mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-02 07:11:12 +00:00
4f07118f65
It appears that a memory barrier soon after a mispredicted branch, not just in the delay slot, can cause the hang condition of this cpu errata. So move them out-of-line, and explicitly put them into a "branch always, predict taken" delay slot which should fully kill this problem. Signed-off-by: David S. Miller <davem@davemloft.net>
295 lines
7.6 KiB
C
295 lines
7.6 KiB
C
/* $Id: bitops.h,v 1.39 2002/01/30 01:40:00 davem Exp $
|
|
* bitops.h: Bit string operations on the V9.
|
|
*
|
|
* Copyright 1996, 1997 David S. Miller (davem@caip.rutgers.edu)
|
|
*/
|
|
|
|
#ifndef _SPARC64_BITOPS_H
|
|
#define _SPARC64_BITOPS_H
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/compiler.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
extern int test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
|
|
extern int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
|
|
extern int test_and_change_bit(unsigned long nr, volatile unsigned long *addr);
|
|
extern void set_bit(unsigned long nr, volatile unsigned long *addr);
|
|
extern void clear_bit(unsigned long nr, volatile unsigned long *addr);
|
|
extern void change_bit(unsigned long nr, volatile unsigned long *addr);
|
|
|
|
/* "non-atomic" versions... */
|
|
|
|
static inline void __set_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
|
|
|
|
*m |= (1UL << (nr & 63));
|
|
}
|
|
|
|
static inline void __clear_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
|
|
|
|
*m &= ~(1UL << (nr & 63));
|
|
}
|
|
|
|
static inline void __change_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
|
|
|
|
*m ^= (1UL << (nr & 63));
|
|
}
|
|
|
|
static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
|
|
unsigned long old = *m;
|
|
unsigned long mask = (1UL << (nr & 63));
|
|
|
|
*m = (old | mask);
|
|
return ((old & mask) != 0);
|
|
}
|
|
|
|
static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
|
|
unsigned long old = *m;
|
|
unsigned long mask = (1UL << (nr & 63));
|
|
|
|
*m = (old & ~mask);
|
|
return ((old & mask) != 0);
|
|
}
|
|
|
|
static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
|
|
unsigned long old = *m;
|
|
unsigned long mask = (1UL << (nr & 63));
|
|
|
|
*m = (old ^ mask);
|
|
return ((old & mask) != 0);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define smp_mb__before_clear_bit() membar_storeload_loadload()
|
|
#define smp_mb__after_clear_bit() membar_storeload_storestore()
|
|
#else
|
|
#define smp_mb__before_clear_bit() barrier()
|
|
#define smp_mb__after_clear_bit() barrier()
|
|
#endif
|
|
|
|
static inline int test_bit(int nr, __const__ volatile unsigned long *addr)
|
|
{
|
|
return (1UL & (addr[nr >> 6] >> (nr & 63))) != 0UL;
|
|
}
|
|
|
|
/* The easy/cheese version for now. */
|
|
static inline unsigned long ffz(unsigned long word)
|
|
{
|
|
unsigned long result;
|
|
|
|
result = 0;
|
|
while(word & 1) {
|
|
result++;
|
|
word >>= 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* __ffs - find first bit in word.
|
|
* @word: The word to search
|
|
*
|
|
* Undefined if no bit exists, so code should check against 0 first.
|
|
*/
|
|
static inline unsigned long __ffs(unsigned long word)
|
|
{
|
|
unsigned long result = 0;
|
|
|
|
while (!(word & 1UL)) {
|
|
result++;
|
|
word >>= 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* fls: find last bit set.
|
|
*/
|
|
|
|
#define fls(x) generic_fls(x)
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
/*
|
|
* Every architecture must define this function. It's the fastest
|
|
* way of searching a 140-bit bitmap where the first 100 bits are
|
|
* unlikely to be set. It's guaranteed that at least one of the 140
|
|
* bits is cleared.
|
|
*/
|
|
static inline int sched_find_first_bit(unsigned long *b)
|
|
{
|
|
if (unlikely(b[0]))
|
|
return __ffs(b[0]);
|
|
if (unlikely(((unsigned int)b[1])))
|
|
return __ffs(b[1]) + 64;
|
|
if (b[1] >> 32)
|
|
return __ffs(b[1] >> 32) + 96;
|
|
return __ffs(b[2]) + 128;
|
|
}
|
|
|
|
/*
|
|
* ffs: find first bit set. This is defined the same way as
|
|
* the libc and compiler builtin ffs routines, therefore
|
|
* differs in spirit from the above ffz (man ffs).
|
|
*/
|
|
static inline int ffs(int x)
|
|
{
|
|
if (!x)
|
|
return 0;
|
|
return __ffs((unsigned long)x) + 1;
|
|
}
|
|
|
|
/*
|
|
* hweightN: returns the hamming weight (i.e. the number
|
|
* of bits set) of a N-bit word
|
|
*/
|
|
|
|
#ifdef ULTRA_HAS_POPULATION_COUNT
|
|
|
|
static inline unsigned int hweight64(unsigned long w)
|
|
{
|
|
unsigned int res;
|
|
|
|
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w));
|
|
return res;
|
|
}
|
|
|
|
static inline unsigned int hweight32(unsigned int w)
|
|
{
|
|
unsigned int res;
|
|
|
|
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffffffff));
|
|
return res;
|
|
}
|
|
|
|
static inline unsigned int hweight16(unsigned int w)
|
|
{
|
|
unsigned int res;
|
|
|
|
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffff));
|
|
return res;
|
|
}
|
|
|
|
static inline unsigned int hweight8(unsigned int w)
|
|
{
|
|
unsigned int res;
|
|
|
|
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xff));
|
|
return res;
|
|
}
|
|
|
|
#else
|
|
|
|
#define hweight64(x) generic_hweight64(x)
|
|
#define hweight32(x) generic_hweight32(x)
|
|
#define hweight16(x) generic_hweight16(x)
|
|
#define hweight8(x) generic_hweight8(x)
|
|
|
|
#endif
|
|
#endif /* __KERNEL__ */
|
|
|
|
/**
|
|
* find_next_bit - find the next set bit in a memory region
|
|
* @addr: The address to base the search on
|
|
* @offset: The bitnumber to start searching at
|
|
* @size: The maximum size to search
|
|
*/
|
|
extern unsigned long find_next_bit(const unsigned long *, unsigned long,
|
|
unsigned long);
|
|
|
|
/**
|
|
* find_first_bit - find the first set bit in a memory region
|
|
* @addr: The address to start the search at
|
|
* @size: The maximum size to search
|
|
*
|
|
* Returns the bit-number of the first set bit, not the number of the byte
|
|
* containing a bit.
|
|
*/
|
|
#define find_first_bit(addr, size) \
|
|
find_next_bit((addr), (size), 0)
|
|
|
|
/* find_next_zero_bit() finds the first zero bit in a bit string of length
|
|
* 'size' bits, starting the search at bit 'offset'. This is largely based
|
|
* on Linus's ALPHA routines, which are pretty portable BTW.
|
|
*/
|
|
|
|
extern unsigned long find_next_zero_bit(const unsigned long *,
|
|
unsigned long, unsigned long);
|
|
|
|
#define find_first_zero_bit(addr, size) \
|
|
find_next_zero_bit((addr), (size), 0)
|
|
|
|
#define test_and_set_le_bit(nr,addr) \
|
|
test_and_set_bit((nr) ^ 0x38, (addr))
|
|
#define test_and_clear_le_bit(nr,addr) \
|
|
test_and_clear_bit((nr) ^ 0x38, (addr))
|
|
|
|
static inline int test_le_bit(int nr, __const__ unsigned long * addr)
|
|
{
|
|
int mask;
|
|
__const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
|
|
|
|
ADDR += nr >> 3;
|
|
mask = 1 << (nr & 0x07);
|
|
return ((mask & *ADDR) != 0);
|
|
}
|
|
|
|
#define find_first_zero_le_bit(addr, size) \
|
|
find_next_zero_le_bit((addr), (size), 0)
|
|
|
|
extern unsigned long find_next_zero_le_bit(unsigned long *, unsigned long, unsigned long);
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#define __set_le_bit(nr, addr) \
|
|
__set_bit((nr) ^ 0x38, (addr))
|
|
#define __clear_le_bit(nr, addr) \
|
|
__clear_bit((nr) ^ 0x38, (addr))
|
|
#define __test_and_clear_le_bit(nr, addr) \
|
|
__test_and_clear_bit((nr) ^ 0x38, (addr))
|
|
#define __test_and_set_le_bit(nr, addr) \
|
|
__test_and_set_bit((nr) ^ 0x38, (addr))
|
|
|
|
#define ext2_set_bit(nr,addr) \
|
|
__test_and_set_le_bit((nr),(unsigned long *)(addr))
|
|
#define ext2_set_bit_atomic(lock,nr,addr) \
|
|
test_and_set_le_bit((nr),(unsigned long *)(addr))
|
|
#define ext2_clear_bit(nr,addr) \
|
|
__test_and_clear_le_bit((nr),(unsigned long *)(addr))
|
|
#define ext2_clear_bit_atomic(lock,nr,addr) \
|
|
test_and_clear_le_bit((nr),(unsigned long *)(addr))
|
|
#define ext2_test_bit(nr,addr) \
|
|
test_le_bit((nr),(unsigned long *)(addr))
|
|
#define ext2_find_first_zero_bit(addr, size) \
|
|
find_first_zero_le_bit((unsigned long *)(addr), (size))
|
|
#define ext2_find_next_zero_bit(addr, size, off) \
|
|
find_next_zero_le_bit((unsigned long *)(addr), (size), (off))
|
|
|
|
/* Bitmap functions for the minix filesystem. */
|
|
#define minix_test_and_set_bit(nr,addr) \
|
|
test_and_set_bit((nr),(unsigned long *)(addr))
|
|
#define minix_set_bit(nr,addr) \
|
|
set_bit((nr),(unsigned long *)(addr))
|
|
#define minix_test_and_clear_bit(nr,addr) \
|
|
test_and_clear_bit((nr),(unsigned long *)(addr))
|
|
#define minix_test_bit(nr,addr) \
|
|
test_bit((nr),(unsigned long *)(addr))
|
|
#define minix_find_first_zero_bit(addr,size) \
|
|
find_first_zero_bit((unsigned long *)(addr),(size))
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* defined(_SPARC64_BITOPS_H) */
|