mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-27 20:07:09 +00:00
0634a632f5
Most architectures now provide a pgprot_noncached(), the remaining ones can simply use an dummy default implementation, except for cris and xtensa, which should override the default appropriately. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: Chris Zankel <chris@zankel.net> Cc: Magnus Damm <magnus.damm@gmail.com>
350 lines
10 KiB
C
350 lines
10 KiB
C
#ifndef _ASM_GENERIC_PGTABLE_H
|
|
#define _ASM_GENERIC_PGTABLE_H
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#ifdef CONFIG_MMU
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
|
/*
|
|
* Largely same as above, but only sets the access flags (dirty,
|
|
* accessed, and writable). Furthermore, we know it always gets set
|
|
* to a "more permissive" setting, which allows most architectures
|
|
* to optimize this. We return whether the PTE actually changed, which
|
|
* in turn instructs the caller to do things like update__mmu_cache.
|
|
* This used to be done in the caller, but sparc needs minor faults to
|
|
* force that call on sun4c so we changed this macro slightly
|
|
*/
|
|
#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
|
|
({ \
|
|
int __changed = !pte_same(*(__ptep), __entry); \
|
|
if (__changed) { \
|
|
set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
|
|
flush_tlb_page(__vma, __address); \
|
|
} \
|
|
__changed; \
|
|
})
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
#define ptep_test_and_clear_young(__vma, __address, __ptep) \
|
|
({ \
|
|
pte_t __pte = *(__ptep); \
|
|
int r = 1; \
|
|
if (!pte_young(__pte)) \
|
|
r = 0; \
|
|
else \
|
|
set_pte_at((__vma)->vm_mm, (__address), \
|
|
(__ptep), pte_mkold(__pte)); \
|
|
r; \
|
|
})
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
|
|
#define ptep_clear_flush_young(__vma, __address, __ptep) \
|
|
({ \
|
|
int __young; \
|
|
__young = ptep_test_and_clear_young(__vma, __address, __ptep); \
|
|
if (__young) \
|
|
flush_tlb_page(__vma, __address); \
|
|
__young; \
|
|
})
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
|
#define ptep_get_and_clear(__mm, __address, __ptep) \
|
|
({ \
|
|
pte_t __pte = *(__ptep); \
|
|
pte_clear((__mm), (__address), (__ptep)); \
|
|
__pte; \
|
|
})
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
|
|
#define ptep_get_and_clear_full(__mm, __address, __ptep, __full) \
|
|
({ \
|
|
pte_t __pte; \
|
|
__pte = ptep_get_and_clear((__mm), (__address), (__ptep)); \
|
|
__pte; \
|
|
})
|
|
#endif
|
|
|
|
/*
|
|
* Some architectures may be able to avoid expensive synchronization
|
|
* primitives when modifications are made to PTE's which are already
|
|
* not present, or in the process of an address space destruction.
|
|
*/
|
|
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
|
|
#define pte_clear_not_present_full(__mm, __address, __ptep, __full) \
|
|
do { \
|
|
pte_clear((__mm), (__address), (__ptep)); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
|
|
#define ptep_clear_flush(__vma, __address, __ptep) \
|
|
({ \
|
|
pte_t __pte; \
|
|
__pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep); \
|
|
flush_tlb_page(__vma, __address); \
|
|
__pte; \
|
|
})
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
|
|
struct mm_struct;
|
|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
|
|
{
|
|
pte_t old_pte = *ptep;
|
|
set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTE_SAME
|
|
#define pte_same(A,B) (pte_val(A) == pte_val(B))
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PAGE_TEST_DIRTY
|
|
#define page_test_dirty(page) (0)
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PAGE_CLEAR_DIRTY
|
|
#define page_clear_dirty(page) do { } while (0)
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PAGE_TEST_DIRTY
|
|
#define pte_maybe_dirty(pte) pte_dirty(pte)
|
|
#else
|
|
#define pte_maybe_dirty(pte) (1)
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
|
|
#define page_test_and_clear_young(page) (0)
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
|
|
#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_MOVE_PTE
|
|
#define move_pte(pte, prot, old_addr, new_addr) (pte)
|
|
#endif
|
|
|
|
#ifndef pgprot_noncached
|
|
#define pgprot_noncached(prot) (prot)
|
|
#endif
|
|
|
|
#ifndef pgprot_writecombine
|
|
#define pgprot_writecombine pgprot_noncached
|
|
#endif
|
|
|
|
/*
|
|
* When walking page tables, get the address of the next boundary,
|
|
* or the end address of the range if that comes earlier. Although no
|
|
* vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
|
|
*/
|
|
|
|
#define pgd_addr_end(addr, end) \
|
|
({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
|
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
|
})
|
|
|
|
#ifndef pud_addr_end
|
|
#define pud_addr_end(addr, end) \
|
|
({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
|
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
|
})
|
|
#endif
|
|
|
|
#ifndef pmd_addr_end
|
|
#define pmd_addr_end(addr, end) \
|
|
({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
|
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
|
})
|
|
#endif
|
|
|
|
/*
|
|
* When walking page tables, we usually want to skip any p?d_none entries;
|
|
* and any p?d_bad entries - reporting the error before resetting to none.
|
|
* Do the tests inline, but report and clear the bad entry in mm/memory.c.
|
|
*/
|
|
void pgd_clear_bad(pgd_t *);
|
|
void pud_clear_bad(pud_t *);
|
|
void pmd_clear_bad(pmd_t *);
|
|
|
|
static inline int pgd_none_or_clear_bad(pgd_t *pgd)
|
|
{
|
|
if (pgd_none(*pgd))
|
|
return 1;
|
|
if (unlikely(pgd_bad(*pgd))) {
|
|
pgd_clear_bad(pgd);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int pud_none_or_clear_bad(pud_t *pud)
|
|
{
|
|
if (pud_none(*pud))
|
|
return 1;
|
|
if (unlikely(pud_bad(*pud))) {
|
|
pud_clear_bad(pud);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int pmd_none_or_clear_bad(pmd_t *pmd)
|
|
{
|
|
if (pmd_none(*pmd))
|
|
return 1;
|
|
if (unlikely(pmd_bad(*pmd))) {
|
|
pmd_clear_bad(pmd);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
/*
|
|
* Get the current pte state, but zero it out to make it
|
|
* non-present, preventing the hardware from asynchronously
|
|
* updating it.
|
|
*/
|
|
return ptep_get_and_clear(mm, addr, ptep);
|
|
}
|
|
|
|
static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep, pte_t pte)
|
|
{
|
|
/*
|
|
* The pte is non-present, so there's no hardware state to
|
|
* preserve.
|
|
*/
|
|
set_pte_at(mm, addr, ptep, pte);
|
|
}
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
|
|
/*
|
|
* Start a pte protection read-modify-write transaction, which
|
|
* protects against asynchronous hardware modifications to the pte.
|
|
* The intention is not to prevent the hardware from making pte
|
|
* updates, but to prevent any updates it may make from being lost.
|
|
*
|
|
* This does not protect against other software modifications of the
|
|
* pte; the appropriate pte lock must be held over the transation.
|
|
*
|
|
* Note that this interface is intended to be batchable, meaning that
|
|
* ptep_modify_prot_commit may not actually update the pte, but merely
|
|
* queue the update to be done at some later time. The update must be
|
|
* actually committed before the pte lock is released, however.
|
|
*/
|
|
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
return __ptep_modify_prot_start(mm, addr, ptep);
|
|
}
|
|
|
|
/*
|
|
* Commit an update to a pte, leaving any hardware-controlled bits in
|
|
* the PTE unmodified.
|
|
*/
|
|
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep, pte_t pte)
|
|
{
|
|
__ptep_modify_prot_commit(mm, addr, ptep, pte);
|
|
}
|
|
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
|
|
#endif /* CONFIG_MMU */
|
|
|
|
/*
|
|
* A facility to provide lazy MMU batching. This allows PTE updates and
|
|
* page invalidations to be delayed until a call to leave lazy MMU mode
|
|
* is issued. Some architectures may benefit from doing this, and it is
|
|
* beneficial for both shadow and direct mode hypervisors, which may batch
|
|
* the PTE updates which happen during this window. Note that using this
|
|
* interface requires that read hazards be removed from the code. A read
|
|
* hazard could result in the direct mode hypervisor case, since the actual
|
|
* write to the page tables may not yet have taken place, so reads though
|
|
* a raw PTE pointer after it has been modified are not guaranteed to be
|
|
* up to date. This mode can only be entered and left under the protection of
|
|
* the page table locks for all page tables which may be modified. In the UP
|
|
* case, this is required so that preemption is disabled, and in the SMP case,
|
|
* it must synchronize the delayed page table writes properly on other CPUs.
|
|
*/
|
|
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
|
|
#define arch_enter_lazy_mmu_mode() do {} while (0)
|
|
#define arch_leave_lazy_mmu_mode() do {} while (0)
|
|
#define arch_flush_lazy_mmu_mode() do {} while (0)
|
|
#endif
|
|
|
|
/*
|
|
* A facility to provide batching of the reload of page tables and
|
|
* other process state with the actual context switch code for
|
|
* paravirtualized guests. By convention, only one of the batched
|
|
* update (lazy) modes (CPU, MMU) should be active at any given time,
|
|
* entry should never be nested, and entry and exits should always be
|
|
* paired. This is for sanity of maintaining and reasoning about the
|
|
* kernel code. In this case, the exit (end of the context switch) is
|
|
* in architecture-specific code, and so doesn't need a generic
|
|
* definition.
|
|
*/
|
|
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
|
|
#define arch_start_context_switch(prev) do {} while (0)
|
|
#endif
|
|
|
|
#ifndef __HAVE_PFNMAP_TRACKING
|
|
/*
|
|
* Interface that can be used by architecture code to keep track of
|
|
* memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
|
|
*
|
|
* track_pfn_vma_new is called when a _new_ pfn mapping is being established
|
|
* for physical range indicated by pfn and size.
|
|
*/
|
|
static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn, unsigned long size)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Interface that can be used by architecture code to keep track of
|
|
* memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
|
|
*
|
|
* track_pfn_vma_copy is called when vma that is covering the pfnmap gets
|
|
* copied through copy_page_range().
|
|
*/
|
|
static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Interface that can be used by architecture code to keep track of
|
|
* memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
|
|
*
|
|
* untrack_pfn_vma is called while unmapping a pfnmap for a region.
|
|
* untrack can be called for a specific region indicated by pfn and size or
|
|
* can be for the entire vma (in which case size can be zero).
|
|
*/
|
|
static inline void untrack_pfn_vma(struct vm_area_struct *vma,
|
|
unsigned long pfn, unsigned long size)
|
|
{
|
|
}
|
|
#else
|
|
extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn, unsigned long size);
|
|
extern int track_pfn_vma_copy(struct vm_area_struct *vma);
|
|
extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
|
|
unsigned long size);
|
|
#endif
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#endif /* _ASM_GENERIC_PGTABLE_H */
|