mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-17 06:52:43 +00:00
41bb38fc53
This change uses the TRIO IOMMU to map the PCI DMA space and physical memory at different addresses. We also now use the dma_mapping_ops to provide support for non-PCI DMA, PCIe DMA (64-bit) and legacy PCI DMA (32-bit). We use the kernel's software I/O TLB framework (i.e. bounce buffers) for the legacy 32-bit PCI device support since there are a limited number of TLB entries in the IOMMU and it is non-trivial to handle indexing, searching, matching, etc. For 32-bit devices the performance impact of bounce buffers should not be a concern. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
587 lines
16 KiB
C
587 lines
16 KiB
C
/*
|
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/export.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/homecache.h>
|
|
|
|
/* Generic DMA mapping functions: */
|
|
|
|
/*
|
|
* Allocate what Linux calls "coherent" memory. On TILEPro this is
|
|
* uncached memory; on TILE-Gx it is hash-for-home memory.
|
|
*/
|
|
#ifdef __tilepro__
|
|
#define PAGE_HOME_DMA PAGE_HOME_UNCACHED
|
|
#else
|
|
#define PAGE_HOME_DMA PAGE_HOME_HASH
|
|
#endif
|
|
|
|
static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t gfp,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
|
|
int node = dev_to_node(dev);
|
|
int order = get_order(size);
|
|
struct page *pg;
|
|
dma_addr_t addr;
|
|
|
|
gfp |= __GFP_ZERO;
|
|
|
|
/*
|
|
* If the mask specifies that the memory be in the first 4 GB, then
|
|
* we force the allocation to come from the DMA zone. We also
|
|
* force the node to 0 since that's the only node where the DMA
|
|
* zone isn't empty. If the mask size is smaller than 32 bits, we
|
|
* may still not be able to guarantee a suitable memory address, in
|
|
* which case we will return NULL. But such devices are uncommon.
|
|
*/
|
|
if (dma_mask <= DMA_BIT_MASK(32)) {
|
|
gfp |= GFP_DMA;
|
|
node = 0;
|
|
}
|
|
|
|
pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
|
|
if (pg == NULL)
|
|
return NULL;
|
|
|
|
addr = page_to_phys(pg);
|
|
if (addr + size > dma_mask) {
|
|
__homecache_free_pages(pg, order);
|
|
return NULL;
|
|
}
|
|
|
|
*dma_handle = addr;
|
|
|
|
return page_address(pg);
|
|
}
|
|
|
|
/*
|
|
* Free memory that was allocated with tile_dma_alloc_coherent.
|
|
*/
|
|
static void tile_dma_free_coherent(struct device *dev, size_t size,
|
|
void *vaddr, dma_addr_t dma_handle,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
homecache_free_pages((unsigned long)vaddr, get_order(size));
|
|
}
|
|
|
|
/*
|
|
* The map routines "map" the specified address range for DMA
|
|
* accesses. The memory belongs to the device after this call is
|
|
* issued, until it is unmapped with dma_unmap_single.
|
|
*
|
|
* We don't need to do any mapping, we just flush the address range
|
|
* out of the cache and return a DMA address.
|
|
*
|
|
* The unmap routines do whatever is necessary before the processor
|
|
* accesses the memory again, and must be called before the driver
|
|
* touches the memory. We can get away with a cache invalidate if we
|
|
* can count on nothing having been touched.
|
|
*/
|
|
|
|
/* Set up a single page for DMA access. */
|
|
static void __dma_prep_page(struct page *page, unsigned long offset,
|
|
size_t size, enum dma_data_direction direction)
|
|
{
|
|
/*
|
|
* Flush the page from cache if necessary.
|
|
* On tilegx, data is delivered to hash-for-home L3; on tilepro,
|
|
* data is delivered direct to memory.
|
|
*
|
|
* NOTE: If we were just doing DMA_TO_DEVICE we could optimize
|
|
* this to be a "flush" not a "finv" and keep some of the
|
|
* state in cache across the DMA operation, but it doesn't seem
|
|
* worth creating the necessary flush_buffer_xxx() infrastructure.
|
|
*/
|
|
int home = page_home(page);
|
|
switch (home) {
|
|
case PAGE_HOME_HASH:
|
|
#ifdef __tilegx__
|
|
return;
|
|
#endif
|
|
break;
|
|
case PAGE_HOME_UNCACHED:
|
|
#ifdef __tilepro__
|
|
return;
|
|
#endif
|
|
break;
|
|
case PAGE_HOME_IMMUTABLE:
|
|
/* Should be going to the device only. */
|
|
BUG_ON(direction == DMA_FROM_DEVICE ||
|
|
direction == DMA_BIDIRECTIONAL);
|
|
return;
|
|
case PAGE_HOME_INCOHERENT:
|
|
/* Incoherent anyway, so no need to work hard here. */
|
|
return;
|
|
default:
|
|
BUG_ON(home < 0 || home >= NR_CPUS);
|
|
break;
|
|
}
|
|
homecache_finv_page(page);
|
|
|
|
#ifdef DEBUG_ALIGNMENT
|
|
/* Warn if the region isn't cacheline aligned. */
|
|
if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
|
|
pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
|
|
PFN_PHYS(page_to_pfn(page)) + offset, size);
|
|
#endif
|
|
}
|
|
|
|
/* Make the page ready to be read by the core. */
|
|
static void __dma_complete_page(struct page *page, unsigned long offset,
|
|
size_t size, enum dma_data_direction direction)
|
|
{
|
|
#ifdef __tilegx__
|
|
switch (page_home(page)) {
|
|
case PAGE_HOME_HASH:
|
|
/* I/O device delivered data the way the cpu wanted it. */
|
|
break;
|
|
case PAGE_HOME_INCOHERENT:
|
|
/* Incoherent anyway, so no need to work hard here. */
|
|
break;
|
|
case PAGE_HOME_IMMUTABLE:
|
|
/* Extra read-only copies are not a problem. */
|
|
break;
|
|
default:
|
|
/* Flush the bogus hash-for-home I/O entries to memory. */
|
|
homecache_finv_map_page(page, PAGE_HOME_HASH);
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
|
|
unsigned long offset = dma_addr & (PAGE_SIZE - 1);
|
|
size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
|
|
|
|
while (size != 0) {
|
|
__dma_prep_page(page, offset, bytes, direction);
|
|
size -= bytes;
|
|
++page;
|
|
offset = 0;
|
|
bytes = min((size_t)PAGE_SIZE, size);
|
|
}
|
|
}
|
|
|
|
static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
|
|
unsigned long offset = dma_addr & (PAGE_SIZE - 1);
|
|
size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
|
|
|
|
while (size != 0) {
|
|
__dma_complete_page(page, offset, bytes, direction);
|
|
size -= bytes;
|
|
++page;
|
|
offset = 0;
|
|
bytes = min((size_t)PAGE_SIZE, size);
|
|
}
|
|
}
|
|
|
|
static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nents, enum dma_data_direction direction,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
|
|
WARN_ON(nents == 0 || sglist->length == 0);
|
|
|
|
for_each_sg(sglist, sg, nents, i) {
|
|
sg->dma_address = sg_phys(sg);
|
|
__dma_prep_pa_range(sg->dma_address, sg->length, direction);
|
|
#ifdef CONFIG_NEED_SG_DMA_LENGTH
|
|
sg->dma_length = sg->length;
|
|
#endif
|
|
}
|
|
|
|
return nents;
|
|
}
|
|
|
|
static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nents, enum dma_data_direction direction,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
for_each_sg(sglist, sg, nents, i) {
|
|
sg->dma_address = sg_phys(sg);
|
|
__dma_complete_pa_range(sg->dma_address, sg->length,
|
|
direction);
|
|
}
|
|
}
|
|
|
|
static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction direction,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
|
|
BUG_ON(offset + size > PAGE_SIZE);
|
|
__dma_prep_page(page, offset, size, direction);
|
|
|
|
return page_to_pa(page) + offset;
|
|
}
|
|
|
|
static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
|
|
size_t size, enum dma_data_direction direction,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
|
|
__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
|
|
dma_address & PAGE_OFFSET, size, direction);
|
|
}
|
|
|
|
static void tile_dma_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t dma_handle,
|
|
size_t size,
|
|
enum dma_data_direction direction)
|
|
{
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
|
|
__dma_complete_pa_range(dma_handle, size, direction);
|
|
}
|
|
|
|
static void tile_dma_sync_single_for_device(struct device *dev,
|
|
dma_addr_t dma_handle, size_t size,
|
|
enum dma_data_direction direction)
|
|
{
|
|
__dma_prep_pa_range(dma_handle, size, direction);
|
|
}
|
|
|
|
static void tile_dma_sync_sg_for_cpu(struct device *dev,
|
|
struct scatterlist *sglist, int nelems,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
WARN_ON(nelems == 0 || sglist->length == 0);
|
|
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
dma_sync_single_for_cpu(dev, sg->dma_address,
|
|
sg_dma_len(sg), direction);
|
|
}
|
|
}
|
|
|
|
static void tile_dma_sync_sg_for_device(struct device *dev,
|
|
struct scatterlist *sglist, int nelems,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
WARN_ON(nelems == 0 || sglist->length == 0);
|
|
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
dma_sync_single_for_device(dev, sg->dma_address,
|
|
sg_dma_len(sg), direction);
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
tile_dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static struct dma_map_ops tile_default_dma_map_ops = {
|
|
.alloc = tile_dma_alloc_coherent,
|
|
.free = tile_dma_free_coherent,
|
|
.map_page = tile_dma_map_page,
|
|
.unmap_page = tile_dma_unmap_page,
|
|
.map_sg = tile_dma_map_sg,
|
|
.unmap_sg = tile_dma_unmap_sg,
|
|
.sync_single_for_cpu = tile_dma_sync_single_for_cpu,
|
|
.sync_single_for_device = tile_dma_sync_single_for_device,
|
|
.sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
|
|
.sync_sg_for_device = tile_dma_sync_sg_for_device,
|
|
.mapping_error = tile_dma_mapping_error,
|
|
.dma_supported = tile_dma_supported
|
|
};
|
|
|
|
struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
|
|
EXPORT_SYMBOL(tile_dma_map_ops);
|
|
|
|
/* Generic PCI DMA mapping functions */
|
|
|
|
static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t gfp,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
int node = dev_to_node(dev);
|
|
int order = get_order(size);
|
|
struct page *pg;
|
|
dma_addr_t addr;
|
|
|
|
gfp |= __GFP_ZERO;
|
|
|
|
pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
|
|
if (pg == NULL)
|
|
return NULL;
|
|
|
|
addr = page_to_phys(pg);
|
|
|
|
*dma_handle = phys_to_dma(dev, addr);
|
|
|
|
return page_address(pg);
|
|
}
|
|
|
|
/*
|
|
* Free memory that was allocated with tile_pci_dma_alloc_coherent.
|
|
*/
|
|
static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
|
|
void *vaddr, dma_addr_t dma_handle,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
homecache_free_pages((unsigned long)vaddr, get_order(size));
|
|
}
|
|
|
|
static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nents, enum dma_data_direction direction,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
|
|
WARN_ON(nents == 0 || sglist->length == 0);
|
|
|
|
for_each_sg(sglist, sg, nents, i) {
|
|
sg->dma_address = sg_phys(sg);
|
|
__dma_prep_pa_range(sg->dma_address, sg->length, direction);
|
|
|
|
sg->dma_address = phys_to_dma(dev, sg->dma_address);
|
|
#ifdef CONFIG_NEED_SG_DMA_LENGTH
|
|
sg->dma_length = sg->length;
|
|
#endif
|
|
}
|
|
|
|
return nents;
|
|
}
|
|
|
|
static void tile_pci_dma_unmap_sg(struct device *dev,
|
|
struct scatterlist *sglist, int nents,
|
|
enum dma_data_direction direction,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
for_each_sg(sglist, sg, nents, i) {
|
|
sg->dma_address = sg_phys(sg);
|
|
__dma_complete_pa_range(sg->dma_address, sg->length,
|
|
direction);
|
|
}
|
|
}
|
|
|
|
static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction direction,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
|
|
BUG_ON(offset + size > PAGE_SIZE);
|
|
__dma_prep_page(page, offset, size, direction);
|
|
|
|
return phys_to_dma(dev, page_to_pa(page) + offset);
|
|
}
|
|
|
|
static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
|
|
size_t size,
|
|
enum dma_data_direction direction,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
|
|
dma_address = dma_to_phys(dev, dma_address);
|
|
|
|
__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
|
|
dma_address & PAGE_OFFSET, size, direction);
|
|
}
|
|
|
|
static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t dma_handle,
|
|
size_t size,
|
|
enum dma_data_direction direction)
|
|
{
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
|
|
dma_handle = dma_to_phys(dev, dma_handle);
|
|
|
|
__dma_complete_pa_range(dma_handle, size, direction);
|
|
}
|
|
|
|
static void tile_pci_dma_sync_single_for_device(struct device *dev,
|
|
dma_addr_t dma_handle,
|
|
size_t size,
|
|
enum dma_data_direction
|
|
direction)
|
|
{
|
|
dma_handle = dma_to_phys(dev, dma_handle);
|
|
|
|
__dma_prep_pa_range(dma_handle, size, direction);
|
|
}
|
|
|
|
static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
|
|
struct scatterlist *sglist,
|
|
int nelems,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
WARN_ON(nelems == 0 || sglist->length == 0);
|
|
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
dma_sync_single_for_cpu(dev, sg->dma_address,
|
|
sg_dma_len(sg), direction);
|
|
}
|
|
}
|
|
|
|
static void tile_pci_dma_sync_sg_for_device(struct device *dev,
|
|
struct scatterlist *sglist,
|
|
int nelems,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
BUG_ON(!valid_dma_direction(direction));
|
|
WARN_ON(nelems == 0 || sglist->length == 0);
|
|
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
dma_sync_single_for_device(dev, sg->dma_address,
|
|
sg_dma_len(sg), direction);
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
tile_pci_dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static struct dma_map_ops tile_pci_default_dma_map_ops = {
|
|
.alloc = tile_pci_dma_alloc_coherent,
|
|
.free = tile_pci_dma_free_coherent,
|
|
.map_page = tile_pci_dma_map_page,
|
|
.unmap_page = tile_pci_dma_unmap_page,
|
|
.map_sg = tile_pci_dma_map_sg,
|
|
.unmap_sg = tile_pci_dma_unmap_sg,
|
|
.sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
|
|
.sync_single_for_device = tile_pci_dma_sync_single_for_device,
|
|
.sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
|
|
.sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
|
|
.mapping_error = tile_pci_dma_mapping_error,
|
|
.dma_supported = tile_pci_dma_supported
|
|
};
|
|
|
|
struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
|
|
EXPORT_SYMBOL(gx_pci_dma_map_ops);
|
|
|
|
/* PCI DMA mapping functions for legacy PCI devices */
|
|
|
|
#ifdef CONFIG_SWIOTLB
|
|
static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t gfp,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
gfp |= GFP_DMA;
|
|
return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
|
|
}
|
|
|
|
static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
|
|
void *vaddr, dma_addr_t dma_addr,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
swiotlb_free_coherent(dev, size, vaddr, dma_addr);
|
|
}
|
|
|
|
static struct dma_map_ops pci_swiotlb_dma_ops = {
|
|
.alloc = tile_swiotlb_alloc_coherent,
|
|
.free = tile_swiotlb_free_coherent,
|
|
.map_page = swiotlb_map_page,
|
|
.unmap_page = swiotlb_unmap_page,
|
|
.map_sg = swiotlb_map_sg_attrs,
|
|
.unmap_sg = swiotlb_unmap_sg_attrs,
|
|
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
|
|
.sync_single_for_device = swiotlb_sync_single_for_device,
|
|
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
|
|
.sync_sg_for_device = swiotlb_sync_sg_for_device,
|
|
.dma_supported = swiotlb_dma_supported,
|
|
.mapping_error = swiotlb_dma_mapping_error,
|
|
};
|
|
|
|
struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
|
|
#else
|
|
struct dma_map_ops *gx_legacy_pci_dma_map_ops;
|
|
#endif
|
|
EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
|
|
|
|
#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
|
|
int dma_set_coherent_mask(struct device *dev, u64 mask)
|
|
{
|
|
struct dma_map_ops *dma_ops = get_dma_ops(dev);
|
|
|
|
/* Handle legacy PCI devices with limited memory addressability. */
|
|
if (((dma_ops == gx_pci_dma_map_ops) ||
|
|
(dma_ops == gx_legacy_pci_dma_map_ops)) &&
|
|
(mask <= DMA_BIT_MASK(32))) {
|
|
if (mask > dev->archdata.max_direct_dma_addr)
|
|
mask = dev->archdata.max_direct_dma_addr;
|
|
}
|
|
|
|
if (!dma_supported(dev, mask))
|
|
return -EIO;
|
|
dev->coherent_dma_mask = mask;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dma_set_coherent_mask);
|
|
#endif
|