x\n",
|
|
task->task_status.resp,
|
|
task->task_status.stat);
|
|
goto ex_err;
|
|
} else {
|
|
res = 0;
|
|
break;
|
|
}
|
|
}
|
|
ex_err:
|
|
if (dma_dir != DMA_NONE) {
|
|
if (sas_protocol_ata(task->task_proto))
|
|
dma_unmap_sg(task->dev->port->ha->dev,
|
|
task->scatter, task->num_scatter,
|
|
task->data_dir);
|
|
kfree(scatter);
|
|
}
|
|
out:
|
|
return res;
|
|
}
|
|
|
|
/* ---------- SATA ---------- */
|
|
|
|
static void sas_get_ata_command_set(struct domain_device *dev)
|
|
{
|
|
struct dev_to_host_fis *fis =
|
|
(struct dev_to_host_fis *) dev->frame_rcvd;
|
|
|
|
if ((fis->sector_count == 1 && /* ATA */
|
|
fis->lbal == 1 &&
|
|
fis->lbam == 0 &&
|
|
fis->lbah == 0 &&
|
|
fis->device == 0)
|
|
||
|
|
(fis->sector_count == 0 && /* CE-ATA (mATA) */
|
|
fis->lbal == 0 &&
|
|
fis->lbam == 0xCE &&
|
|
fis->lbah == 0xAA &&
|
|
(fis->device & ~0x10) == 0))
|
|
|
|
dev->sata_dev.command_set = ATA_COMMAND_SET;
|
|
|
|
else if ((fis->interrupt_reason == 1 && /* ATAPI */
|
|
fis->lbal == 1 &&
|
|
fis->byte_count_low == 0x14 &&
|
|
fis->byte_count_high == 0xEB &&
|
|
(fis->device & ~0x10) == 0))
|
|
|
|
dev->sata_dev.command_set = ATAPI_COMMAND_SET;
|
|
|
|
else if ((fis->sector_count == 1 && /* SEMB */
|
|
fis->lbal == 1 &&
|
|
fis->lbam == 0x3C &&
|
|
fis->lbah == 0xC3 &&
|
|
fis->device == 0)
|
|
||
|
|
(fis->interrupt_reason == 1 && /* SATA PM */
|
|
fis->lbal == 1 &&
|
|
fis->byte_count_low == 0x69 &&
|
|
fis->byte_count_high == 0x96 &&
|
|
(fis->device & ~0x10) == 0))
|
|
|
|
/* Treat it as a superset? */
|
|
dev->sata_dev.command_set = ATAPI_COMMAND_SET;
|
|
}
|
|
|
|
/**
|
|
* sas_issue_ata_cmd -- Basic SATA command processing for discovery
|
|
* @dev: the device to send the command to
|
|
* @command: the command register
|
|
* @features: the features register
|
|
* @buffer: pointer to buffer to do I/O
|
|
* @size: size of @buffer
|
|
* @dma_dir: DMA direction. DMA_xxx
|
|
*/
|
|
static int sas_issue_ata_cmd(struct domain_device *dev, u8 command,
|
|
u8 features, void *buffer, int size,
|
|
enum dma_data_direction dma_dir)
|
|
{
|
|
int res = 0;
|
|
struct sas_task *task;
|
|
struct dev_to_host_fis *d2h_fis = (struct dev_to_host_fis *)
|
|
&dev->frame_rcvd[0];
|
|
|
|
res = -ENOMEM;
|
|
task = sas_alloc_task(GFP_KERNEL);
|
|
if (!task)
|
|
goto out;
|
|
|
|
task->dev = dev;
|
|
|
|
task->ata_task.fis.fis_type = 0x27;
|
|
task->ata_task.fis.command = command;
|
|
task->ata_task.fis.features = features;
|
|
task->ata_task.fis.device = d2h_fis->device;
|
|
task->ata_task.retry_count = 1;
|
|
|
|
res = sas_execute_task(task, buffer, size, dma_dir);
|
|
|
|
sas_free_task(task);
|
|
out:
|
|
return res;
|
|
}
|
|
|
|
#define ATA_IDENTIFY_DEV 0xEC
|
|
#define ATA_IDENTIFY_PACKET_DEV 0xA1
|
|
#define ATA_SET_FEATURES 0xEF
|
|
#define ATA_FEATURE_PUP_STBY_SPIN_UP 0x07
|
|
|
|
/**
|
|
* sas_discover_sata_dev -- discover a STP/SATA device (SATA_DEV)
|
|
* @dev: STP/SATA device of interest (ATA/ATAPI)
|
|
*
|
|
* The LLDD has already been notified of this device, so that we can
|
|
* send FISes to it. Here we try to get IDENTIFY DEVICE or IDENTIFY
|
|
* PACKET DEVICE, if ATAPI device, so that the LLDD can fine-tune its
|
|
* performance for this device.
|
|
*/
|
|
static int sas_discover_sata_dev(struct domain_device *dev)
|
|
{
|
|
int res;
|
|
__le16 *identify_x;
|
|
u8 command;
|
|
|
|
identify_x = kzalloc(512, GFP_KERNEL);
|
|
if (!identify_x)
|
|
return -ENOMEM;
|
|
|
|
if (dev->sata_dev.command_set == ATA_COMMAND_SET) {
|
|
dev->sata_dev.identify_device = identify_x;
|
|
command = ATA_IDENTIFY_DEV;
|
|
} else {
|
|
dev->sata_dev.identify_packet_device = identify_x;
|
|
command = ATA_IDENTIFY_PACKET_DEV;
|
|
}
|
|
|
|
res = sas_issue_ata_cmd(dev, command, 0, identify_x, 512,
|
|
DMA_FROM_DEVICE);
|
|
if (res)
|
|
goto out_err;
|
|
|
|
/* lives on the media? */
|
|
if (le16_to_cpu(identify_x[0]) & 4) {
|
|
/* incomplete response */
|
|
SAS_DPRINTK("sending SET FEATURE/PUP_STBY_SPIN_UP to "
|
|
"dev %llx\n", SAS_ADDR(dev->sas_addr));
|
|
if (!(identify_x[83] & cpu_to_le16(1<<6)))
|
|
goto cont1;
|
|
res = sas_issue_ata_cmd(dev, ATA_SET_FEATURES,
|
|
ATA_FEATURE_PUP_STBY_SPIN_UP,
|
|
NULL, 0, DMA_NONE);
|
|
if (res)
|
|
goto cont1;
|
|
|
|
schedule_timeout_interruptible(5*HZ); /* More time? */
|
|
res = sas_issue_ata_cmd(dev, command, 0, identify_x, 512,
|
|
DMA_FROM_DEVICE);
|
|
if (res)
|
|
goto out_err;
|
|
}
|
|
cont1:
|
|
/* XXX Hint: register this SATA device with SATL.
|
|
When this returns, dev->sata_dev->lu is alive and
|
|
present.
|
|
sas_satl_register_dev(dev);
|
|
*/
|
|
|
|
sas_fill_in_rphy(dev, dev->rphy);
|
|
|
|
return 0;
|
|
out_err:
|
|
dev->sata_dev.identify_packet_device = NULL;
|
|
dev->sata_dev.identify_device = NULL;
|
|
kfree(identify_x);
|
|
return res;
|
|
}
|
|
|
|
static int sas_discover_sata_pm(struct domain_device *dev)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
/**
|
|
* sas_discover_sata -- discover an STP/SATA domain device
|
|
* @dev: pointer to struct domain_device of interest
|
|
*
|
|
* First we notify the LLDD of this device, so we can send frames to
|
|
* it. Then depending on the type of device we call the appropriate
|
|
* discover functions. Once device discover is done, we notify the
|
|
* LLDD so that it can fine-tune its parameters for the device, by
|
|
* removing it and then adding it. That is, the second time around,
|
|
* the driver would have certain fields, that it is looking at, set.
|
|
* Finally we initialize the kobj so that the device can be added to
|
|
* the system at registration time. Devices directly attached to a HA
|
|
* port, have no parents. All other devices do, and should have their
|
|
* "parent" pointer set appropriately before calling this function.
|
|
*/
|
|
int sas_discover_sata(struct domain_device *dev)
|
|
{
|
|
int res;
|
|
|
|
sas_get_ata_command_set(dev);
|
|
|
|
res = sas_notify_lldd_dev_found(dev);
|
|
if (res)
|
|
return res;
|
|
|
|
switch (dev->dev_type) {
|
|
case SATA_DEV:
|
|
res = sas_discover_sata_dev(dev);
|
|
break;
|
|
case SATA_PM:
|
|
res = sas_discover_sata_pm(dev);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
sas_notify_lldd_dev_gone(dev);
|
|
if (!res) {
|
|
sas_notify_lldd_dev_found(dev);
|
|
res = sas_rphy_add(dev->rphy);
|
|
}
|
|
|
|
return res;
|
|
}
|