mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-14 13:39:10 +00:00
78f1c4d6b0
Makes code futureproof against the impending change to mm->cpu_vm_mask (to be a pointer). It's also a chance to use the new cpumask_ ops which take a pointer (the older ones are deprecated, but there's no hurry for arch code). Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
291 lines
7.6 KiB
C
291 lines
7.6 KiB
C
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/uv/uv.h>
|
|
|
|
DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
|
|
= { &init_mm, 0, };
|
|
|
|
/*
|
|
* Smarter SMP flushing macros.
|
|
* c/o Linus Torvalds.
|
|
*
|
|
* These mean you can really definitely utterly forget about
|
|
* writing to user space from interrupts. (Its not allowed anyway).
|
|
*
|
|
* Optimizations Manfred Spraul <manfred@colorfullife.com>
|
|
*
|
|
* More scalable flush, from Andi Kleen
|
|
*
|
|
* To avoid global state use 8 different call vectors.
|
|
* Each CPU uses a specific vector to trigger flushes on other
|
|
* CPUs. Depending on the received vector the target CPUs look into
|
|
* the right array slot for the flush data.
|
|
*
|
|
* With more than 8 CPUs they are hashed to the 8 available
|
|
* vectors. The limited global vector space forces us to this right now.
|
|
* In future when interrupts are split into per CPU domains this could be
|
|
* fixed, at the cost of triggering multiple IPIs in some cases.
|
|
*/
|
|
|
|
union smp_flush_state {
|
|
struct {
|
|
struct mm_struct *flush_mm;
|
|
unsigned long flush_va;
|
|
spinlock_t tlbstate_lock;
|
|
DECLARE_BITMAP(flush_cpumask, NR_CPUS);
|
|
};
|
|
char pad[CONFIG_X86_INTERNODE_CACHE_BYTES];
|
|
} ____cacheline_internodealigned_in_smp;
|
|
|
|
/* State is put into the per CPU data section, but padded
|
|
to a full cache line because other CPUs can access it and we don't
|
|
want false sharing in the per cpu data segment. */
|
|
static union smp_flush_state flush_state[NUM_INVALIDATE_TLB_VECTORS];
|
|
|
|
/*
|
|
* We cannot call mmdrop() because we are in interrupt context,
|
|
* instead update mm->cpu_vm_mask.
|
|
*/
|
|
void leave_mm(int cpu)
|
|
{
|
|
if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
|
|
BUG();
|
|
cpumask_clear_cpu(cpu,
|
|
mm_cpumask(percpu_read(cpu_tlbstate.active_mm)));
|
|
load_cr3(swapper_pg_dir);
|
|
}
|
|
EXPORT_SYMBOL_GPL(leave_mm);
|
|
|
|
/*
|
|
*
|
|
* The flush IPI assumes that a thread switch happens in this order:
|
|
* [cpu0: the cpu that switches]
|
|
* 1) switch_mm() either 1a) or 1b)
|
|
* 1a) thread switch to a different mm
|
|
* 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
|
|
* Stop ipi delivery for the old mm. This is not synchronized with
|
|
* the other cpus, but smp_invalidate_interrupt ignore flush ipis
|
|
* for the wrong mm, and in the worst case we perform a superfluous
|
|
* tlb flush.
|
|
* 1a2) set cpu mmu_state to TLBSTATE_OK
|
|
* Now the smp_invalidate_interrupt won't call leave_mm if cpu0
|
|
* was in lazy tlb mode.
|
|
* 1a3) update cpu active_mm
|
|
* Now cpu0 accepts tlb flushes for the new mm.
|
|
* 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
|
|
* Now the other cpus will send tlb flush ipis.
|
|
* 1a4) change cr3.
|
|
* 1b) thread switch without mm change
|
|
* cpu active_mm is correct, cpu0 already handles
|
|
* flush ipis.
|
|
* 1b1) set cpu mmu_state to TLBSTATE_OK
|
|
* 1b2) test_and_set the cpu bit in cpu_vm_mask.
|
|
* Atomically set the bit [other cpus will start sending flush ipis],
|
|
* and test the bit.
|
|
* 1b3) if the bit was 0: leave_mm was called, flush the tlb.
|
|
* 2) switch %%esp, ie current
|
|
*
|
|
* The interrupt must handle 2 special cases:
|
|
* - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
|
|
* - the cpu performs speculative tlb reads, i.e. even if the cpu only
|
|
* runs in kernel space, the cpu could load tlb entries for user space
|
|
* pages.
|
|
*
|
|
* The good news is that cpu mmu_state is local to each cpu, no
|
|
* write/read ordering problems.
|
|
*/
|
|
|
|
/*
|
|
* TLB flush IPI:
|
|
*
|
|
* 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
|
|
* 2) Leave the mm if we are in the lazy tlb mode.
|
|
*
|
|
* Interrupts are disabled.
|
|
*/
|
|
|
|
/*
|
|
* FIXME: use of asmlinkage is not consistent. On x86_64 it's noop
|
|
* but still used for documentation purpose but the usage is slightly
|
|
* inconsistent. On x86_32, asmlinkage is regparm(0) but interrupt
|
|
* entry calls in with the first parameter in %eax. Maybe define
|
|
* intrlinkage?
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
asmlinkage
|
|
#endif
|
|
void smp_invalidate_interrupt(struct pt_regs *regs)
|
|
{
|
|
unsigned int cpu;
|
|
unsigned int sender;
|
|
union smp_flush_state *f;
|
|
|
|
cpu = smp_processor_id();
|
|
/*
|
|
* orig_rax contains the negated interrupt vector.
|
|
* Use that to determine where the sender put the data.
|
|
*/
|
|
sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
|
|
f = &flush_state[sender];
|
|
|
|
if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask)))
|
|
goto out;
|
|
/*
|
|
* This was a BUG() but until someone can quote me the
|
|
* line from the intel manual that guarantees an IPI to
|
|
* multiple CPUs is retried _only_ on the erroring CPUs
|
|
* its staying as a return
|
|
*
|
|
* BUG();
|
|
*/
|
|
|
|
if (f->flush_mm == percpu_read(cpu_tlbstate.active_mm)) {
|
|
if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
|
|
if (f->flush_va == TLB_FLUSH_ALL)
|
|
local_flush_tlb();
|
|
else
|
|
__flush_tlb_one(f->flush_va);
|
|
} else
|
|
leave_mm(cpu);
|
|
}
|
|
out:
|
|
ack_APIC_irq();
|
|
smp_mb__before_clear_bit();
|
|
cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask));
|
|
smp_mb__after_clear_bit();
|
|
inc_irq_stat(irq_tlb_count);
|
|
}
|
|
|
|
static void flush_tlb_others_ipi(const struct cpumask *cpumask,
|
|
struct mm_struct *mm, unsigned long va)
|
|
{
|
|
unsigned int sender;
|
|
union smp_flush_state *f;
|
|
|
|
/* Caller has disabled preemption */
|
|
sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
|
|
f = &flush_state[sender];
|
|
|
|
/*
|
|
* Could avoid this lock when
|
|
* num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
|
|
* probably not worth checking this for a cache-hot lock.
|
|
*/
|
|
spin_lock(&f->tlbstate_lock);
|
|
|
|
f->flush_mm = mm;
|
|
f->flush_va = va;
|
|
if (cpumask_andnot(to_cpumask(f->flush_cpumask), cpumask, cpumask_of(smp_processor_id()))) {
|
|
/*
|
|
* We have to send the IPI only to
|
|
* CPUs affected.
|
|
*/
|
|
apic->send_IPI_mask(to_cpumask(f->flush_cpumask),
|
|
INVALIDATE_TLB_VECTOR_START + sender);
|
|
|
|
while (!cpumask_empty(to_cpumask(f->flush_cpumask)))
|
|
cpu_relax();
|
|
}
|
|
|
|
f->flush_mm = NULL;
|
|
f->flush_va = 0;
|
|
spin_unlock(&f->tlbstate_lock);
|
|
}
|
|
|
|
void native_flush_tlb_others(const struct cpumask *cpumask,
|
|
struct mm_struct *mm, unsigned long va)
|
|
{
|
|
if (is_uv_system()) {
|
|
unsigned int cpu;
|
|
|
|
cpu = get_cpu();
|
|
cpumask = uv_flush_tlb_others(cpumask, mm, va, cpu);
|
|
if (cpumask)
|
|
flush_tlb_others_ipi(cpumask, mm, va);
|
|
put_cpu();
|
|
return;
|
|
}
|
|
flush_tlb_others_ipi(cpumask, mm, va);
|
|
}
|
|
|
|
static int __cpuinit init_smp_flush(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(flush_state); i++)
|
|
spin_lock_init(&flush_state[i].tlbstate_lock);
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(init_smp_flush);
|
|
|
|
void flush_tlb_current_task(void)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
preempt_disable();
|
|
|
|
local_flush_tlb();
|
|
if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
|
|
flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
preempt_disable();
|
|
|
|
if (current->active_mm == mm) {
|
|
if (current->mm)
|
|
local_flush_tlb();
|
|
else
|
|
leave_mm(smp_processor_id());
|
|
}
|
|
if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
|
|
flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
preempt_disable();
|
|
|
|
if (current->active_mm == mm) {
|
|
if (current->mm)
|
|
__flush_tlb_one(va);
|
|
else
|
|
leave_mm(smp_processor_id());
|
|
}
|
|
|
|
if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
|
|
flush_tlb_others(mm_cpumask(mm), mm, va);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static void do_flush_tlb_all(void *info)
|
|
{
|
|
unsigned long cpu = smp_processor_id();
|
|
|
|
__flush_tlb_all();
|
|
if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
|
|
leave_mm(cpu);
|
|
}
|
|
|
|
void flush_tlb_all(void)
|
|
{
|
|
on_each_cpu(do_flush_tlb_all, NULL, 1);
|
|
}
|