mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-31 22:15:38 +00:00
eb254f323b
Pull x86 cache allocation interface from Thomas Gleixner: "This provides support for Intel's Cache Allocation Technology, a cache partitioning mechanism. The interface is odd, but the hardware interface of that CAT stuff is odd as well. We tried hard to come up with an abstraction, but that only allows rather simple partitioning, but no way of sharing and dealing with the per package nature of this mechanism. In the end we decided to expose the allocation bitmaps directly so all combinations of the hardware can be utilized. There are two ways of associating a cache partition: - Task A task can be added to a resource group. It uses the cache partition associated to the group. - CPU All tasks which are not member of a resource group use the group to which the CPU they are running on is associated with. That allows for simple CPU based partitioning schemes. The main expected user sare: - Virtualization so a VM can only trash only the associated part of the cash w/o disturbing others - Real-Time systems to seperate RT and general workloads. - Latency sensitive enterprise workloads - In theory this also can be used to protect against cache side channel attacks" [ Intel RDT is "Resource Director Technology". The interface really is rather odd and very specific, which delayed this pull request while I was thinking about it. The pull request itself came in early during the merge window, I just delayed it until things had calmed down and I had more time. But people tell me they'll use this, and the good news is that it is _so_ specific that it's rather independent of anything else, and no user is going to depend on the interface since it's pretty rare. So if push comes to shove, we can just remove the interface and nothing will break ] * 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits) x86/intel_rdt: Implement show_options() for resctrlfs x86/intel_rdt: Call intel_rdt_sched_in() with preemption disabled x86/intel_rdt: Update task closid immediately on CPU in rmdir and unmount x86/intel_rdt: Fix setting of closid when adding CPUs to a group x86/intel_rdt: Update percpu closid immeditately on CPUs affected by changee x86/intel_rdt: Reset per cpu closids on unmount x86/intel_rdt: Select KERNFS when enabling INTEL_RDT_A x86/intel_rdt: Prevent deadlock against hotplug lock x86/intel_rdt: Protect info directory from removal x86/intel_rdt: Add info files to Documentation x86/intel_rdt: Export the minimum number of set mask bits in sysfs x86/intel_rdt: Propagate error in rdt_mount() properly x86/intel_rdt: Add a missing #include MAINTAINERS: Add maintainer for Intel RDT resource allocation x86/intel_rdt: Add scheduler hook x86/intel_rdt: Add schemata file x86/intel_rdt: Add tasks files x86/intel_rdt: Add cpus file x86/intel_rdt: Add mkdir to resctrl file system x86/intel_rdt: Add "info" files to resctrl file system ... |
||
---|---|---|
.. | ||
obsolete | ||
removed | ||
stable | ||
testing | ||
README |
This directory attempts to document the ABI between the Linux kernel and userspace, and the relative stability of these interfaces. Due to the everchanging nature of Linux, and the differing maturity levels, these interfaces should be used by userspace programs in different ways. We have four different levels of ABI stability, as shown by the four different subdirectories in this location. Interfaces may change levels of stability according to the rules described below. The different levels of stability are: stable/ This directory documents the interfaces that the developer has defined to be stable. Userspace programs are free to use these interfaces with no restrictions, and backward compatibility for them will be guaranteed for at least 2 years. Most interfaces (like syscalls) are expected to never change and always be available. testing/ This directory documents interfaces that are felt to be stable, as the main development of this interface has been completed. The interface can be changed to add new features, but the current interface will not break by doing this, unless grave errors or security problems are found in them. Userspace programs can start to rely on these interfaces, but they must be aware of changes that can occur before these interfaces move to be marked stable. Programs that use these interfaces are strongly encouraged to add their name to the description of these interfaces, so that the kernel developers can easily notify them if any changes occur (see the description of the layout of the files below for details on how to do this.) obsolete/ This directory documents interfaces that are still remaining in the kernel, but are marked to be removed at some later point in time. The description of the interface will document the reason why it is obsolete and when it can be expected to be removed. removed/ This directory contains a list of the old interfaces that have been removed from the kernel. Every file in these directories will contain the following information: What: Short description of the interface Date: Date created KernelVersion: Kernel version this feature first showed up in. Contact: Primary contact for this interface (may be a mailing list) Description: Long description of the interface and how to use it. Users: All users of this interface who wish to be notified when it changes. This is very important for interfaces in the "testing" stage, so that kernel developers can work with userspace developers to ensure that things do not break in ways that are unacceptable. It is also important to get feedback for these interfaces to make sure they are working in a proper way and do not need to be changed further. How things move between levels: Interfaces in stable may move to obsolete, as long as the proper notification is given. Interfaces may be removed from obsolete and the kernel as long as the documented amount of time has gone by. Interfaces in the testing state can move to the stable state when the developers feel they are finished. They cannot be removed from the kernel tree without going through the obsolete state first. It's up to the developer to place their interfaces in the category they wish for it to start out in. Notable bits of non-ABI, which should not under any circumstances be considered stable: - Kconfig. Userspace should not rely on the presence or absence of any particular Kconfig symbol, in /proc/config.gz, in the copy of .config commonly installed to /boot, or in any invocation of the kernel build process. - Kernel-internal symbols. Do not rely on the presence, absence, location, or type of any kernel symbol, either in System.map files or the kernel binary itself. See Documentation/process/stable-api-nonsense.rst.